

Process Air Compressor System for Low Level Nitrogen Removal

Geotechnical Memorandum for the Process Air Compressor Building

July 26, 2022 Greater New Haven Water Pollution Control Authority CWF 2019-04

For informational Purposes Only

Process Air Compressor System for Low Level Nitrogen Removal

Project No:	E2X90000
Document Title:	Geotechnical Memorandum for the Process Air Compressor Building
Date:	July 26, 2022
Client Name:	Greater New Haven Water Pollution Control Authority
Client No:	CWF 2019-04
Project Manager:	Dan Lynch
Author:	Juan Parra
File Name:	GeotechnicalMemorandum.docx

Jacobs Engineering Group Inc.

120 St. James Avenue 5th Floor Boston, MA 02116 United States T +1.617.242.9222 F +1.617.242.9824 www.jacobs.com

Contents

1.	Purpose	3
2.	Site Description	4
3.	Subsurface Investigation	5
4.	Subsurface Conditions	6
5.	Groundwater and Site 100-yr Flood Information	7
6.	Engineering Evaluation	8
6.1	Engineering Properties	8
6.2	Soil Corrosivity	9
6.3	Frost Penetration Depth	9
6.4	Seismic Design Parameters	9
6.5	Liquefaction Potential	10
7.	Foundation Recommendations	11
7.1	Foundation loads	11
7.2	Micropiles Foundation	11
8.	Construction Considerations	14
8.1	Site Preparation	14
8.2	Fill and Backfill	14
8.3	Temporary Excavation Support Systems	15
8.4	Dewatering	1 5
		15
8.5	Micropile Installation	15
8.5 9.	Micropile Installation	15 15 17

1. **Purpose**

The purpose of this technical memorandum (TM) is to summarize the geotechnical subsurface investigation findings as well as the analyses, results, deep foundation design recommendations, and construction considerations for the proposed Process Air Compressor (PAC) building at the PAC System for Low-Level Nitrogen Removal project. This new building will replace the existing blowers and aeration piping system at the East Shore Water Pollution Abatement Facility (ESWPAF). The ESWPAF is operated by the Greater New Haven Water Pollution Control Authority (GNHWPCA) and is located in New Haven, Connecticut.

2. Site Description

The new PAC system will consist of a new PAC building next to the existing aeration basins as illustrated on Figure 1. The current topography at the PAC building footprint (38 feet by 96 feet) is relatively flat with an approximate grade elevation ranging between 10 to 12 feet NAVD88.

Figure 1. PAC Building Location

The PAC building floor elevation is planned to match the existing Sub-Station #2 building upper floor elevation equal to 18.38 feet. Raising the existing grade by adding fill directly over the existing ground to meet the proposed floor elevation is not recommended as this will impact the existing aeration basins east wall and the existing 84-inch reinforced concrete pipe (RCP) located at the north. These existing structures have not been designed for the effect of the additional fill load. Therefore, other options were explored by the design team to achieve the proposed building floor elevation. The selected option consists of a 4-foot-thick crawl space filled with lightweight cellular concrete fill designed to raise the building floor elevation from the existing grade to the planned floor elevation. The weight of the PAC building plus the filled crawl space and foundation slab will be supported by a deep foundation system. Another option included the design of an elevated slab, but the option was eliminated due to higher construction costs when compared to the selected option.

3. Subsurface Investigation

A geotechnical investigation was carried out by Freeman in June 2021 to further characterize the subsurface conditions at the project site. The investigation findings were used to evaluate the engineering properties of the subsurface soils and bedrock to develop foundation recommendations and construction considerations for the PAC building.

The Freeman Geotechnical Data Report (GDR), dated 08/13/2021, includes the findings of the recent (2021) and historical (2012 and 1972) subsurface investigations performed within and surrounding the PAC building footprint. This GDR is included in Attachment A of this TM. Table 1 below includes a summary of the subsurface investigations' general findings. The locations of these borings and available boring logs are shown in the Freeman GDR, Figure 2.

Boring (year) ¹	Ground Surface EL. (ft)	Boring Termination Depth (ft)	Boring Termination EL. (ft)	Glacial Till Top EL. (ft)	Weathered Rock Top EL. (ft)	Bedrock Top EL. (ft)
J-1 (2021)	11.5	47	-35.5	-32.5	Not identified	Not identified
J-1A (2021)	11.5	75	-63.5	-63.5	-48.5	-53.5
HA1 (2012)	11.1	32	-20.9	Not identified	Not identified	Not identified
B-1 (1972)	14	55.7	-41.7	-30	Not identified	Not identified
B-2 (1972)	12	45.7	-33.7	-32.5	Not identified	Not identified

Table 1. Summary of the Subsurface Investigations

4. Subsurface Conditions

The recent 2021 drilling program only intended one test boring, however, the drill string broke while driving the Standard Penetration Test (SPT) sampler from 45 to 47 feet below grade in Boring J-1. The borehole was abandoned and Boring J-1A (OW; observation well) was advanced as an offset about 3 feet south-southeast of Boring J-1. In addition, while removing J-1A casing, only 20 ft of casing (out of the 50 ft installed) were recovered. Based on this, the possibility of coarser materials such rock fragments and/or cobbles/boulders should be expected as part of the project site subsurface conditions.

In accordance with the depths shown in Table 1, the subsurface conditions at the project site include the following generalized stratums:

Stratum 1: Includes the Fill, Glaciofluvial Deposits, and the Glaciodeltaic Deposits.

- Fill: Dark gray/brown silty sand (SM), Standard Penetration Test (SPT) N-values ranging from 9 to 26 blows per foot (bpf), corresponding from loose to medium dense.
- Glaciofluvial Deposits: Gray-brown poorly graded sand (SP) and poorly graded sand with silt (SP-SM), SPT N-values ranging from 11 to 50 bpf, corresponding from medium dense to dense.
- Glaciodeltaic Deposits: Reddish-brown silt (ML)/clayey silt (CL-ML), with seams of elastic silt (MH), SPT N-values ranging from 3 to 10 bpf, corresponding from very loose to medium dense.

Stratum 2: The Glacial Till was encountered below the Glaciodeltaic Deposits and included reddish-brown SM, SPT N-values ranging from 14 to >100 bpf, corresponding from medium dense to very dense.

Stratum 3: The Weathered Rock was encountered below the Glacial Till and included reddish-brown silty gravel (GM), SPT N-values >100 bpf, corresponding to very dense. The thickness of this stratum was inferred based on the drilling effort required to penetrate it.

Stratum 4: Bedrock was encountered below the Weathered Rock and included reddish-brown Sandstone, medium to moderate hardness, slightly to moderately weathered, medium- to coarse-grained. Recoveries were 49 and 48 inches (out of two 60 inches cored) and RQDs were 46 and 24%, corresponding from poor to very poor.

5. Groundwater and Site 100-yr Flood Information

Groundwater generally was encountered 8 to 10 feet below the existing ground surface. Note that boring J-1A included the installation of an observation well which was monitored at approximately 7 and 21 days after the boring installation. Seasonal changes in groundwater elevations due to variations in precipitation, evaporation, and surface water runoff are possible. Therefore, for design, a groundwater elevation equal to 11.5 feet (0 feet depth) has been considered.

At the project site, a 100-year base flood elevation equal to 12 feet was determined based on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) for New Haven County, Connecticut, Panel 442 of 635, dated July 8, 2013.

6. Engineering Evaluation

A generalized subsurface profile was developed based on the subsurface conditions encountered in the borings. The generalized design subsurface profile is summarized in Table 2.

Stratum	Layer (Soil Type)	Top EL. (ft)	Bottom EL. (ft)	Thickness (ft)	SPT N-values
	Fill (SM)	11	4	7	6 - 9
Stratum 1	Glaciofluvial Deposits (SP)	4	-13	17	9 - 53
	Glaciodeltaic Deposits (ML)	-13	-34	21	3 - 11
Stratum 2	Glacial Till (SM)	-34	-49	15	47 to 100
Stratum 3	Weathered Rock (GM)	-49	-54	5	> 100
Stratum 4	Bedrock (Sandstone)	-54	-	-	-

Table 2. Generalized Design Subsurface Profile

6.1 Engineering Properties

The engineering properties of various stratums encountered at the project site are summarized in Table 3. Some of these engineering properties were directly measured from laboratory or in situ soil tests results whereas, other properties were interpreted based on published correlations or based on engineering judgment. Correlations of engineering properties of cohesive soils are generally made based on SPT N-values and index properties, i.e., liquid limits (LLs), plastic limits (PLs), and moisture content (w %). Correlations of cohesionless soils strength properties are generally based on N-values from SPTs. Refer to Attachment A for laboratory tests and results.

Table	3.	Strength	Engineering	Properties

Stratum	Layer (Soil Type) ¹	Top EL. (ft)	SPT N ₆₀ 2	¥ (pcf)	Phi' (deg)	S _u (psf)	q _u (psi)	K (pci)	E ₅₀
	Fill (SM)	11	7	115	29	-	-	30	-
	Upper Glaciofluvial (SP)	4	40	130	34	-	-	100	-
Stratum 1	Lower Glaciofluvial (SP)	-4	12	120	31	-	-	45	-
	Upper Glaciodeltaic (ML)	-13	10	125	-	1200	-	-	0.007
	Lower Glaciodeltaic (ML)	-20	5	120	-	500	-	-	0.01
Stratum 2	Glacial Till (SM)	-34	> 50	135	35	-	-	140	-
Stratum 3	Weathered Rock (GM)	-49	> 50	140	37	-	-	160	-
Stratum 4	Bedrock (Sandstone)	-54	-	150	-	-	2495	-	-

Notes:

1. The Glaciofluvial and Glaciodeltaic Deposits layers were subdivided into upper and lower layer to better asses their soil relative density and/or consistency variability.

2. Per Freeman SPT Energy Testing Report, dated 07/19/2018, for the 2021 borings a hammer efficiency equal to 90% has been considered to estimate the corrected SPT N₆₀-values. The report is included in Attachment B.

6.2 Soil Corrosivity

According to AASHTO 2017 LRFD, the effect of corrosion and deterioration from environmental conditions shall be considered in the selection of the foundation type and in the determination of the required foundation cross-section. The following criteria should be considered as indicative of a potential corrosion situation:

- Resistivity less than 2,000 ohm-centimeters
- pH less than 5.5
- pH between 5.5 and 8.5 in soils with high organic content
- Sulfate concentrations greater than 1,000 parts per million
- Chloride content greater than 500 parts per million

Corrosivity tests were performed on soil samples obtained from boring J-1 within the Fill and Upper Glaciofluvial Deposits. These tests included pH, resistivity, and concentrations of chlorides and sulfates. Based on the results, the measured resistivity is indicative of a potential corrosion situation.

- Based on DIPRA 10-point soil evaluation, moderate to appreciable corrosion should be expected on ductile iron pipe and cast-iron pipe in contact with the ground and special corrosion protection measures should be adopted. In accordance with the Dipra Design Decision Model, V-Bio enhanced polyethylene encasement is recommended to mitigate the pipes corrosion.
- As discussed in Section 5, the micropile structural design considers a 3 millimeters reduction of steel thickness for corrosion allowance. Results from the corrosivity tests are presented in Attachment A and are summarized in Table 4.

Boring	Sample Depth (ft)	Water Content	Min. Resistivity (ohm-cm)	рН	Chlorides (ppm)	Sulfates (ppm)
J-1	0 to 9 (Composite Sample)	Moist	1,653	7.16	170	114

Table 6. Summary of Corrosivity Test Results

6.3 Frost Penetration Depth

The bottom of any foundation is recommended to be 42 inches below the finished grade in accordance with the following:

- According to Figure 2-1 of the Engineering Manual 1110-1-1905, Bearing Resistance of Soils (U.S. Army Corps of Engineers, 1992) the frost penetration depth at the project site is approximately 36 inches.
- According to the Connecticut State Building Code (2018), buildings and structures shall be protected from frost by using a minimum of 42 inches below finished grade.

6.4 Seismic Design Parameters

The seismic design parameters are in accordance with the mapped spectral accelerations and seismic site coefficients presented in 2015 IBC and based on the ATC Hazards by Location tool and the 2014 deaggregation of seismic hazard data found on the USGS Web site. The recommended seismic design parameters for this project are summarized in Table 5 and the USGS hazard reports are presented in Attachment C.

Parameter	Value	
Coordinates	Latitude: 41.281978, Longitude: -72.901035	
Risk category	III	
Seismic design category	В	
Site class	D (stiff soil)	
Spectral acceleration for 0.2-sec period, Ss (g)	0.2	
Spectral acceleration for 1.0-sec period, S_1 (g)	0.053	
MCE _G peak ground acceleration, PGA	0.112	
Site-modified peak ground acceleration, PGA_M	0.176	
Site amplification factor at 0.2s (Fa)	1.6	
Site amplification factor at 1.0s (Fv)	2.4	
Magnitude of the design earthquake, MCE	5.59	

Table 6. Seismic Design Parameters

Notes:

1. Design parameters are based on ATC Hazards by Location USGS tool using ASCE7-16. MCE is based on Dynamic Conterminous U.S. 2014 deaggregation of seismic hazard for a return period of 2475 years (2% in 50 years).

6.5 Liquefaction Potential

According to 2015 IBC, for structures assigned to seismic design category C, D, E, or F, a geotechnical evaluation of liquefaction potential shall be performed. Based on Table 5, the seismic design category for the project site is B. Nevertheless, Jacobs performed a liquefaction potential assessment considering the following:

- In general, three simultaneous conditions are required for liquefaction to occur: very loose to loose granular soils, saturated conditions, and rapid large strain cyclic loading, normally provided by earthquake motions.
- Although not predominant, there are lenses of saturated loose granular and soft fine-grained soils that may be susceptible to liquefaction.

The assessment of liquefaction potential was performed based on the Summary Report and supporting documentation in NCEER-97-0022, Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. The standard penetration tests (SPT) blow-counts and the methods proposed by Youd et al. (2001), Idriss & Boulanger (2008), and Seed et al. (2003) were considered. Based on the assessment, liquefaction potential is not a concern with a factor of safety greater than 1.1. Attachment C includes the liquefaction potential assessment.

7. Foundation Recommendations

The PAC building footprint is only 8 feet away from the existing aeration basins east wall and 5 feet away from the existing 84-inch reinforced concrete pipe (RCP) located at the north. The bottom of the existing aeration basins are supported on a 2-foot-thick mat bearing at elevation -5 feet and the existing 84-inch RCP is supported on stabilized subgrade at elevation -3 feet. Note that the bottom of the PAC building slab (2 feet thick) is planned between elevations 8 and 11 feet, which leaves 4 to 7 feet vertical clearance in between the bottom of the slab and the top of the 84-inch RCP. Considering these geometrical constraints, the use of shallow foundation to support the building is not considered feasible since the foundation will exert additional (likely excessive) pressure on the existing infrastructure and also cause additional settlement.

Based on the aforementioned and considering the presence of some loose/soft soils conditions within the depth of influence, a deep foundation system is recommended to support the PAC building. The deep foundation system will eliminate the excessive vertical and lateral loading acting at the aeration basins east wall and at the 84-inch RCP and will prevent detrimental total/differential settlements of existing infrastructure and the new building. The following deep foundation systems were evaluated for the PAC building.

- Driven Piles: Driven piles are deep foundation elements (i.e., precast concrete piles, steel H piles, steel pipe piles, etc.) driven into ground. Due to proximity to existing structures including, but not limited to, aeration basins, 84-inch RCP, Sub-Station #2 building, etc., driven piles are not recommended for this project. Driven piles installation induced vibrations may be detrimental to existing structures performance and could cause vibration-induced settlement. Additionally, the potential for presence of cobbles/boulders on this ground is expected to cause challenges for installation of this type of deep foundation.
- Micropiles: Micropiles are deep foundation elements that can be installed using smaller equipment and in all soil types and ground conditions with minimal vibrations. Micropiles can also be installed in the glacial till, weathered rock, and bedrock stratums, and could be drilled through obstructions, such as cobbles/boulders, if encountered. Therefore, this deep foundation system is recommended to support the PAC building.

7.1 Foundation loads

The loads used for the design of the micropiles are presented in Table 6. These loads represent the maximum micropile axial (including lightweight cellular concrete fill at the crawl space) and lateral loads applied to the micropile.

Load (kips)	Configuration	PAC Building
Maximum Micropile Axial Load	12 feet by 12 feet grid	206 (compression) ¹ 0 (uplift)
Maximum Micropile Lateral Load		12.4

Table 7. Design Service Load on a Single Element

Notes:

1. A factor of safety for soil-grout bond strength equal to 2.5 has been considered in the design.

7.2 Micropiles Foundation

Micropiles will develop axial compression and uplift resistances from side friction on the bond zone. The bond zone is defined as the uncased length of the micropile that transfers the applied axial loads to the surrounding soil or rock. Methods for determination of axial geotechnical capacity as specified in the FHWA NHI-05-039

Micropile Design and Construction Reference Manual (2005) were followed in the design. The structural design was performed following the allowable stresses for materials used in deep foundation elements, Table 1810.3.2.6 of the 2015 IBC.

Lateral analyses were performed using LPILE 2019 software which computes the micropile deflection, shear, bending moment, and soil response with respect to depth in nonlinear soils. The behavior of a single micropile subjected to combined axial and lateral load, per Table 6, was modeled.

As shown in Figure 2, and in accordance with FHWA NHI-05-039 Micropile Design and Construction Reference Manual, dated 2005, Table 2-1, Micropile Type and Grouting Method sub-type A3 should be implemented.

The recommended micropile foundation for the PAC building consists of single grade-80 casing with 10.75-inch outside-diameter (OD) and 0.595-inch thickness, and grade-150 center thread bar of 1-3/8" diameter. The grout for the micropiles should have a compressive strength of minimum 4000 psi. Due corrosion potential, the micropiles structural design considers a 3-millimeter reduction in thickness for the steel casing. The bond zone is recommended to be 10-feet-long embedded in bedrock, to be confirmed on a single element axial compressive load test performed on a sacrificial micropile. Since all micropiles are terminated in bedrock, the vertical movement of the micropiles is expected to be subject to the elastic compression of the element.

A summary of results is presented in Table 7 and the micropile design calculations and results are provided in Attachment D.

PAC Building	Micropile Foundation Design
Micropile type (See Figure 2)	A3
Micropiles maximum spacing	12 feet x 12 feet
Approximate micropile cut-off elevation	12.1 feet for centered micropiles 8.6 feet for wall micropiles
Estimated top of rock / Bottom of casing elevation	-54 feet
Rock socket length (bond zone)	10 feet
Estimated micropiles tip elevation	-64 feet
Drill hole	Minimum 11.25 inches
Micropile casing type	API N80 (fy = 80 ksi)
Micropile casing diameter and wall thickness	10.75-inch OD / 0.595-inch
Micropile center reinforcement	#11 bar
Estimated micropile elastic movement	0.25 inches

Table 7: Design Recommendations for PAC Building Micropile Foundation

-

Table 2-1. Details of Micropile Classification Based on Type of Grouting (after Pearlman and Wolosick, 1992).						
Micropile Type and Grouting Method	Sub- type	Drill Casing	Reinforcement	Grout		
Type A Gravity grout only	A1	Temporary or unlined (open hole or auger)	None, single bar, cage, tube or structural section	Sand/cement mortar or neat cement grout tremied to base of hole (or casing), no excess preserve emploid		
	A2	Permanent, full length	Drill casing itself	pressure appried		
	A3	Permanent, upper shaft only	Drill casing in upper shaft, bar(s) or tube in lower shaft (may extend full length)			

Figure 2. FHWA NHI-05-039 Micropile Design and Construction Reference Manual, 2005

8. Construction Considerations

8.1 Site Preparation

In accordance with the Geotechnical Engineering and Environmental Report prepared by Haley & Aldrich (H&A) in September 2012, and provided in Attachment E, results of chemical testing at boring HA1 indicated the following:

- The existing fill soils, from existing grade elevation to about 5 feet depth, contain compounds at levels exceeding comparable Connecticut Department of Energy and Environmental Protection (CTDEEP) criteria, and therefore are considered "contaminated soil/fill".
- The soil samples tested below 5 feet would be classified by CTDEEP as "clean fill" and are suitable for reuse on site around structures and in areas of general fill and backfill. This material also appears suitable for reuse as backfill above the pipe zone and above duct banks.
- Test results were also compared to Massachusetts Department of Environmental Protection (MADEP) landfill disposal criteria. The samples tested do not exceed MADEP landfill disposal criteria. Therefore, as stated in H&A report, the "contaminated soil/fill" should be taken off-site for disposal at a MADEP landfill.

Refer to H&A report for detailed chemical testing and results as well as soil reuse and disposal guidelines.

A sample in placed program and characterization is recommended to determine the levels and extents of the contamination and to determine an appropriate landfill. Excavated material that is determined not to be contaminated should be visually inspected to confirm suitability of the material for reuse. It is recommended to only reuse the sandy materials as backfill since the water content of the material will be easier to manage. Any soil containing greater than 15 percent silt and clay should have a liquid limit less than 40 and a plasticity index less than 20. All deleterious material should be removed from excavated material prior to placement as fill.

Most of subgrade soils are silty granular in texture and thus are susceptible to disturbance in the presence of moisture and construction traffic. Care should be exercised to maintain subgrade integrity when preparing areas for the placement of fill, excavation, and other earthwork. The exposed subgrade of non-micropile supported structures should be compacted as follow:

- Under pavement, floor slabs on grade, or granular fill, compact the upper 6 inches of the subgrade to a minimum of 95 percent relative compaction in accordance with ASTM D698.
- Under earthfill, compact the upper 6 inches of the subgrade to a minimum of 93 percent relative compaction in accordance with ASTM D698.

To mitigate risks regarding variable compaction/density of existing ground, the contractor should perform in-situ compaction testing in accordance with ASTM D1556 or ASTM D6938. Areas exhibiting pumping, determined unsuitable by the Engineer or Owner's representative or that cannot be densified in-place, should be overexcavated and replaced with compacted granular fill.

8.2 Fill and Backfill

Gradation in general conformance with No. 6, or No. 67 coarse aggregate as specified in Connecticut Department of Transportation, Form 818, M.01.02, is recommended beneath the PAC Building (supported in micropiles). The granular fill should be placed in maximum 6-inch lifts and compacted, each lift, with two (2) passes by either a vibratory plate compactor or a power driven impact compactor. A minimum of 4-inch layer of granular fill should be installed. To address the expected frost penetration depth, it is recommended to install the edges of the slab to a depth equal to 42 inches below the finished grade. For areas outside of structures and pavements, earthfill in agreement with the recommendations in Section 8.1 is recommended. Earthfill material should be compacted to at least 93 percent of the maximum dry density as determined by ASTM D698.

For the crawl space, lightweight cellular concrete fill is recommended to be installed in accordance with the following requirements.

Property	Requirements	Test Method	
Portland Cement	Type I/II	ASTM C150	
Maximum / Minimum Dry Density	48.0 / 40.0 pounds per cubic foot	ASTM C796 (No oven drying)	
Minimum Unconfined Compressive Strength @ 28 days curing	Minimum 120 pounds per square inch	ASTM C495	
Internal Friction Angle	35 degrees (min.)	AASHTO T236 (ASTM D3080-72)	
Frost Heave. Sample @ 250-hour exposure, 4.5-inch high x 4-inch dia.	< 0.5 in	British Road Research Laboratory, Lab Report LR 90, 1967, by Croney, Jacobs.	
Freezing and Thawing Resistance	Relative Dynamic Modulus, RDM ≥ 80% at 300 cycles.	ASTM C666 Procedure B (Rapid freezing in air and thawing in water) modified per Bidwell Report dated April, 1975	
Coefficient of permeability @ 2.0 pounds per square inch	1x10 ⁻⁴ centimeter per second (min.)		
Water	Clean, potable water	ASTM C1602	

Table 8. Lightweight Cellular Concrete Requirements

8.3 Temporary Excavation Support Systems

The expected soils within excavation limits fall within the OSHA Type C category. As per the OSHA requirements, safe excavations within Type C soils must be cut flatter than 1.5H:1V to depths less than 20 feet. This project excavations are expected to be within 5-10 feet from the existing grade elevation. For excavations of 5 feet deep or slightly greater in areas with extensive underground utilities, the Contractor may choose to use shoring boxes with internal bracing.

8.4 Dewatering

The Contractor should be prepared to maintain groundwater to a minimum of 2 feet below the lowest point of any required excavation. The Contractor may require the use of surficial dewatering systems (such sump pumps) to control any surface water that may enter the excavation due to rainfall, surface runoff, etc.

The Contractor should comply with all federal, state, and local regulations for the disposal of water.

8.5 Micropile Installation

A micropile specialty subcontractor experienced with at least five years of construction and testing of micropiles and with experience similar to those encountered at the site is required. Key personnel, which includes the superintendent, driller(s), and project engineer/manager, should have at least 3 years of relevant experience. Micropiles should be installed under the direct supervision of a geotechnical engineer knowledgeable in the field of micropile foundations. A competent person is recommended to be on-site during micropile installation to establish if the required bond zone length has been achieved. Obstructions, including but not limited to rock fragments, cobbles/boulders, and steel debris at J-1 and J-1A drilling locations (see Section 4) should be expected during installation of micropiles. Contractor should assess the impact of obstructions on micropile installation and take necessary measures to overcome the obstructions. If, during installation of a micropile, an obstruction is encountered that prevents the practical advancement of the micropile, the drilled hole should be abandoned and filled with grout. A new micropile should be installed at a location to be determined by the Engineer.

At least one compression load test should be performed to verify the adequacy of the micropile and the proposed construction procedures. The test micropile(s) should be loaded exceeding the ultimate micropile resistance (equal to 2.5 times the design axial load) and to failure. Production micropiles should not be installed until the test micropile(s) are successfully installed and load tested to meet the required acceptance criteria. The final micropiles bond length should be determined based on load test results. The test micropile should be equipped with strain gauges at the top and bottom of the bond zone to determine the distribution of stresses in the bond zone.

A minimum of 5 feet clearance between the northernmost row of micropiles and the existing 84-inch reinforced concrete pipe is recommended.

9. References

- FHWA NHI-05-039 Micropile Design and Construction Reference Manual, 2005
- AASHTO LRFD Bridge Design Specifications, 2017
- FHWA. 2005. Shallow Foundations, Geotechnical Engineering Circular No. 6
- FHWA. 2017. Geotechnical Site Characterization, Geotechnical Engineering Circular No. 5
- 2015 International Building Code
- ASCE 7-16, Minimum Design Loads for Buildings and Other Structures
- NCEER, 1997, "Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils", Edited by Youd, T. L., Idriss, I. M., Technical Report No. NCEER-97-0022, December 31, 1997
- Supplemental Carbon Building Pile Plan, Wet Weather Capacity Improvements and Nitrogen Reduction Phase 1, Greater New Haven Water Pollution Control Authority, New Haven , Connecticut, July 2017.
- Haley & Aldrich Geotechnical Engineering and Environmental Report, Wet Weather Capacity Improvements Phase 1 East Shore Water Pollution Abatement Facility, New Haven, Connecticut, September 2012.
- Arcadis Submittal #02 61 50 001.B, Excavation Material Management and Disposal Plan, April 2014.
- Dipra, Advancements in Pipe Longevity: The Design Decision Model, May 2018

10. Limitations

This TM has been prepared in accordance with generally accepted engineering practices and it is intended for the exclusive use by the GNHWPCA for the construction of the PAC building at the ESWPAF in New Haven, CT. No other warranty, expressed or implied, is made.

Information contained in this TM is limited, based on data obtained from boring logs and laboratory testing that show subsurface conditions only at the specific location and time investigated, and only to the depth penetrated. Subsurface conditions and groundwater levels at other locations or depths may differ from conditions occurring at investigated locations. The passage of time may also result in changed conditions at these locations. If during construction, subsurface conditions are found to vary from those described in this TM, geotechnical recommendations should be reevaluated.

This TM includes both factual and interpreted information. Factual information is defined as objective data based on direct observations, such as boring logs and laboratory testing results. Interpreted information or geotechnical engineering interpretation is based on the engineering judgment, correlation, or extrapolation from factual information. No warranties, explicit or implied, are provided for interpreted information.

Attachment A

LAND DEVELOPMENT | ENGINEERING DESIGN | CONSTRUCTION SERVICES

Geotechnical Data Report Process Air Facility Greater New Haven Water Pollution Abatement Facility New Haven, Connecticut

August 13, 2021

Prepared for:

Jacobs Engineering Group 100 Great Meadow Road Suite 707 Wethersfield, Connecticut 06109

Jacobs Project No.: E2X90000

Prepared by:

Freeman Companies, LLC 36 John Street Hartford, CT 06106

Freeman Project No.: 2021-0314

Christopher J. Tonzi, P.E. Senior Geotechnical Engineer/Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Summary	1
1.2	Scope of Work	1
1.3	Authorization	1
1.4	Elevation Datum	1
2.0	SITE AND PROJECT DESCRIPTION	1
2.1	Site Description	1
2.2	Project Description	1
3.0	SUBSURFACE EXPLORATIONS	2
3.1	Recent Subsurface Explorations	2
3.2	Previous Subsurface Explorations	2
3.3	Laboratory Testing	2
4.0	GEOTECHNICAL SUBSURFACE CONDITIONS	3
4.1	Geologic Setting	3
4.2	Subsurface Conditions	3
4.3	Groundwater	4
5.0	LIMITATIONS	4

LIST OF ATTACHMENTS

Tables

- 1. Laboratory Testing
- 2. Subsurface Data

Figures

- Site Location Map
 Subsurface Exploration Location Plan
 Subsurface Exploration Profile

Appendices

- A. Test Boring Logs 2021, 2012, 1972B. Results of Laboratory Testing

1.0 INTRODUCTION

1.1 Summary

The Greater New Haven Water Pollution Control Authority is making improvements to their water pollution abatement facility, located in southeastern New Haven, along Connecticut Avenue.

Part of those improvements is the addition of a Process Air Facility, to be located near the existing aeration basins.

This report summarizes the subsurface geotechnical data collected during our subsurface exploration program.

1.2 Scope of Work

Freeman Companies conducted the following work:

- Engaged a subsurface exploration contractor to conduct one test boring at the site;
- Provided technical monitoring of the exploration;
- Arranged for a testing laboratory to conduct laboratory soil and rock tests; and
- Evaluated subsurface conditions and prepared this data report.

1.3 Authorization

The work was completed in accordance with our proposal dated February 21, 2019 and Field Service Agreement No. 148022180.

1.4 Elevation Datum

Elevations are in feet and reference NAVD88.

2.0 SITE AND PROJECT DESCRIPTION

2.1 Site Description

The site is located at the east end of the WPCA aeration basins, west of Connecticut Avenue as shown on Figure 1, the Site Location Map.

Within the proposed building footprint, portions of the existing ground surface are covered by asphalt pavement, but the majority is covered by grass lawns. There are several buried utilities within the footprint including water lines and electrical conduits. The ground surface Elevation within the proposed footprint ranges from about 10 to 12 feet.

2.2 Project Description

The proposed building will have a footprint of approximately 3,000 square feet.

3.0 SUBSURFACE EXPLORATIONS

3.1 Recent Subsurface Explorations

Two test borings (J-1 and J-1A) were drilled by New England Boring Contractors of Glastonbury, Connecticut on June 22 and 23, 2021 to depths of 47 to 75 feet below existing ground surfaces.

The drilling program only intended one test boring, however, the drill string broke while driving the Standard Penetration Test (SPT) sampler from 45 to 47 feet below grade in Boring J-1. The borehole was abandoned and Boring J-1A (OW; observation well) was advanced as an offset about 3 feet south-southeast of Boring J-1.

Borings were advanced using 4-inch flush thread steel casing. SPTs were, in general, taken semi-continuously to 12 feet and then at 5-foot intervals thereafter. Boring J-1 terminated in the glacial till stratum. Boring J-1A (OW) terminated in bedrock, after two consecutive 5 foot long rock cores.

A groundwater monitoring well was installed in completed borehole J-1A (OW). The well was generally screened from about 5 to 15 feet below grade. Additional details about well construction are presented on the boring log.

Exploration locations were determined by taping from existing site features are considered approximate. A Freeman Companies' geotechnical engineer observed the drilling and prepared the field boring logs with soil descriptions based on visual observation of the samples. Test boring logs are included in Appendix A and locations are shown on Figure 2, the Subsurface Exploration Location Plan.

3.2 Previous Subsurface Explorations

Previous test borings, by others, were provided to Freeman by Jacobs Engineering Group. Nearby borings included B-1 and B-2, completed in January 1972 and HA-1 completed in May 2012 by General Borings of Prospect, Connecticut.

B-1 and B-2 were advanced to depths of 55 to 45 feet below grade, respectively and each appeared to terminate in the glacial till. HA-1 was advanced to a depth of 32 feet below grade and appeared to terminate in a sandy silt (Glaciodeltaic) stratum.

Test boring logs are presented in Appendix A and locations are shown on Figure 2, the Subsurface Exploration Location Plan.

3.3 Laboratory Testing

Laboratory testing included:

<u>Soil:</u>

- four (4) grain size analyses,
- three (3) Atterberg Limits,
- one (1) unconfined / unconsolidated triaxial test on soil,
- one (1) corrosivity series test (pH, resistivity, sulfates, and chlorides), and
- six (6) water content determinations.

Geotechnical Data Report Process Air Facility - Greater New Haven WPAF New Haven, Connecticut August 13, 2021

Bedrock:

- Bulk density measurement; and
- one (1) unconfined compression test on bedrock.

Testing was completed by Geotesting Express, of Acton, Massachusetts. Results of laboratory testing are included in Appendix B and a summary of tests performed is presented as Table 1.

4.0 GEOTECHNICAL SUBSURFACE CONDITIONS

4.1 Geologic Setting

The United States Geologic Survey surficial geologic maps including, but not limited to, "Surficial Materials Map of Connecticut" dated 1992, indicates that subsurface conditions in the Greater New Haven area generally consist of artificial fill overlying sand over fines over glacial till.

4.2 Subsurface Conditions

Subsurface conditions encountered in the test borings were consistent with the published geology. Conditions are known only at the boring locations and may differ significantly around the site. A summary of subsurface data is presented in Table 2, attached. Note that the following interpretation was derived primarily using the conditions encountered in our recent test boring(s). Previous test borings, by others, that are considered relevant due to their proximity to this project, have been included as additional information.

Fill – Fill was encountered in the project area to a depth of about 6 feet. (We note that in nearby boring HA-1, the fill thickness was inferred by others to be almost 20 feet.) The fill material encountered included about 4 to 6 inches of topsoil overlying black, dark gray and dark brown gravelly silty sand [SM to SW]. Standard Penetration Test (SPT) N-values ranged from 9 to 26 blows per foot (bpf), corresponding from loose to medium dense.

Glaciofluvial Deposits – Glaciofluvial deposits were encountered below the fill to about 25 feet below grade (19 feet thick). The soils encountered in this stratum consisted of gray-brown sand with varying (and lesser) amounts of gravel and silt present [SP and SP-SM]. SPT N-values ranged from 11 to 50 bpf, corresponding from medium dense to dense.

Glaciodeltaic Deposits – Glaciodeltaic deposits were encountered below the glaciofluvial, down to about 44 feet below grade (19 feet thick). The soils encountered in this stratum consisted of reddish-brown silt with lesser amounts of fine sand and clay present [ML with occasional seams of MH and CL-ML]. SPT N-values ranged from 3 to 10 bpf, corresponding from very loose to medium dense.

Glacial Till – Glacial till was encountered below the glaciodeltaic, down to about 60 feet below grade (16 feet thick). The glacial till consisted of reddish-brown silty sand with varying amounts of gravel [SM]. SPT N-values ranged from 14 to >100 bpf, corresponding from medium dense to very dense. Refusal of the SPT sampler was noted in two of the three samples attempted in the glacial till.

Weathered Bedrock - Weathered bedrock was encountered below the glacial till down to about 65 feet below grade (5 feet thick). The thickness of this stratum was inferred based on the drilling effort required to penetrate it. Refusal of the SPT sampler was noted in the only sample attempted in the weathered bedrock.

Geotechnical Data Report Process Air Facility - Greater New Haven WPAF New Haven, Connecticut August 13, 2021

Bedrock was encountered at about 65 feet below grade. Two, consecutive 5-foot long rock cores were taken in the bedrock. Reddish-brown sandstone was recovered in the cores: medium to moderate hardness, slightly to moderately weathered, medium- to coarse-grained. Recoveries were 49 and 48 inches (out of 60 inches cored) and RQDs were 46 and 24% (poor to very poor).

4.3 Groundwater

Groundwater was encountered in the boring approximately 8 to 10 feet below the existing ground surface during drilling. About 10 days after drilling and installation of the observation well, depth to groundwater was 8.3 feet. Plant personnel shared their belief that groundwater levels in that area are somewhat tidally influenced.

Groundwater level measurements in borings not designated as monitoring wells were made during or immediately following drilling and may not represent static conditions. Groundwater levels will fluctuate with season, precipitation, nearby construction activities, and other conditions.

5.0 LIMITATIONS

This report was prepared for the exclusive use of Jacobs Engineering Group, Inc. and the project design team. The recommendations provided herein are based on the project information provided at the time of this report and may require modification if there are any changes in the nature, design, or location of the project.

The data in this report are based on the subsurface explorations and laboratory testing. The nature and extent of variations between explorations may not become evident until construction. If variations from the anticipated conditions are encountered, it may be necessary to revise this report.

Our professional services for this project have been performed in accordance with generally accepted engineering practices; no warranty, express or implied, is made.

TABLES

2021-0314

Greater New Haven Water Pollution Abatement Facility - Blower Building New Haven, Connecticut

Table 1

Laboratory Testing Performed

		Dep	oth					SOIL TEST	ſING	ROCK TESTING	
Boring No.	Sample Type & No.	From (ft)	To (ft)	Recovery (in)	SPT N / RQD %	Sieve Analysis (ASTM D6913)	Atterberg Limits (ASTM D4318-05)	Moisture Content (ASTM D2216-05)	Unconsolidated- Undrained (UU)Triaxial (ASTM D2850)	Corrosivity - pH, Sulfates, Chlorides, and Resistivity (ASSHTO T288, T289, T290 & T291)	Unconfined Compressive Strength (ASTM D7012 Method C)
J-1	SS; S1	0	2	18	9						
J-1	SS; S2	2	4	20	21					x (composite	
J-1	SS; S3	5	7	24	26					sample)	
J-1	SS; S4	7	9	18	47						
J-1	SS; S5	10	12	22	41	х		х			
J-1	SS; S7	20	22	10	11	х		х			
J-1	SS; S8	25	27	16	10	х	х	х			
J-1	Tube; U1	32	34	18	NA		Х	х	Х		
J-1	SS; S10	34	36	16	7						
J-1	SS; S11	40	42	24	3		Х	х			
J-1A	SS; S2	50	52	10	> 100	x (composite		x (composite			
J-1A	SS; S3	55	57	10	> 100	sample)		sample)			
J-1A	Core Run; C1	65	70	49	46						Х
J-1A	Core Run; C2	70	75	48	24						
				T	otal Assigned	4	3	6	1	1	1

Notes:

1. Corrosivity tests include: pH, Electrical Resistivity, Sulfates and Chloride

2. Composite samples were required in a few locations due to limited recoveries on samples.

2021-0314

Greater New Haven Water Pollution Abatement Facility - Blower Building New Haven, Connecticut

Table 2

Subsurface Data

	Ground			IT	nickness (ft.)		Ground	lwater	Bedrock		
Boring No.	Surface El. ¹	Depth (ft.)	Fill	Glaciofluvial	Glaciodeltaic	Glacial	Weathered	Depth (ft.) ²	Elevation	Depth (ft.)	Elevation
				Deposit	Deposit	1111	ROCK			-	
2021 Freeman											
J-1	11.5	47	6.0	19.0	19.0	>2 3	3	7.8	3.7		
J-1A (OW) ²	11.5	75	6.0	19.0	19.0	16.0	5.0	8.3	3.2	65	-53.5
<u>2012 H&A</u>											
HA-1	11.1	32	19.5		>12.5			12	-0.9		
1972 General Bor	ings										
B-1	14.0	55.7	11.0	11.5	19.5	>11.7		15	-1.0		
B-2	12.0	45.7	ND ³	ND	ND	ND					

Notes:

1. Ground surface elevations are approximate and based upon available Google Map information.

2. Groundwater levels measured during drilling acitivities may not represent stabilized conditions in borings not designated observation wells (OW). Well reading taken on 7/13/2021.

3. ">" - Greater Than; "--" - Not Encountered; "ND" - Not Delineated

FIGURES

THESE DRAWINGS SHALL NOT BE UTILIZED BY ANY PERSON, FIRM OR CORPORATION WITHOUT THE SPECIFIC WRITTEN PERMISSION OF FREEMAN COMPANIES, LLC

THESE DRAWINGS SHALL NOT BE UTILIZED BY ANY PERSON, FIRM OR CORPORATION WITHOUT THE SPECIFIC WRITTEN PERMISSION OF FREEMAN COMPANIES, LLC

APPENDIX A TEST BORING LOGS 2021, 2012, 1972

-	Exploration Location EXPLORATION NORTHING: 266.45 EASTING: 390.87 STATION: OFFSET:													
	VERT	CAL DA	ATUN East	l: of Aerati	on	Basins		ES	TIMATED GR	ROUN	ID SURFACE ELEV. (FT): <u>11.5</u>		PA	J-1 GE 1 of 2
	Drilling Information DATE START / END: 6/22/2021 - 6/22/2021 TOTAL DEPTH (FT): 47.0 CONTRACTOR: New England Boring DRILLER: R. Posa EQUIPMENT: Mobile B53 EXPLORATION TYPE/METHOD: 4.0-inch Casing AUGER ID/OD: N/A / N/A CASING ID/OD: 4 in / N/A CORE INFO: HAMMER TYPE: Automatic Hammer HAMMER WEIGHT (lbs): 140 HAMMER DROP (inch): 30 WATER LEVEL DEPTHS (ft): ♀ 7.80 6/23/2021 ♀ 10.00 6/22/2021 General Notes: Used 4in Casing to 15ft, then switched to drilling mud ABBREVIATIONS: ID = Inside Diameter OD = Outside Diameter Pen. = Penetration Length bpf = Blows per Foot S = Split Spoon U = Undistrubed Tube Sample WOR = Weight of Rods WOH = Weight of Hammer S _v = Pocket Torvane Shear Strength PID = Photoinzization Detector NA, NM = Not Applicable, Not Measured RCD = Pocket Penetration Length DP = Direct Push Sample WOR = Weight of Rods Q = Pocket Penetrometer Strength													
-	Rec. = Recovery Length DP = Direct Push Sample WOR = Weight of Rods Q _y = Pocket Penetrometer Strength													
	Elev. (ft)	Depth (ft)	Pen. (bpf) or Core Rate (mpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blows Count or RQD	Test Data	GRAPHIC LC	Sample Description & Classification		H₂0 Depth	Remarks
	- 10	-		S1 S2	X	0 to 2 to 4	24/18 24/20	3-4-5-5 4-11- 10-13			TOPSOIL (Top 4 to 6") SILTY SAND WITH GRAVEL (SM); ~756 ~20% fines, ~5% gravel; brown, With roc FILL at ~1.5 ft / ~EI. 10.0 ft SILTY SAND WITH GRAVEL (SM); ~70% ~20% fines, ~10% gravel; blackish brown, shells, Top 14in S2.	% sand, ots. sand, Trace		
	- 5-	- 5 -		S3	X	5 to 7	24/24	6-7-19- 24			SILTY SAND (SM); ~45% sand, ~45% fingravel; brownish black, With shells, Bottor WELL GRADED SAND WITH GRAVEL (\$ ~65% sand, ~25% gravel, ~10% fines; da gravish brown, Top 18in S3.	es, ~10% n 6in S2. SW); rk	F	
		-		S4	X	7 to 9	24/18	24-22- 25-30			GLACIOFLUVIAL at ~6 ft / ~EI. 5. POORLY GRADED SAND WITH GRAVI ~80% sand, ~15% gravel, ~5% fines; dai grayish brown, Similar to above. Bottom 6i POORLY GRADED SAND WITH GRAVE	5 ft EL (SP); mp n S3. _ (SP);	Ā	
S LAB.GDT 8/12/21	- 0	— 10 - -		S5	X	10 to 12	24/22	12-17- 24-26			~85% sand, ~10% gravel, ~5% fines; mois grayish brown. POORLY GRADED SAND WITH SILT (SI ~90% sand, ~9% fines, ~1% gravel; moist brown.	st, P-SM); , grayish	Ţ	
DING.GPJ GINT STD U	-5	15 - -		S6	X	15 to 17	24/14	18-26- 24-24			POORLY GRADED SAND (SP); ~90% sa gravel, ~5% fines; moist, brown.	nd, ~5%		
IHWPCA BLOWER BUII	- -10	- 20 - -		S7	X	20 to 22	24/10	4-5-6-7			POORLY GRADED SAND (SP); ~92% sa gravel, ~4% fines; grayish brown.	nd, ~4%		
021-0314 - GN	-	- 25		S8	M	25	24/16	6-4-6-7			GLACIODELTAIC DEPOSITS at ~25 ft / ~EI13.5 SILT (ML); ~96% fines, ~4% sand, ~0% g	ravel;	-	
1PANIES PROJECT 20	-15 — - - -	- - -			Δ	27					moist, readish brown.			
FREEMAN COM	Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. Companies, LLC PROJECT NAME: GNH WPCA - Process Air Facility CITY/STATE: New Haven, Connecticut PROJECT NUMBER: 2021-0314 Companies, LLC PROJECT NUMBER: 2021-0314 Companies, LLC Companies, LLC PROJECT NUMBER: 2021-0314 Companies, LLC Companies, LLC Companies													

	Exploration Location EXPLORATION EXPLORATION													
HORIZ	ZONTAI	_ 200	.45 UM:		EASTI	vG;	90.87 ST	ATION CENT	ERLI	OFFSET NE:			.1_1	
VERT	ICAL D	ATUM	l:				ES	TIMATED GF	ROUN	ID SURFACE ELEV. (FT): 11.5	<u> </u>			
LOCA	TION:	East	of Aerati	on	Basins							FA	GE 2 01 2	
Elev. (ft)	Depth (ft)	Casing Pen. (bpf) or Core Rate	Sample No.	Type	SAMPL Depth (ft)	E INFO Pen./ Rec. (in)	RMATIOI Blows Count or	N Test Data	SAPHIC LOG	Sample Description & Classification		H ₂ 0 Depth	Remarks	
-20-	 - -	(mpf)	S9	X	30 to 32	24/24	RQD 4-3-3-5		GF	SILT (ML); ~95% fines, ~5% sand, ~0% g moist, reddish brown, Lenses of f sand.	ıravel;			
- - -25—	- - - - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								SILT (ML); ~95% fines, ~5% sand, ~0% g reddish brown.				
- - -30 — -	- - - - - - - - - - - - - - - - - - -		S11	X	40 to 42	24/24	WOH- 1-2-3			SILT (ML); ~95% fines, ~5% sand, ~0% g reddish brown. GLACIAL TILL at ~44 ft / ~EI.	ravel; - 32.5 ft			
- - -35 —	- - 45 -		S12	\mathbb{N}	45 to 47	24/0	61-34- 13-20			No Recovery			Grinding on rollerbit 44ft to 45ft	
	- - - - - - - - - - - - - - - - - - -									Boring abandoned at 47ft due to broken S Spoon	plit			
-45-	- - 55 - -													
-50	- - - - - - -													
-55	- 65 - 65 													
Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.									n Companies, LLC Street , CT 06102 1-9550 emancos.com					
Explo NORT	ration HING:	Loca	tion		EASTIN	IG:		STA		OFFSET:			EXPL	ORATION
--	---	---	--	--	--	-----------------------	---	--	--	---	--	----------------------	-----------------------------------	---
HORIZ	CONTAL	DAT	UM:				ST/ 	ATION CE	NTERLI GROUN	NE: ID SURFACE ELEV. (FT):	11.5		J-1/	4 (OW)
LOCA	TION:	East	of Aeratio	on E	Basins								PA	GE 1 of 3
Drillir DATE CONTI EQUIP AUGE HAMM WATE GENE ABBRE	ng Info Start / Ractor Ment: R ID/OD: IER TYP R LEVEI RAL NO	matic End: Mob Mob <	6/22/20 ew Englar ile B53 \/ N/A utomatic 'HS (ft): Offset 3f = Inside Dio = Outside 0= Outside m. = Penet c. = Recov	D21 Ind B Han <u>V</u> t SS ame t SS ame t SS ame	- 6/23/20 oring nmer 8.30 7/1: E from J- ter meter n Length	021	PRILLER: ASING IE IAMMER) ¥ 10.20 Sed 4in Ca Nows per F Nows per	R. Posa D/OD: 4 in WEIGHT (IL Sing to 15ft, th oot Foot Sample	n / N/A os): 14 I Measur hen switch U = Undi C = Rock SC = Sor WOR = N	TOTAL DEPTH LOGGED BY (P EXPLORATION CORE INFO: HAMMER DROI ed immediately prior to well in ed to drilling mud (6/22/21). Flushe strubed Tube Sample Core RQD = F ic Core PID = P Veight of Rods Q, = Poo	(FT): 75.0 erson): N. Jol TYPE/METHOD Type: NX P (inch): 30 et aut drilling mud a Weight of Hammer Rock Quality Design rotoionization Deteo exet Penetrometer S	$\frac{4.0-inch}{2}$	ing to 50 Pocket T Field Va	1g Dft (6/23/21) Torvane Shear Strength ne Shear Strength nt Applicable, Not Measured
		Casing		;	SAMPL	E INFOF	RMATIO	٨	00					WELL
Elev. (ft)	Depth (ft)	(bpf) or Core Rate (mpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blows Count or RQD	Test Data	GRAPHIC L	Sam Descripi Classifio	ple tion & cation		H₂0 Depth	CONSTRUCTION DETAILS
-									<u>17.77</u>	FILL at ~1.	5 ft / ~El. 10.0 f	it		Road Box
10										See J-1 for soil descriptions	S			(0.5'-2') Bentonite Seal (2'- 3')
-	— 5 -									GLACIOFLUVIA	L at ~6 ft / ~El.	5.5 ft		Riser (0.25'- 5.25')
5	- -										5		∑	
	10												Ā	Filter Sand (3'-
B.GDT 8/12/2														Slotted Pipe (5.25'- 15.25'
T STD US LA	_ 15													
-5 —	- - -													· · · · · · · · · · · · · · · · · · ·
	_ 20													
-10														
1-0314 - GN	_ 25									GLACIODELTAIC at ~25 ft / ~El.	DEPOSITS -13.5 ft			
										See J-1 for soll description:	5			
ANIES PRC	 													
Stratific bounda	ation lines y betwee	represent soil ty	ent approxi pes, transit	mate	may L	OGGED) BY (Co	nsultant):	Free	man Companies, LLC		Fre	emar	Companies, LLC
Ne grad made a Fluctuat	ual. Wate t times an ions of <u>a</u> r	r level re d under oundwa	eadings hav conditions ter may oc	/e be stat	een ed. lue to C	ROJEC	T NAME Ate: N	: GNH W ew Haven	VPCA - , Conne	Process Air Facility	C O M P A N		tford	CT 06102
비 other fa 안 measur	ctors than ements w	those p ere mad	resent at the	ne tir	^{ne} P	ROJEC		BER: 202	1-0314		LAND DEVELOPMENT ENGINEERING DESIGN CON	086) ww	u) 25 w.fre	i-9550 emancos.com

Exp		Loca	tion		EASTI	NG		STATI	ON-	OFESET	EXPLORATION	
HOR	RIZONTA	L DAT	UM:		LAST	NO	ST		ERL	INE:	J-'	1A (OW)
VER		ATUN Fast	l: of Aerati	on	Rasins		ES	TIMATED GF	ROUN	ND SURFACE ELEV. (FT): <u>11.5</u>	F	AGE 2 of 3
									(1)			
Elev (ft)	. Depth (ft)	Casing Pen. (bpf) or Core Rate (mpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blows Count or RQD	Test Data	GRAPHIC LO	Sample Description & Classification	H ₂ (Dep	WELL CONSTRUCTION th DETAILS
-20 - -25 - -30 - -35 - -30 - -40 - -45 - -45 -		Core Rate (mpf)	S1 S2 S3		45 to 47 50 to 50.83 55 to 56.33	Rec. (in) 24/0 10/8 16/10	4-4-10- 18 48- 100/4" 36-24- 76/4"	Data	CARDON DE LA DELLA DE LA DELLA DE La della d	Classification See J-1 for soil descriptions GLACIAL TILL at ~44 ft / ~EI32.5 Grinding on roller bit at 44ft No Recovery - gravel in tip of split spoon SILTY SAND WITH GRAVEL (SM); ~60% ~25% fines, ~15% gravel; reddish brown, v quartz and weathered sandstone fragment WEATHERED ROCK at ~60 ft / ~EI.	sand, With s. -48.5 ft	Backfill
314 - GNHWPCA BLOV 05-	60 		S4	_	60 to 60.08	1/1	100/1"			SILTY GRAVEL WITH SAND (GM); ~65% ~25% fines, ~15% sand; reddish brown wi gray, Weathered sandstone with residual s	gravel, th dark soil.	
PANIES PROJECT 2021-C			C1		65 to 70	60/49	46			BEDROCK at ~65 ft / ~EI53.5 f SANDSTONE, medium hard, moderately to sl weathered, reddish brown with white, medium grained, medium to thickly bedded, (Dip ~0 to deg.), highly to moderately fractured, with poc gneiss 65.8 ft. to 66.2 ft. and specks of quartz. Coring Times (min/ft): 2.5-3-3-3-2.75.	t ightly 50 ket of	
WO bound be gra made Fluctu weas	fication line dary betwee adual. Wate at times ar uations of g factors than urements w	s repres en soil ty er level re nd under roundwa n those p vere mag	ent approx pes, transi eadings ha conditions ter may oc present at t de.	ima tion ve b s sta cur he t	te s may been ated. due to iime	LOGGEI PROJEC CITY/ST PROJEC	D BY (Co T NAME ATE: N T NUME	onsultant): E: GNH WP lew Haven, C BER: 2021-	Free CA - Conne 0314	man Companies, LLC Process Air Facility acticut	S6 Joh 36 Joh Hartfor (860) 2 www.f	an Companies, LLC In Street rd, CT 06102 251-9550 reemancos.com

Explo	ploration Location DRTHING: EASTING: S									OFFEET.	EXPLORATION		
HORI	ZONTAI	L DAT	UM:		EASTI	NG	ST	ATION CENT	ERL	OFFSET		.I-1A (OW)	
VERT	ICAL D		1:				ES	TIMATED GF	ROUN	ID SURFACE ELEV. (FT): 11.5		PAGE 3 of 3	
LOCA	ATION:	East	of Aerati	on	Basins								
Elev. (ft)	Depth (ft)	Casing Pen. (bpf) or Core Rate (mpf)	Sample No.	Type	SAMPL Depth (ft)	E INFOR Pen./ Rec. (in)	RMATION Blows Count or RQD	N Test Data	GRAPHIC LOG	Sample Description & Classification		H ₂ 0 Depth WELL CONSTRUCTION DETAILS	
- -60 - -	- 70 - 70 		C2		70 to 75	60/48	24			SANDSTONE, medium to moderately ha weathered, reddish brown, coarse grain medium to thickly bedded, (Dip ~0 to 20 moderately fractured, with 8-in pocket of grained sandstone/siltstone in middle of specks of quartz. Coring Times (min/ft): 3-3-2-3-3.	rd, slightly ed, deg.), f fine ^s sample,	Backfill	
- -65 — -										End of Boring at 75 feet			
- - -70 —	- - - - -												
-	- - - - - - 85												
-75-	- - - - - -												
-80 -	- - - - -												
-85-	- - - -												
-90	4 												
-95-	-95												
Stratific bounda be grad made a Fluctua other fa	Stratification lines represent approximate popundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to ther factors than those present at the time measurements were made.						D BY (Co T NAME ATE: N T NUME	nsultant): :GNH WP ew Haven, C BER:2021-0	Free CA - onne 0314	man Companies, LLC Process Air Facility ccicut	Freeman Companies, LLC 36 John Street Hartford, CT 06102 (860) 251-9550 Www freemancos com		

Rock Core Data Sheet Project No. **Project Description** Town Location Driller Inspector Engi Blower Building - Greater New Haven Water East of Settling 2021-0314 New Haven, CT С. R. Posa N. Johnson Pollution Abatement Facility Tanks 2021-0319 New Hoven WRCA (1(65'-70') Pen: 60" Rec: 49" (807) RQD: 27.5" 46"/. 3-1A 5/23/21 C2(70'-75') Pen: 60" Rec 48" (807) RQD: 14.5 24% 0 6/23/21 63 1 2 3 4 5 6 7 8 9 10 11 9 11 2 3 4 5 60 7 8 9 10 11 9 1 2 3 4 5 60 7 8 9 10 11 9 1 2 3 4 5 60 7 8 9 10 11 9 1 2 3 4 5 6 W (. 22.00 **Drill Rate** Boring No. Sample No. Sample Depth (ft.) Rock Type Color Grain Size Bedding Fracturing Weathering Strength Reddish Brown Medium to Thickly Highly to Moderately 2.5 J-1A C1 65-70 Sandstone Coarse Grained Moderately to Slightly Medium Hard 3 with White Bedded Fractured Medium to Thickly Moderately Hard 3 J-1A C2 70-75 Coarse Grained Moderately Fractured Slightly Weathered 3 Sandstone Reddish Brown Bedded to Medium J-1A C1: Pocket of Gneiss 65.8ft to 66.2ft, specks of Quartz Casing⁻ J-1A C2: 8-in pocket of fine grained sandstone/siltstone in middle of sample, specks of Quartz Hamme NOTES: COMPANIES Hamn LAND DEVELOPMENT | ENGINEERING DESIGN | CONSTRUCTION SERVICES Core Ba

gineer	Start Date	End Date
Tonzi	6/22/2021	6/23/2021
	Х <u>у</u>	
Ĭ	-2-	<u>sp</u>
1	0	
	00	10
	I I I I I I I I I I I I I I I I I I I	4 5 6 7
1	i <u>SE</u>	
• •	ma	*
- 11 A	L. Star	

es	(min/	′ft)	Pen. (in)	Rec. (in)	Rec. (%)	RQD (%)						
3	3	2.75	60	49	82%	46%						
2	3	3	60	48	80%	24%						
Гур	e/Siz	e:	4in Driven Flush Steel Casing									
er V	Veigh	nt:	300									
nei	· Fall:		30									
rre	el Typ	e:	NX									

H A	HALEY& ALDRICH TEST BORING REPORT Boring No. HA1 Project Wet Weather Capacity Improvements - Ph.I GNHWPCA ESWPAF, New Haven, CT File No. 37176-000											
Pro Clie Cor	ject ent ntracto	We CH or Ger	t Wea 2M H neral I	ther Cap ILL Borings,	pacity Inc.	Impro	vements	- Ph.I GNHWPCA ESW	PAF, New Haven, CT	File No. 37176-000 Sheet No. 1 of 2 Start 21 May 2012		
			(Casing	Sam	pler	Barrel	Drilling Equipment	and Procedures	Finish 21 May 2012 Driller R. Posa		
Тур	е			HSA	5	5	-	Rig Make & Model: ATV	-mounted Mobile Drill B5	3 H&A Rep. S. Brousseau		
Insid	de Dia	meter (in.)	3 1/4	13	3/8	-	Bit Type: Cutting Head Drill Mud: None		Elevation 11.1 (est.)		
Harr	nmer V	Neight	(lb)	-	14	40	-	Casing: -		Location See Plan		
Han	nmer F	Fall (in.)	-	3	0	-	PID Make & Model: Non	le			
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol			VISUAL-MANU/ (Density/consistenc structure, GE(AL IDENTIFICATION AND D cy, color, GROUP NAME, m odor, moisture, optional des DLOGIC INTERPRETATION	DESCRIPTION ax. particle size*, criptions N)		
- 0 -	1	S1	0.0	10.7	-				-TOPSOIL-			
_	2 4	14	2.0	0.4	SM	Loos	e brown s	ilty medium to fine SAND, trac	ce gravel, with few organics	s, no odor, dry		
-	4 5 7 10 13	S2 18	2.0 4.0	-	SM	Medi	um dense	dark brown silty medium to fi	ne SAND, trace gravel, with	n few organics and shells, no odor, dry		
- 5 -	3 3 3 3	S3 14	5.0 7.0	-	SM	Simil	ar to S2					
-	17 19 34 38	S4 16	7.0 9.0	4.1 7.0	SM	Very	dense bro	wn medium to fine SAND, litt	le silt, with very few silty cl	lay pockets, no odor, dry		
- 10 - -	13 17 22 27	S5 18	10.0 12.0	-	SM	Dens	e gray-bro	own medium to fine SAND, litt	le silt, with very few organi	ics and shells, no odor, moist		
-	19 24 29 32	S6 18	12.0 14.0	-	SM	Very	dense gra	y-brown medium to fine SANI	D, little silt, trace gravel, no	odor, wet		
4-				-3.4 14.5	<u> </u>	+						
- 15 -	4 5 8 9	S7 16	15.0 17.0		SM	Medi	um dense	brown medium to fine SAND,	little silt, with occasional si	ilty clay seam, no odor, wet		
-	7 5 4 2	S8 14	17.0 19.0	-	SM	Loos	e brown n	nedium to fine SAND, little silt	e, bottom 3 in. wood and gra	avel, no odor, wet		
-				-8.4					-FILL-			
- 20 -		Wa	ter I e	evel Date	 a			Sample ID	Well Diagram	Summary		
ם	ate	Time	Elap	sed	Dept	th (ft) f	to:	O - Open End Rod	Riser Pipe	Overburden (ft) 32.0		
			Time	(hr.) BC	asing	of Hole	Water	T - Thin Wall Tube	Filter Sand	Rock Cored (ft) -		
5/2	1/12	1145	0	.0 1	0.0	14.0	12.0 ±	S - Split Spoon Sample	Cuttings Grout Concrete Bentonite Seal	Samples 11S Boring No. HA1		
Field	d Tests	:		Dilatano	cy:R- ess:I	Rapid	S - Slow M - Mediu	N - None Plastic m H - High Drv Str	ity: N - Nonplastic L - Low ength: N - None L - Low N	M - Medium H - High 1 - Medium H - High V - Verv High		
*No	te: Ma	iximum p No	barticle te: S	e size (m oil iden	ps) is o tificat	determi ion bas	ned by dii sed on vi	rect observation within the lim sual-manual methods of th	itations of sampler size. In USCS as practiced by	Haley & Aldrich, Inc.		

H&A-TEST BORING-07-1 HA-LIB07-1.GLB HA-TB+CORE+WELL-07-1.GDT VHAR/COMMON/37176_GNHWPCA ELEC INFRASTRUCTURE000/DATABASES/2012-0524 37176-000TB GINT 8.GPJ 31 Aug 12

ŀ	IAL	EY	y V			TEST BORING REPORT	Boring No. File No 37176-00	HA1
P	STD.		н	f.	<u> </u>		Sheet No. 2 of	2
th (ft)	er Blov 6 in.	le Nc c. (in.	nple th (ft)	atum ange epth (f	Symb	VISUAL-MANUAL IDENTIFICATION AND DESCR	RIPTION	
Dept	Sample	Samp & Rec	San Dept	Stra Cha Elev/De	nscs	structure, odor, moisture, optional descriptio GEOLOGIC INTERPRETATION)	ns	
- 20 -	3 5	S9 12	20.0 22.0		SP	Medium dense gray-brown medium to fine SAND, trace silt, no odor, wet		
_	8 11					Note: 2 ft running sands after sample retrieved		
-								
-								
-				-12.9 24.0		Note: Drill action indicates change at 24.0 ft		
- 25 -	3	S10	25.0		ML	Stiff red-brown fine sandy SILT with interbedded clay laminae, no odor, wet		
_	4 6 5	14	27.0					
-								
-								
_								
- 30 -					ЪØ			
_	4 4 7	S11 20	30.0 32.0		ML	Stiff red-brown fine sandy SILT, interbedded with clay laminae and fine sand pa	artings, no odor, wet	
	7			-20.9		-GLACIODELTAIC DEPOSITS-		
				32.0		Bottom of exploration at 32.0 ft		
						Note: Borehole backfilled with drill cuttings upon completion		
	NOTE:	Soil id	entifica	tion base	d on vi	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No.	HA1

31 Aug 12

NITRACTOR PROJECT NAME REMAN-ORILLER LOCATION Abstement Project Station J.D. C.L. New Advectory Station SPECTOR Dock 100 Abstement Project N163610 Grave Matter Dock 100 Abstement Project N163610 SPECTOR Description Station GROUND WATER DESERVATIONS TYPE CASING SAMPLER CORE BAR. CASING SAMPLE SS Supervised Samples CORE BAR. TT_F.AFTER HOURS SAMPLE SS SUP CONSIST STATAC CROUND WATER ELEX	L						_	-	P. U.	BOX	/150	Thos	1101,00		LINE
HEMAN-DEFILIEF UDCATION Abstement Project STATION J.D. C.E. New Haven, Conn. Offset GROUND WATER OSEN/ATIONS TYFE TAB SSATUR GROUND WATER OSEN/ATIONS TYFE TAB CORE BAR. AT FL AFTER HOURS SZE 10,070.4.22° 1 3/8° AT FL AFTER HOURS SZE 10,070.4.22° TAL AT FL AFTER HOURS SZE 10,070.4.22° TAL GROUND WATER DEEDEN AT FL AFTER HOURS SZE 10,070.4.22° TAL GROUND WATER DEEDEN GROUND WATER DEEDE AT HAMMER ALL 30° SAMPLE SAMPLE SAMPLE SAMPLE AT HAMMER ALL AT HAMMER ALL TAL SAMPLE SAMPLE SAMPLE SAMPLE <	NTE	ACTOR							PROJE	Sho	re Wa	ter Po	Ilution		
BERNAMENDAL New Hayen, Conn. Intervention SPECTOR On Mehta CASING SAMPLER E558345 CROUND WATER OBSERVATIONS T1_51QF, AFTERHOURS TYPE BA 25 SIZE OF ATTERHOURS TYPE BA 25 MALER CORRENANTIONS SIZE LOHON TYPE BA 26 T. F. AFTERHOURS FR. F. CONSIST. DEPTH HAMMER MAL CORNING NATER FLATION OF SOLE WASH WATER, SEAMS IN ROCK, ETC. SAMPLE CASING FOOT SAMPLE BOURS FRASS CONSIST. DEPTH HOURS FR. F. CONSIST. DEPTH HOURS <t< td=""><td>_</td><td></td><td>I ER</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td>LOCA</td><td>TION</td><td>Abat</td><td>ement</td><td>Project</td><td>5</td><td>STATION N163610</td></t<>	_		I ER	-		-		-	LOCA	TION	Abat	ement	Project	5	STATION N163610
SPECTOR E558345 COUND WATER OBSERVATIONS T_15_QAT. AFTERHOURS TYPE HA SS T_1_F. AFTERHOURS TYPE HA SS TF. AFTERHOURS TYPE HA SS TF. AFTERHOURS TYPE HAMMER WT. HOURS BR ST GROUND WATER ELEV. HAMMER FAIL GROUND WATER ELEV. GROUND WATER ELEV. FLANTER CONSIGNATION OF SOLE ESAMMER NO. TYPE PEN HEG OF ENT HORE ON TOBE INFIG. CONSIGNATION OF SOLE GROUND WATER SAME IN ROCK. ETC. FLANTER CONSIGNATION OF SOLE FLANTER CONSIGNATION OF SOLE FLANTER CONSIGNATION OF SOLE 50 I as 100'114 11.5' 1 3 2 Vet Trace SAME IN INCL. COLOR, ESS OF WASH WATER SA	REN	AN-DHIL	J	D.	C.	E.	_		New	Have	a. Co	nn.			OFFSET
Om Mehtsa CASING SAMPLER CORE BAR. BA Date Find. 10 - 1/19/72 125.047. AFTER 0 HOURS SS 378 SS BUMPACE REV. 14.0 11 T FI. AFTER 0 HOURS SS BUMS FREE 307 STATUS - 1/19/72 12 SAMPLE HOURS SS 31 SS BUMS FREE 307 11 SAMPLE HOURS SS BUMS FREE 307 STATUS - 1/19/72 SAMPLE GROUND WATER ELEV. 1.0 12 SAMPLE HOURS SAMPLE BUMS FREE STATUS - 1/19/72 GROUND WATER ELEV. 1.0 12 SAMPLE HOURS SAMPLE GROUND WATER ELEV. 1.0 FIEL DIDENTIFICATION OF SOLL 14 SS 103 15 GROUND WATER ELEV. 1.0 Intitle silt with gray clay. 15 1 as 107 13 1.2 wet 1.0 11 16 3 13 12 wet 100 11 11 11 20 14 as 107 13 12 wet 11	SPE	CTOR													E558345
GROUND WATER CONSISTINGTON OF THE STELLING. SEE LONG. 22' 13/25	_	Om	Meht	a	ERV	ATIC	NS				CAS	ING SA	MPLER	CORE BAR	DATE START
1:22191, APICA- SZE L. D.RUME: W: 100 ISZE L. D.RUME: W: 100 ISZE L. D.RUME: W: ISZE L. D	GF	SOUND W	ATER	0	LINV			IOURS	TYPE		HA		2/8" -		DATE FIN. 1/19 - 1/19/12
T. F. AFTER HAMMEE FAIL 30' 20 SAMPLE BLOWS PER F. CORNS CORNED OEDSIN STRATA OR SAMPLE FIELD DENTIFICATION OF SOIL REMARKS INCL. COLOR, LOSS OF WASH WATER, SEAMS IN ROCK, ETC. 20 No. TYPE PEN REG = BOT. 0.6 6.12 12.18 MIN.1 MOIST ELEV. 5 1 6.512 12.4 10 modist 11 Hittle silt with gray clay, trace sand, trace shell. 1) 10 2 5.12 1.3 2 wet 10 11 12 11 11 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	1=	20.71. 6	AT TEN					HOURS	SIZE	I.D.WU	Mie <u>Cr</u>		140 1bs.	BIT	GROUND WATER ELEV1.0
E CAUNG BOW PER SAMPLE BLOWS PER 6" (COUNT DES) COUNT DESS IT MER (MINA) COUNT DESS IT MER (MINA) FRAME FRAME<	T	FT. /	AFTER	-		-	-	ind dive	HAM	MER FA	LL		30"	OTDATA I	
200 NO. TYPE PEN REG 0.6 6.12 12.13 (MM.) MOIST ELV. WASH WATER, SEAMS IN ROCK, ETC. 5 1 6.5 1 6.5 1.0 6.6 6.12 12.13 (MM.) MOIST ELV. WASH WATER, SEAMS IN ROCK, ETC. 5 1 6.5 1.6 6.5 2.4 10 moist 11 <td< td=""><td>T</td><td>CASING</td><td></td><td></td><td>SAN</td><td>IPLE</td><td>-</td><td></td><td>BLO</td><td>WS PER</td><td>ER</td><td>CORING</td><td>OR</td><td>CHANGE</td><td>FIELD IDENTIFICATION OF SOIL REMARKS INCL. COLOR, LOSS OF</td></td<>	T	CASING			SAN	IPLE	-		BLO	WS PER	ER	CORING	OR	CHANGE	FIELD IDENTIFICATION OF SOIL REMARKS INCL. COLOR, LOSS OF
Foot No.		BLOWS	NO	TYP	FPE	NF	REG.	@ BOT.	(FORC	E ON 1	UBE)	PER FT. (MIN.)	MOIST	ELEV.	WASH WATER, SEAMS IN ROCK, ETC.
5 1 ss 18 15 6.5' 2 4 10 moist medium 0 2 ss 18' 15 6.5' 2 4 10 moist medium 10 2 ss 18' 15 1 3 2 wet 100000 11.0' red-brown fine-coarse sand, little silt in tip of split		FOOT	140.		-	+	1		0-0	0-16		-			
5 1 ss 128' 15' 6.5' 2 4 10 moist medium 0 2 ss 128' 14' 11.5' 1 3 2 wet 11.0' 15 3 ss 128' 14' 11.5' 1 3 2 wet 1000000000000000000000000000000000000					1	1	-		-	1	-				
1 ss 18 15 6.5' 2 4 10 moist 11 11 10 11		1		-	+	+	-	-	-			1.20		2.1.1	•
0 2 ss 16" 14 11.5" 1 3 2 wet 2) Dark gray clay and silt, red-brown fine-cores sand, interfect sand, trace shell. 0 2 ss 16" 13 16.5" 1 2 3 11.0" red-brown fine-cores sand, is soon. 15 3 ss 18 16 13 16.5" 1 2 3 11.0" red-brown fine-medium sand, trace coarse sand, little silt spon. 20 4 ss 18 16 12.5" 7 12 11 wet medium 10.5" 11.0" 20 4 ss 18 16 13 26.5" 16 16 22 wet dense 11.0" 11.1" 20 4 ss 18 13 26.5" 16 16 22 wet dense 5) Red-brown very fine sand, trace silt. 5) Red-brown silt. 30 6 ss 18 16" 31.5" 11 11 30 6) Red-brown silt. 31 7 13 3'.5" 11 11 30 7) Same as 1%. 31 8 ss 18 16" 41.5" 5 7 12 wet 8) Red-brown silt, little ver		-	1	S	3 10	31	15	6.5'	2	4	10		moist	-	1) Brown line-coarse sand,
0 2 ss 18" 14" 1	5 -			E	T	-	-		-	-		-	measum		trace sand, trace shell.
0 2 98 18' 14' 11.5' 1 3 2 wet 1008e 11.0' 2) Dark grey clay and silt, red-brown fine-coarse sand, little silt in the of split spoon. 15 3 85 18' 13' 16.5' 1 2 3 3) Brown fine-medium send, trace coarse sand, little silt in the of split spoon. 3) Brown fine-medium send, trace coarse sand, little silt in the of split spoon. 20 4 85 18' 16 21.5' 7 12 11 wet medium 20 4 85 18' 16 21.5' 7 12 11 wet sand, little silt in the of split spoon. 20 4 85 18' 16 21.5' 7 12 11 wet sand, little silt in the of split spoon. 21 5 85 18 13 26.5' 16 16 22 wet 5) Red-brown very fine sand, trace coarse sand, little silt. 30 6 85 18 16' 31.5' 12 20 25 6) Red-brown silt. 6) Red-brown silt. 35 7 13 3'.5' 11 13 30 7) Same as #6. 6) Red-brown silt, little verifine sand. 31 85 18 16' 41.5' 5 7 12 12 wet 6) Red-brown silt, little verifine sand.		-	-	-	+	+	-					_	1		A STATE OF A
0 2 98 18' 14'11.5' 1 3 2 wet red-brown fine-corres sand, little silt in tip of split spoon. 15 3 38 13'16.5' 1 2 3 3 Brown fine-medium sand, trace coarse sand, little silt in tip of split spoon. 20 4 35 16'13'16'2'.5' 7 12'11 wet medium 4) S me as #3 with red-brown fine-medium sand, trace coarse sand, little silt in tip of split spoon. 20 4 35 18'13'26.5' 16'16'22' wet dense 5) Red-brown very fine sand, trace silt. 30 6 35'18'13'26.5' 12'20'25' 16'16'22' wet dense 6) Red-brown silt. 30 6 31.5''12'20'25' 16'16'2' 7'1'13'3'.5''11'1'1' 30'' 35 7'1'13'3'.5''11'11'30''5' 12''20''2'' wet dense 6) Red-brown silt. 35 7'1'13''3''5''7'7'12''1''1''1''1''1''1''1''1''1''1''1''1'		-	1		T				-		0	-	Tret		2) Dark gray clay and silt.
15 3 88 13 16.5' 1 2 3 3) Brown fine-medium sand, trace coarse sand, little silt 20 4 5 16 21.5' 7 12 11 wet medium 4) S me as #3 with red-brown fine-medium sand, trace coarse sand, little silt in tip of split spoon. 20 4 5 18 13 26.5' 16 16 22 wet dense 5) Red-brown very fine sand, trace silt. 20 6 38 18 13 26.5' 16 16 22 wet dense 5) Red-brown silt. 30 6 38 18 16''' 31.5'' 12 20 25 5) Red-brown silt. 30 6 38 18 16'' 31.5'' 12 20 25 5) Red-brown silt. 30 7 13 3'.5'' 11 130 30''' 7) Same as #6. 30 8 8 16''' 11 10''' 10'''' 10''''' 30 7 13 3''.5''	0 -		2	5	81	8"	14	11.5'	1	3	2		loose	11.0	red-brown fine-coarse sand,
15 3 ss 18 13 16.5' 1 2 3 3) Brown fine-medium sand, trace coarse sand, little si 20 14 ss 18 16 21.5' 7 12 11 wet medium 20 14 ss 18 16 21.5' 7 12 11 wet medium 20 14 ss 18 16 21.5' 7 12 11 wet medium 20 14 ss 18 16 21.5' 7 12 11 wet medium 20 14 ss 18 16 21.5' 7 12 11 wet medium 20 15 ss 18 13 26.5' 16 16 22 wet medium 25 5 ss 18 13 26.5' 16 16 22 wet dense 30 6 ss 18 16' 31.5' 12 20 25 6) Red-brown very fine sand, trace silt. 30 6 ss 18 16' 41.5' 5 7 12 7 12 medium 31 13 3'.5' 11 11 30 7) Same as #6. 32 7 13 3'.5' 11 11 30 35 7 13 3'.5' 11 11 30 36 8 ss 18 16' 41.5' 5 7 12 7 12 medium	• •	-	-	+	+	-						1			little silt in tip of split
15 3 ss 18 13 16.5' 1 2 3 15 3 ss 18 13 16.5' 1 2 3 20 4 ss 18 16 21.5' 7 12 11 20 4 ss 18 16 21.5' 7 12 11 20 4 ss 18 16 21.5' 1 12 11 20 4 ss 18 16 21.5' 1 12 11 20 5 ss 18 13 26.5' 16 16 22 20 5 ss 18 13 26.5' 16 16 22 21 6 ss 18 16' 31.5' 12 20 25 30 6 ss 18 16'' 31.5' 12 20 25 30 6 ss 18 16'' 31.5' 12 20 25 30 6 ss 18 16'' 31.5' 12 20 25 30 6 ss 18 16'' 31.5' 12 20 25 30 6 ss 18 16'' 31.5' 12 20 25 30 6 ss 18 16'' 31.5' 12 20 25 31 7 32 7 33 7 34 8 ss 18 16'' 41.5'' 5 7 12		-	1	T	T					-	-	-	4		spoon.
15 3 38 10 12 20 2 10 10 11 1		E	1	L	1	0.1	121	16 51	1	2	3	-			3) Brown fine-medium sand,
20 4 ss 18° 16 21.5' 7 12 11 wet h) S me as #3 with red-brown fine-medium sand, trace coer sand, little silt in tip of split spoon. 20 5 ss 18' 16 21.5' 7 12 11 wet h) S me as #3 with red-brown fine-medium sand, trace coer sand, little silt in tip of split spoon. 25 5 ss 18' 13' 26.5' 16 16 22 wet 5) Red-brown very fine sand, trace silt. 30 6 ss 18 16'' 31.5'' 12 20 25 6) Red-brown silt. 30 6 ss 18 16'' 31.5'' 12 20 25 6) Red-brown silt. 35 7 13 3'.5'' 11 11 30 7) Same as #6. 35 7 13 3'.5'' 11 11 30 7) Same as #6. 8 ss 18 16'' 41.5'' 5 7 12 wet 8) Red-brown silt, little ver 8 ss 18'16'' 41.5'' 5 7 12 wet 8) Red-brown silt, 100 AGE	15	-	3	1	8 1	0	1)	20.07					1		trace coarse sand, little si
20 4 ss 18 16 21.5' 7 12 11 medium 4) S me as #3 with red-brown fine-medium sand, trace coar sand, little silt in tip of split spoon. 25 5 ss 18 13 26.5' 16 16 22 wet dense 5) Red-brown very fine sand, trace silt. 20 6 ss 18 16'' 31.5' 12 20 25 5) Red-brown very fine sand, trace silt. 30 6 ss 18 16'' 31.5' 12 20 25 6) Red-brown silt. 30 7 13 3'.5' 11 13 30'' 7'' Same as #6. 35 7 13 3'.5'' 11 11 30'' 7'' Same as #6. 35 7 13 16'' 41.5'' 5'' 7'' 12'' wet medium 6) Red-brown silt, little ver 8) ss 18 16'' 41.5'' 5'' 7'' 12'' Wet medium 6) Red-brown silt, little ver 8) ss 18 16'' 41.5'' 5'' 7'' 12'' 12''''''''		-	L	T	1			-	-	+-	+	-	-		
20 4 55 18 16 21.5' 7 12 11 wet 11 medium 11 11 medium 11 11 11 medium 11 11 11 medium 11 <td< td=""><td></td><td></td><td>-</td><td>+</td><td>+</td><td>-</td><td>-</td><td></td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td>10.00</td></td<>			-	+	+	-	-		-	1					10.00
20 Immedium Immedium Immedium Immedium 21 Immedium Immedium Immedium Immedium Immedium 25 5 85 18 13 26.5' 16 16 22 wet 5) Red-brown very fine sand, 25 5 85 18 13 26.5' 16 16 22 wet 5) Red-brown very fine sand, 26 5 85 18 16'' 31.5'' 12 20 25 6) Red-brown silt. 30 6 85 18 16'' 31.5'' 12 20 25 6) Red-brown silt. 30 7 13 3'.5'' 11 11 30 7) Same as #6. 35 7 13 3'.5'' 11 11 30 7) Same as #6. 35 7 13 16'' 41.5'' 5 7 12 medium 6) Red-brown silt, little ver 8 ss 18 16'' 41.5'' 5 7 12 medium		-	4	+	SS	18	16	21.5'	17	112	11		wet	-	4) S me as #3 with red-brown
25 5 88 18 13 26.5' 16 16 22 wet 5) Red-brown very fine sand, trace silt. 30 6 ss 18 16'' 31.5' 12 20 25 6) Red-brown silt. 30 6 ss 18 16'' 31.5' 12 20 25 6) Red-brown silt. 30 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 36 8 ss 18 16'' 41.5' 5 7 12 medium 6) Red-brown silt, little ver 36 8 ss 18 16'' 41.5' 5 7 12 medium 10 10 10	20			T				-	1-		-		- mearon	-	sand, little silt in tip of
25 5 55 18 13 26.5' 16 16 22 wet dense 5) Red-brown very fine sand, trace silt. 30 6 ss 18 16'' 31.5' 12 20 25 6) Red-brown silt. 30 6 ss 18 16'' 31.5' 12 20 25 30 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 8 ss 18 16'' 41.5'' 5 7 12 medium 8) Red-brown silt, little very fine sand.		F	-	+	+	-	-	-	1			-		22.5'	split spoon.
25 5 88 18 13 26.5° 10 10 22 wet dense trace silt. 30 6 ss 18 16" 31.5' 12 20 25 6) Red-brown silt. 30 6 ss 18 16" 31.5' 12 20 25 6) Red-brown silt. 30 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 8 ss 18 16' 41.5' 5 7 12 medium 6) Red-brown silt, little ver 7 13 16' 41.5' 5 7 12 medium 7 11 12		-	+	+	1				-	170	100	-	tret	1	5) Red-brown very fine sand.
30 6 ss 18 16" 31.5' 12 20 25 6) Red-brown silt. 30 6 ss 18 16" 31.5' 12 20 25 6) Red-brown silt. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 12 wet 8) Red-brown silt, little ve; 8 ss 18 16' 41.5' 5 7 12 medium TOTAL FOOTAGE	65		5	S	S	18	113	26.5	1 10	110	22	-	dense		trace silt.
30 6 ss 18 16" 31.5' 12 20 25 6) Red-brown silt. 30 6 ss 18 16" 31.5' 12 20 25 6) Red-brown silt. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 36 8 ss 18 16' 41.5' 5 7 12 medium S) TOTAL FOOTAGE	5	-	+	+	-	-	1	1	1				3		
30 6 ss 18 16" 31.5' 12 20 25 6) Red-brown silt. 30 6 ss 18 16" 31.5' 12 20 25 7 30 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 8 35 7 13 3'.5' 12 medium 8) Red-brown silt, little ver 8 ss 18 16' 41.5' 5 7 12 medium 8) Red-brown silt, little ver	1	-	1	1			-		-	-	-	-	-		and the second
30 0 55 10 <t< td=""><td></td><td></td><td>-</td><td>1</td><td></td><td>18</td><td>16</td><td>31.5</td><td>122</td><td>2 20</td><td>25</td><td>1</td><td>-</td><td>1</td><td>6) Red-brown silt.</td></t<>			-	1		18	16	31.5	122	2 20	25	1	-	1	6) Red-brown silt.
35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 12 wet 8) Red-brown silt, little ver 8 ss 18 16' 41.5' 5 7 12 medium TOTAL FOOTAGE	3	0+	-	0	22	10	T	1	T	1			1		
35 7 13 35.5' 11 11 30 7) Same as #6. 35 7 13 35.5' 11 11 30 7) Same as #6. 35 7 13 35.5' 11 11 30 7) Same as #6. 35 7 13 12 wet 8) Red-brown silt, little ver 8 ss 18 16' 41.5' 5 7 12 medium TOTAL FOOTAGE	1	-		1		_	-	-	-		-	-	-		
35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 3'.5' 11 11 30 7) Same as #6. 35 7 13 14 11 30 7) Same as #6. 35 7 12 wet S) Red-brown silt, little ver fine sand. 8 ss 18 16' 41.5' 5 7 12 medium TOTAL FOOTAGE			-	-	-	-	+		1	-		1			
35		H	-	7	24	1	11	3 31.5	11	1 11	. 30		."		7) Same as $\frac{1}{100}$.
8 ss 18 16 41.5 5 7 12 medium S) Red-brown silt, little ve: fine sand.	3	5				F	+	-	-		-	1			
8 ss 18 16' 41.5' 5 7 12 medium 6) hea-brown silt, little ve. TOTAL FOOTAGE		-		-	-	1-	1	1	1	1					() Dod have all 14+12
8 88 18 10 141.07 2 / 12 mouthing TOTAL FOOTAGE	1	-				E	1	11.2 0	1		170	-	medi	m	fine sand.
Service - OOTHOL				8	88	12	516	141.5	. 3	17	112	1	Imerce		TOTAL FOOTAGE

_			_				r. (1. 80	A /130	FRU	SPECT, C	JUNN. 0	0/12	HOLE NOB=1		
ON	TRACTOP	1					Eas	t Sh	ore W	later P	ollutio	n		LINE		
RE	MAN-DR	ILLER			1		LOC	ATION	Aba	tement	Projec	t	-	STATION		
	Contractor of States		J	.D.	C.	E.	New	Hav	ren, C	onn.	100			N163610		
ISP	ECTOR	~	Mak	+-			1							OFFSET		
-		U	n Mer	DUA	TIONS					SING S	AMPLED	COPE PA		E558345		
G	5.04	AFTER		O	TUN	HOURS	TYP	E	U.	HA	SS	CONE DA	. I	DATE START		
	25 Fl.	AFIE				LIIOONS	SIZE	I.D.N	aM.	<u>5 1 1</u>	3/8			SUBEACE FLEY 14.0		
r_	FT.	AFTE	R		-	HOURS	HAN	AMER V	νт		140 1bs	• BIT		GROUND WATER ELEV1.0		
1	CASING	-	-	SAMP	E		BL	OWS PI	ER 6"	CORING	30 DENSITY	ISTRATA				
	BLOWS					DEPTH	(FOR	SAMP CE ON	LER TUBE	TIME	OR	CHANGE		FIELD IDENTIFICATION OF SOIL REMARKS INCL. COLOR LOSS OF		
	FOOT	NO.	TYPE	PEN	REG.	@ BOT.	0-6	6-12	12-18	(MIN.)	MOIST	ELEV.	V	WASH WATER, SEAMS IN ROCK, ETC.		
			124					-	-							
1			-	-	-		-	-	-		1		-			
Ì							Ĭ		1	-		44.0'				
		9	SS	18"	12'	46.5'	12	15	58		wet	-	9) I	Red-brown fine-coarse sand.		
		-	-	-	-	-	-	-	-	Card a	dense		trac	ce fine-medium gravel, little		
1		-	-				1				1		SIL	-		
,1																
_		10	SS	18	13"	51.5'	25	37	76		wet	-	_10)	Red-brown fine-medium sand.		
		-		-	-		-	-	-	ve	y dens	1	trac	ce coarse sand, trace fine		
												1 51	الثانين	er, little silt.		
1								-				10.00				
-		11	-	8.	6'	55.67	75	100	2		14	55 67	11)	Same as #10.		
		-		-	-		-				•	EOB	Refu	usal on split spoon at 55 (7)		
1						·				1		1		and the second		
-		-		-	-						ů.,	-	END	OF BO ING 55.67' Poil		
	~	-		-			-							Contraction (1)		
								1						1		
-		-	-	-	-		-	-				+	1			
											1.1.1					
		-	-			-	-									
		-			-							-	1			
1								1. 1			1	1		4		
1		-	-		-				-	-	1					
								-				-				
		-														
	_			_												
		-		-	-	-	-+	-	-		0000					
		-	1	100		Contraction of the	1		6		Sector Sector			and the second		

CLIENT	المختفظ	- Adab	X M M				P. O.	BOX	7135	PROS	PECT, CON	N. 067				
ONTR	ACTOR	-	in the second			1	PROJ	CT NA	ME ore k	ter F	ollution		2			
			_			1	LOCA	TION	Aba	tement	Project		STATION			
REM	AN-DRIL	LER	L.C.	R	.D.		Net	v Hav	en, C	onn.			OFFSET			
INSPEC	CTOR										_		E558375			
On	1 Hent.	8	ORSE	RVAT	ONS	-	-		CAS	ING SA	MPLER CO	ORE BAR	DATE START			
GR	OUND W	ATER	OBSE			HOURS	TYPE	110	WI	1 1	3/8		- DATE FIN. 2/20 - 2/20/12			
AT-	F1. #	FIEN				RUDH	SIZE	I.D. IV	Nia <u>C.</u>		140 lbs.	BIT	GROUND WATER ELEV.			
AT_	FT. 4	FTER				noono	HAM	MER FA			30"	TATE I				
- 10	ASING		S	AMPL	E		BLC	SAMPL	ER	CORING	OR CH	HANGE	FIELD IDENTIFICATION OF SOIL REMARKS INCL. COLOR, LOSS OF			
THAT	PER	-	TYPE	PEN	REC.	@ BOT.	(FORC	E ON T	UBE)	PER FT. (MIN.)	MOIST E	LEV.	WASH WATER, SEAMS IN ROCK, ETC.			
ā	FOOT	NO.	TTU	24"	24	2.0'	Pre	6S	12-10		saturate	d	1) Black silt - Fine sand at			
H	-14	7	00	<u>6.</u> T	1								bottom of 63 sample.			
	9			-	-	-	-									
	4	-	-	-				1		-		-				
5 -	3	2	-	24"	12	8.0'	Pre	BS					2) dray sills of schole			
	9		-	-	-		-	-								
	9	+	+	1				1		-						
10	11	11	55	18	18	11.51	3	3	3		sat	-	Bottom 9 - brown fine sand.			
10 -	13	L	-	-	-	-	-	-	-		TOOPE		trace silt.			
	29	12	88	18	114	14.5"	6	6	6		wet	-	2) Brown fine sand, trace silt			
1	36	-			1	1		-	-	-	meanum		Brown line sand, trace sitt			
15.	36	-	-	-	+	-	1	+	-							
15	52	+	+	-	1		L				-					
1	54		-		T	-	-	-	-	-	- 1					
1.	60		+-		111	21.5	15	6	7		wet		3) Grey-brown fine-medium sand			
20	6-	-	-	+			T				medium		crace silt.			
	68	3	1		T	-	-	-	+-	-	- 1					
1	70		-	+	-	+	-	1	1							
1	62	2 4	-	1	12	1 26.5	5	6	10		moist		[4) Red-brown silt, trace very			
25	5	0			T	-	+		-	-	- mearum					
	6	2	+	+	+	-	1	-	1	1						
	7	5	+	1	T	1	1		110	-	moist		5) Same as #4.			
20		8 5	5		#3	31.5	. 0	- 9	10	-	medium		f			
130	TS	2	+	+	+	+	-	+	1	1						
	7	0	+	+	-											
	10	20		1		1106 E	1 0		1 11	-	noist		6) Red-brown silt, some very			
21	5	15	6	+		0 30.2	1	+		-	medium		Trine sand.			
1	-	30	+	+	1						_		7) Red-brown silt. some verv			
		26				-	-	-	-	-	-		fine sand changing to red-brow			
1		24	7	-+-	-18	3 41.	TE	9	12	1	moist		fine-medium silty sand, trace			
t	TYPE O	SAN	PLES	1		1	-		-	100	meanua	me	TOTAL FOOTAGE			

APPENDIX B

RESULTS OF LABORATORY TESTING

Client:	Freeman Companies, LLC	2			
Project:	Greater New Haven WPC	A Blower Bldg			
Location:	New Haven, CT			Project No:	GTX-313887
Boring ID:		Sample Type:		Tested By:	ckg
Sample ID:	:	Test Date:	07/01/21	Checked By:	bfs
Depth :		Test Id:	623227		

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
J-1	S5	10-12	Moist, dark gray sand with silt	11.1
J-1	S7	20-22	Moist, dark brown sand	23.2
J-1	S8	25-27	Moist, red silt	27.6
J-1	U1	32-34	Moist, reddish brown silty clay	22.8
J-1	S11	40-42	Moist, red silt	24.9
J-1A (OW)	S2 & S3 (Comp. Sample)	50-57	Moist, reddish brown silty sand with gravel	11.6

Notes: Temperature of Drying : 110° Celsius

Client:	Freeman Companies, LLC
Project Name:	Greater New Haven WPCA Blower Bldg
Project Location:	New Haven, CT
GTX #:	313887
Test Date:	07/14/21
Tested By:	htk
Checked By:	bfs

pH by AASHTO T 289

Boring ID	Sample ID	Depth, ft	Description	pН
J-1	S1-S4 (Comp. Sample)	0-9	Moist, brown clayey sand	7.16

Client:	Freeman Companies, LLC
Project Name:	Greater New Haven WPCA Blower Bldg
Project Location:	New Haven. CT
GTX #:	313887
Test Date:	07/14/21
Tested By:	htk
Checked By:	bfs

Minimum Laboratory Soil Resistivity by AASHTO T 288

Boring ID	Sample ID	Depth, ft	Sample Description	Minimum Soil Resistivity, ohm-cm
J-1	S1-S4 (Comp. Sample)	0-9	Moist, brown clayey sand	1,653

Comments: Test Equipment: Nilsson Model 400 Soil Resistance Meter, MC Miller Soil Box Test conducted in standard laboratory atmosphere: 68-73 F

	Client:	Freeman Companies, LLC									
	Project:	Greater Ne	Greater New Haven WPCA Blower Bldg								
N	Location:	New Have	n, CT			Project No:	GTX-313887				
9	Boring ID:	J-1		Sample Type:	jar	Tested By:	ckg				
	Sample ID:	S5		Test Date:	07/07/21	Checked By:	bfs				
	Depth :	10-12		Test Id:	623218						
	Test Comm	ent:						_			
	Visual Description: Moist, dark gray sand with silt										
	Sample Cor	mment:									

Sand/Gravel Hardness : ---

	Client:	Freeman C	reeman Companies, LLC							
	Project:	Greater Ne	Greater New Haven WPCA Blower Bldg							
Ô	Location:	New Have	n, CT			Project No:	GTX-313887			
9	Boring ID:	J-1		Sample Type:	jar	Tested By:	ckg			
	Sample ID:	S7		Test Date:	07/13/21	Checked By:	bfs			
	Depth :	20-22		Test Id:	623219					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, dark br	own sand						
	Sample Cor	mment:								
_		<u></u>								
	metion of the second se	Cina				r r r r r				

	Client:	Freeman C	Freeman Companies, LLC							
	Project:	Greater Ne	Greater New Haven WPCA Blower Bldg							
N	Location:	New Have	n, CT			Project No:	GTX-313887			
9	Boring ID:	J-1		Sample Type:	jar	Tested By:	ckg			
	Sample ID:	S8		Test Date:	07/06/21	Checked By:	bfs			
	Depth :	25-27		Test Id:	623220					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, red silt							
	Sample Cor	mment:								

Particle Size Analysis - ASTM D6913

Client:	Freeman C	Freeman Companies, LLC						
Project:	Greater Ne	w Haven WPCA	A Blower Bldg					
Location:	New Haver	i, CT			Project No:	GTX-313887		
Boring ID:	J-1A (OW)		Sample Type:	jar	Tested By:	ckg		
Sample ID:	S2 & S3 (C	comp. Sample)	Test Date:	07/07/21	Checked By:	bfs		
Depth :	50-57		Test Id:	623221				
Test Comm	ent:							
Visual Desc	ription:	Moist, reddish	brown silty sar	nd with grav	/el			
Sample Cor	nment:							

Client:	Freeman Companies, LLC								
Project:	Greater Ne	w Haven WPCA	A Blower Bldg						
Location:	New Haver	n, CT			Project No:	GTX-313887			
Boring ID:	J-1		Sample Type:	jar	Tested By:	cam			
Sample ID:	S8		Test Date:	07/01/21	Checked By:	bfs			
Depth :	25-27		Test Id:	623215					
Test Comm	ent:								
Visual Desc	ription:	Moist, red silt							
Sample Cor	nment:								

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S8	J-1	25-27	28	n/a	n/a	n/a	n/a	SILT (ML)

1% Retained on #40 Sieve Dry Strength: LOW Dilatancy: RAPID Toughness: LOW The sample was determined to be Non-Plastic

Client:	Freeman Companies, LLC								
Project:	Greater Ne	w Haven WPC	A Blower Bldg						
Location:	New Haver	n, CT			Project No:	GTX-313887			
Boring ID:	J-1		Sample Type:	jar	Tested By:	cam			
Sample ID:	S11		Test Date:	07/02/21	Checked By:	bfs			
Depth :	40-42		Test Id:	623217					
Test Comm	ent:								
Visual Desc	ription:	Moist, red silt							
Sample Cor	mment:								

Atterberg Limits - ASTM D4318

Sample Determine	ed to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S11	J-1	40-42	25	n/a	n/a	n/a	n/a	

Dry Strength: LOW Dilatancy: RAPID Toughness: LOW The sample was determined to be Non-Plastic

Client:	Freeman Companies, LLC							
Project:	Greater Ne	Greater New Haven WPCA Blower Bldg						
Location:	New Haver	n, CT			Project No:	GTX-313887		
Boring ID:	J-1		Sample Type:	tube	Tested By:	cam		
Sample ID:	U1		Test Date:	07/07/21	Checked By:	bfs		
Depth :	32-34		Test Id:	623216				
Test Comm	ent:							
Visual Desc	ription:	Moist, reddish	brown silty cla	У				
Sample Cor	mment:							

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	U1	J-1	32-34	23	22	17	5	1.2	

Sample Prepared using the WET method

Dry Strength: LOW Dilatancy: RAPID Toughness: LOW

Phase calculations based on start and end of test.

PO Box 572455 / Salt Lake City UT 84157-2455 / USA TEL +1 801 262 2448 · FAX +1 801 262 9870 · www.TEi-TS.com

GEOTESTING EXPRESS INCORPORATED 125 NAGOG PARK ACTON MA 01720-3451 USA

Analysis No.	TS-A2109686
Report Date	08 July 2021
Date Sampled	30 June 2021
Date Received	02 July 2021
Where Sampled	Acton, MA USA
Sampled By	Client

This is to attest that we have examined: Soil: Project: Greater New Haven WPCA Blower Building; Site Location: New Haven, CT; Job Number: GTX-313887

When examined to the applicable requirements of:

AASHTO T-291-18	"Standard Method of Test for Determining Water-Soluble Chloride Ion Content in Soil" Method B
AASHTO T-290-20	"Standard Method of Test for Determining Water-Soluble Sulfate Ion Content in

Results:

AASHTO T 291 - Chloride Method B

Sor	nala	Res	Dotoction Limit		
Sar	npie	ppm (mg/kg)	% ¹	Detection Limit	
Composite Sample		170	0.0170	10	
S1-S4	J-1 / 0-9	170.	0.0170	10.	

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

Soil"

AASHTO T-290 - Sulfate (soluble)

Son	nnlo	Res	Detection Limit	
San	lible	ppm (mg/kg)		
Composit	e Sample	114	0.0114	10
S1-S4	J-1 / 0-9	114.	0.0114	10.

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

END OF ANALYSIS

USEPA Laboratory ID UT00930

Merrill Gee P.E. – Engineer in Charge

© 2021 by Testing Engineers International, Inc. CAVEAT: This certificate may not be reproduced except in full, without the expressed written consent of TEi-Testing Services, LLC. Note: The values in this certificate are the values obtained under standard test conditions as reported in the appropriate Report of Test and thus may be used for purposes of demonstrating compliance or for comparison with other units tested under the same standard. The results do not indicate the function of the sample(s) under nonstandard or field conditions. Statement of Risk: Client understands and agrees that declarations of conformity are made by directly comparing the measurement results against the test limits given in the standard without consideration to factors that may contribute to measurement uncertainty and accepts the shared risk that arises from this approach. This certificate gives the characteristics of the sample(s) submitted for testing only. It does not and may not be used to certify the characteristics of the product, nor to imply that the product in general meets the requirements of any standard, nor its acceptability in the marketplace. TEi stylized lettering and logo are registered trademarks and use is by contract and/or written permission only. TEi-Testing Services is a wholly owned LLC of Testing Engineers International, Inc.

Client:	Freeman Companies, LLC						
Project:	Greater Ne	w Haven WPCA	A Blower Bldg				
Location:	New Haver	n, CT			Project No:	GTX-313887	
Boring ID:	J-1A (OW)		Sample Type:	cylinder	Tested By:	ckg	
Sample ID:	C1		Test Date:	07/08/21	Checked By:	smd	
Depth :	65-70		Test Id:	623214			
Test Comm	ent:						
Visual Desc	ription:	See photograp	h(s)				
Sample Comment:							
	Client: Project: Location: Boring ID: Sample ID: Depth : Test Comm Visual Desc Sample Cor	Client: Freeman C Project: Greater Ne Location: New Haver Boring ID: J-1A (OW) Sample ID: C1 Depth : 65-70 Test Comment: Visual Description: Sample Comment:	Client: Freeman Companies, LLC Project: Greater New Haven WPCA Location: New Haven, CT Boring ID: J-1A (OW) Sample ID: C1 Depth: 65-70 Test Comment: Visual Description: See photograp Sample Comment:	$\begin{array}{ccc} \mbox{Client:} & \mbox{Freeman Companies, LLC} \\ \mbox{Project:} & \mbox{Greater New Haven WPCA Blower Bldg} \\ \mbox{Location:} & New Haven, CT \\ \hline \mbox{Boring ID:} & \mbox{J-1A (OW)} & & \mbox{Sample Type:} \\ \mbox{Sample ID:} & \mbox{C1} & & \mbox{Test Date:} \\ \hline \mbox{Depth:} & \mbox{65-70} & & \mbox{Test Date:} \\ \hline \mbox{Test Comment:} & \mbox{Ge photograph(s)} \\ \hline \mbox{Sample Comment:} & \mbox{Ge photograph(s)} \\ \mbox{Sample Comment:} & \mbox{Ge photograph(s)} \\ \hline \mbox{Comment:} & \mbox{Comment:} & \mbox{Comment:} \\ \hline $	Client:Freeman Companies, LLCProject:Greater New Haven WPCA Blower BldgLocation:New Haven WPCA Blower BldgLocation:New Haven WPCA Blower BldgBoring ID:J-1A (OW)Sample ID:C1C1Test Date:Depth:65-70Test Comment:Visual Description:See photograph(s)Sample Comment:	Client:Freeman Companies, LLCProject:Greater New Haven WPCA Blower BldgLocation:New Haven, VTBoring ID:J-1A (OW)Sample ID:C1C1Test Date:Opth:65-70Test Comment:Visual Description:See photograph(s)Sample Comment:	

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
J-1A (OW)	C1	65-70 ft	151	2495	1	No	2,*

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored. 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

*Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

	Client:	Freeman Companies, LLC	Test Date:	7/2/2021
	Project Name:	Greater New Haven WPCA Blower Bldg	Tested By:	cmh
	Project Location:	New Haven, CT	Checked By:	smd
	GTX #:	313887		
0	Boring ID:	J-1A (OW)		
	Sample ID:	C1		
	Depth:	65-70 ft		
	Visual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)								
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$		
Diameter 1, in	0.00150	1.885	0.00080	0.046	YES			
Diameter 2, in (rotated 90°)	0.00040	1.885	0.00021	0.012	YES	Perpendicularity Tolerance Met? YES		
END 2								
Diameter 1, in	0.00050	1.885	0.00027	0.015	YES			
Diameter 2, in (rotated 90°)	0.00040	1.885	0.00021	0.012	YES			

Client:	Freeman Companies, LLC
Project Name:	Greater New Haven WPCA Blower Bldg
Project Location:	New Haven, CT
GTX #:	313887
Test Date:	7/2/2021
Tested By:	cmh
Checked By:	smd
Boring ID:	J-1A (OW)
Sample ID:	C1
Depth, ft:	65-70

After cutting and grinding

After break

Attachment B

Proactive by Design

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

35 Nutmeg Drive Suite 325 Trumbull, CT 06611 T: 203.380.8188 F: 203.375.1529 July 19, 2018 Project No. 02.0173791.00

Mr. Tom Garside New England Boring Contractors 40 Fordway Street Derry, New Hampshire 03038

Re:

SPT Energy Testing – Mobile B-53 Drill Rig No. D-26 Newburgh, Maine

Dear Mr. Garside,

This report summarizes the results of the dynamic energy measurements performed on the All-Terrain Vehicle Mounted Mobile B-53 Drill Rig No. D-26, equipped with a Northeast Geotechnical customized automatic hammer at the above referenced address on July 3, 2018. The tests were conducted by Rayan Shamas of GZA using a Pile Driving Analyzer[®], Model PAX manufactured by Pile Dynamics, Inc. The measurements were performed in accordance with ASTM D4633-16 using the force velocity method (EFV).

Energy Measurement Program

The purpose of the energy measurement program was to ascertain the energy imparted during Standard Penetration Tests on one drill rig. The Standard Penetration test is conducted by driving a 1-3/8 inch I.D. split-spoon sampler (normally) 24 inches into the ground with a 140 lb. hammer falling 30 inches. The nominal driving energy of such a system is 4200 in.-lbs., or 350 ft.-lbs. However, actual energy output varies due to inefficiencies arising from the method of lifting and dropping the weight, as well as energy losses along the drill rods connecting the hammer to the sampler. Typical SPT results assume that the hammer is operating at 60 percent efficiency, that is, that the energy per blow imparted by the hammer is 0.60 x 350 ft. lbs., or 210 ft.-lbs. This is based on the average results found when conducting SPT tests with safety hammers, where a rope-and-cathead are used to lift the hammer, which falls when the driller allows the rope to go slack.

On July 3, 2018, the drilling contractor, New England Boring Contractors used a 140 lb. automatic hammer to perform the standard penetration testing. The automatic hammer is operated using a hydraulically powered chain drive which lifts the 140-lb. weight and releases it at the 30 inch drop height inside a closed steel cylinder. SPT data obtained when using any type of hammer should therefore be corrected based on the actual energy per blow, which allows traditional correlations between N-values and soil properties to be valid.

July 19, 2018 New England Boring Contractors Project No. 02.0173791.00 Page | 2

Drilling Equipment Details

The test boring was made by New England Boring Contractors using an All-Terrain Vehicle Mounted Mobile B-53 Drill Rig. A hollow-stem auger was used to provide an open hole from which Standard Penetration Tests could be performed for the samples. The Standard Penetration Tests were performed with a Northeast Geotechnical 140-pound customized automatic hammer. The hammer was physically linked to the top of the NWJ drill rods. Photographs of the drill rig can be found in Appendix C.

Dynamic Energy Testing Equipment Details

The energy measurements were made using an instrumented 24-inch-long section of NWJ drill rod. Two piezoresistive accelerometers and two foil strain gages were mounted on the outside of the drill rod. Data was collected and stored using Pile Driving Analyzer[®], model PAX. All the testing equipment was manufactured by Pile Dynamics, Inc., Cleveland, Ohio. Equipment calibration certificates can be found in Appendix D.

Energy Measurement Test Results

Sample S2 (13-15 ft.), the automatic hammer had an average energy transfer ratio of 87.8% based on readings made immediately below the hammer. Energy transfer ratios ranged from 85.7% to 90.9%, with a standard deviation of 1.5%. The average hammer blow rate was 42 blows per minute. The energy transfer ratio for the SPT sample was averaged and reported for 22 impacts during the middle foot of the test which relates to the observed N-value.

Sample S3 (15-17 ft.), the automatic hammer had an average energy transfer ratio of 88.1% based on readings made immediately below the hammer. Energy transfer ratios ranged from 84.9% to 91.1%, with a standard deviation of 1.5%. The average hammer blow rate was 42 blows per minute. The energy transfer ratio for the SPT sample was averaged and reported for 22 impacts during the middle foot of the test which relates to the observed N-value.

Sample S4 (17-19 ft.), the automatic hammer had an average energy transfer ratio of 90.7% based on readings made immediately below the hammer. Energy transfer ratios ranged from 86.0% to 102.9%, with a standard deviation of 3.2%. The average hammer blow rate was 51 blows per minute. The energy transfer ratio for the SPT sample was averaged and reported for 27 impacts during the middle foot of the test which relates to the observed N-value.

Sample S5 (19-21 ft.), the automatic hammer had an average energy transfer ratio of 95.0% based on readings made immediately below the hammer. Energy transfer ratios ranged from 92.0% to 96.9%, with a standard deviation of 1.2%. The average hammer blow rate was 57 blows per minute. The energy transfer ratio for the SPT sample was averaged and reported for 18 impacts during the middle foot of the test which relates to the observed N-value.

July 19, 2018 New England Boring Contractors Project No. 02.0173791.00 Page | 3

Sample S6 (21-23 ft.), the automatic hammer had an average energy transfer ratio of 97.8% based on readings made immediately below the hammer. Energy transfer ratios ranged from 95.7% to 99.4%, with a standard deviation of 1.0%. The average hammer blow rate was 57 blows per minute. The energy transfer ratio for the SPT sample was averaged and reported for 18 impacts during the middle foot of the test which relates to the observed N-value.

The results are summarized in Table 1 and the full test results are provided in Appendix A. Test boring B-3 was logged by a representative from GZA. The log can be found in Appendix B.

Summary

For the Mobile B-53 Drill Rig No. D-26 the average energy transfer to the top of the NWJ drill string for the five SPT's ranged from 87.8% to 97.8%, using a 140-pound Northeast Geotechnical customized automatic hammer operated at 42 to 57 blows per minute.

Please contact the undersigned if you have any questions regarding the test findings.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Richard Higginbotham Engineer II

Senior Project Manager

Bradford W. Roberts, P.E. Senior Principal

Attachments:

Table 1 Appendix A - Test Results Appendix B - Field Boring Log B-3

Appendix A – Test Results

			Table 1	- Summ	ary of	Energ	gy Me	asureme	ents - N	lewburgh, ME				
		Type of Test	Sample	Sample		SPT				Distance to bottom of sampler	Rated	Average	Average	Average
Drill Rig	Test Date	Hammer Type	No.	Depth		Blows	.	N-N	alue	from center of	Energy	Transferred	Transfer	Hammer
				top		her o				(feet)		cnergy	Emciency	DIOW RALE
				bottom				_	_		(ftkips)	(ftkips.)	(%)	(blows/min.)
		Northeast Geotech.	62	13	ų	12	10 1	·	-	18.0	0350	0 307	87.8	41.8
		140 lb. Automatic	77	15	>	1	2	-	4	0.01	0.000	0.001	0.10	1.0
		Northeast Geotech.	5	15	•	¢	1 2	, ,	-	0.01	0.250	000 0	1 00	0 77
		140 lb. Automatic	20	17	0	2	71	7	7	0.61	0.000	000.0	1.00	41.0
Truck Montad		Northeast Geotech.	5	17	16	11	1 51	, 0	-	23.0	0.360	0 347	2 00	E0 7
Mobile P.63	01001012	140 lb. Automatic	5	19	2	<u>.</u>	2	2		20.02	0.000	110.0	30.1	1.00
Rig No. D-26	0107/01	Northeast Geotech.	S5	19	10	<u>о</u>		0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	24.0	0.350	0.332	95.0	56.5
		140 lb. Automatic		21										
		Northeast Geotech.	S6	21	10	о				26.0	0.350	0.342	97.8	56.5
		140 lb. Automatic		23		_	_							

Notes: (1) Driller Name: Brad Enos - New England Boring Contractors (2) Averaged only for impacts during the middle one ft. of the test which relates to the observed N-Value.

Project Name: **SPT Energy Testing** Location: Newburgh, Maine Date: 7/3/2018 Drill Rig: Mobile B-53, Rig No. D-26 Hammer Type: Northeast Geotech. Custom Automatic Hammer Rated Energy: 350 ft.-Ibs Drilling Contractor: New England Boring Contractors Driller Name: Brad Enos Sample No./Sample Depth: S2, 13'-15', N=6-12-10-8 Test Type: Top Instrumented Rod Length From Gages To Tip of Spoon: 18 feet Rod Type: NWJ

Casing/Auger: Auger

Blows Per 6 Inches	Blow Number	Transferred Energy (ftkips)	Transferred Energy Efficiency (percent)	Hammer Blow Count Rate (BPM)
	1	0.304	86.9	5.9
	2	0.305	87.1	41.9
6	3	0.305	87.1	41.9
, s	4	0.304	86.9	41.6
	5	0.300	85.7	41.9
	6	0.307	87.7	41.6
	7	0.302	86.3	41.9
	8	0.307	87.7	41.6
	9	0.309	88.3	41.8
	10	0.312	89.1	41.8
	11	0.308	88.0	41.6
12	12	0.303	86.6	42.1
	13	0.318	90.9	41.5
	14	0.316	90.3	41.9
	15	0.315	90.0	41.6
	16	0.309	88.3	41.9
	17	0.314	89.7	41.7
	18	0.307	87.7	42.1
	19	0.308	88.0	41.7
	20	0.309	88.3	41.7
	21	0.301	86.0	42
	22	0.303	86.6	41.6
10	23	0.300	85.7	42
	24	0.303	86.6	41.6
	25	0.303	86.6	42
	20	0.307	87.7	41.5
	27	0.302	00.3 86.0	42
	20	0.301	85.0	41.8
	30	0.200	87.1	41.7
	31	0.306	87.4	41.0
	32	0.302	86.3	41.0
8	33	0.303	86.6	41.6
	34	0.301	86.0	41.0
	35	0.304	86.9	41.5
	36	0.307	87.7	41.7
	average (middle foot)	0.307	87.8	41.8
	standard dev. (middle foot)	0.005	1.513	
	C.O.V. (middle foot)	0.017	0.017	
	maximum (middle foot)	0.318	90.9	
	minimum (middle foot)	0.300	85.7	

GZA GeoEnvironmental Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 12-July-2018

N E BO OP: R	ORING SPT S	CAL (NEW	Burgh, Me	E) - S-2 (13-	15)		N	IOBILE B-5 Date: 03-Ju	3 (D-26) JV-2018
AR:	1.43 in ²							SP· 0	492 k/ft3
LE:	18.00 ft							EM: 30	
WS: 10	6 807 9 f/s								000 KSI
RPM.	Blows/Minut	Δ			telefte en		Movimum	JU. (J.35
	Maximum E						Maximum	Velocity	
ETD.	Eporal Trop	ofor Dotio	Deted			AIVIA		Acceleratio	n
EIR.	Movimum E		Rateu				Final Disp	acement	
DMY	Maximum P					EVP:	Force/Velo	poity Propor	tionality
DIVIA.		ISplacement	ETD	TAN	DMAY	1 /8 434			
DL#	BPIVI	EIVIX	EIR	FIVIX	DIVIX	VIVIX	AMX	DEN	FVP
4	bpm F O	K-II	(%)	KIPS	in	f/s	g's	In	
	5.9	0.304	86.8	37	2.20	17.7	1,932	2.13	1.037
2	41.9	0.305	87.2	37	1.39	16.6	2,215	1.39	1.004
3	41.9	0.305	87.1	37	1.14	16.2	2,212	1.14	1.007
4	41.6	0.304	86.8	38	1.14	15.8	2,056	1.14	1.034
5	41.9	0.300	85.7	38	1.36	16.6	2,069	1.36	1.002
6	41.6	0.307	87.6	39	1.27	16.5	2,116	1.27	1.023
7	41.9	0.302	86.2	38	1.32	16.3	2,058	1.32	1.040
8	41.6	0.307	87.7	39	1.24	16.5	2,138	1.24	1.024
9	41.8	0.309	88.3	39	0.99	15.6	2,044	0.99	1.019
10	41.8	0.312	89.0	38	0.90	14.4	2,033	0.90	1.043
11	41.6	0.308	88.1	40	0.67	14.6	2,115	0.67	1.063
12	42.1	0.303	86.5	39	0.67	14.5	2,129	0.66	1.045
13	41.5	0.318	90.7	39	0.69	14.6	2,087	0.68	1 049
14	41.9	0.316	90.2	39	0.67	147	2 135	0.66	1 040
15	41.6	0.315	90.0	39	0.71	14 9	2,288	0.71	1 0/1
16	41.9	0.309	88.1	40	0.62	14.6	2,200	0.62	1.041
17	417	0.314	89.7	40	0.72	14.6	2,220	0.02	1.000
18	42 1	0.307	87.6	40	0.72	15 1	2,201	0.72	1.000
19	41 7	0.308	88.0	40	0.75	15.6	2,340	0.72	1.000
20	41.7	0.300	88.3	-10	0.75	14.0	2,274	0.79	1.001
21	42.0	0.303	86.0	39	0.01	14.9	2,054	0.01	1.072
21	42.0	0.301	00.0 96 5	39	0.03	14.0	2,077	0.82	1.057
22	41.0	0.303	00.0	39	0.82	15.1	2,107	0.81	1.057
23	42.0	0.300	00.0	39	0.81	15.4	2,183	0.81	1.058
24	41.0	0.303	00.7	40	0.86	15.5	2,103	0.86	1.066
25	42.0	0.303	86.5	39	0.97	15.5	2,051	0.97	1.049
26	41.5	0.307	87.6	40	1.09	15.7	2,098	1.09	1.054
27	42.0	0.302	86.4	39	1.06	15.3	2,029	1.06	1.059
28	41.8	0.301	85.9	40	0.95	15.5	2,065	0.95	1.055
29	41.7	0.299	85.5	39	1.01	15.4	2,109	1.01	1.045
30	41.8	0.305	87.2	39	0.94	15.8	2,091	0.94	1.057
31	41.8	0.306	87.4	40	0.92	15.8	2,140	0.92	1.060
32	42.0	0.302	86.3	39	0.84	15.3	2,134	0.83	1.055
33	41.6	0.303	86.6	38	1.01	15.6	2,136	1.00	1.018
34	41.9	0.301	85.9	38	0.99	15.7	2,139	0.99	1.024
35	41.7	0.304	86.8	38	1.04	15.7	2,159	1.04	1.017
36	41.7	0.307	87.7	39	1.06	15.5	2,199	1.06	1.035
Averag	je 40.8	0.306	87.4	39	0.98	15.5	2,128	0.97	1.043

Total number of blows analyzed: 36

BL# Sensors

1-36 F3: [117-NWJ-1] 223.5 (1.00); F4: [117-NWJ-2] 223.7 (1.00); A3: [K4800] 340.0 (1.00); A4: [K4161] 378.0 (1.00)

GZA GeoEnvironmental Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2017.2.58.3 - Printed 12-July-2018

N E BORING SPT CAL (NEWBURGH, ME) - S-2 (13-15) OP: RS

MOBILE B-53 (D-26) Date: 03-July-2018

Time Summary

Drive 50 seconds 10:18 AM - 10:19 AM BN 1 - 36

GZA GeoEnvironmental Inc.

Pile Driving Analyzer ®

N E BORING SPT CAL (NEWBURGH, ME)

Qua	ntity Results
MCSI	27.7 ksi
CSX	27.0 ksi
CSB	8.8 ksi
RX7	8 kips
RX8	8 kips
RX9	8 kips
EMX	0.309 k-ft
BPM	41.8 bpm
ETR	88.3 (%)
	Qua MCSI CSX CSB RX7 RX8 RX9 EMX BPM ETR

Pile Properties

LE	18.00	ft
AR	1.43	in^2
EM	30000	ksi
SP	0.492	k/ft3
WS	16807.9	f/s
EA/C	2.6	ksec/ft
2L/C	2.15	ms
JC	0.35	[]
LP	13.00	ft

<u>Sensors</u> F3: [117-NWJ-1] 223.45 (1) F4: [117-NWJ-2] 223.7 (1) A3: [K4800] 340 mv/5000g's (1) A4: [K4161] 378 mv/5000g's (1) CLIP: OK

Version 2016.125

72 of 270
Project Name: SPT Energy Testing Location: Newburgh, Maine Date: 7/3/2018 Drill Rig: Mobile B-53, Rig No. D-26 Hammer Type: Northeast Geotech. Custom Automatic Hammer Rated Energy: 350 ft.-Ibs Drilling Contractor: New England Boring Contractors Driller Name: Brad Enos Sample No./Sample Depth: S3, 15'-17', N=8-10-12-11 Test Type: Top Instrumented Rod Length From Gages To Tip of Spoon: 19 feet Rod Type: NWJ Casing/Auger: Auger

Blows Per 6 Inches	Blow Number	Transferred Energy (ftkips)	Transferred Energy Efficiency (percent)	Hammer Blow Count Rate (BPM)
	1	0.310	88.6	1.9
	2	0.311	88.9	41.7
	3	0.311	88.9	41.7
8	4	0.313	89.4	41.4
	5	0.308	88.0	41.8
	ю 7	0.309	88.3	41.6
	(0.307	87.7	41.7
		0.308	88.0	41.4
	10	0.306	87.4	41.8
	11	0.300	07.4	41.7
	12	0.309	00.3 Q1 1	41.5
	13	0.318	90.9	41.7
10	14	0.307	87.7	41.0
	15	0.312	89.1	41.4
	16	0.302	86.3	42
	17	0.311	88.9	41.3
	18	0.304	86.9	42
	19	0.307	87.7	41.6
	20	0.309	88.3	41.5
	21	0.304	86.9	41.8
	22	0.307	87.7	41.6
	23	0.305	87.1	41.7
12	24	0.311	88.9	41.5
	25	0.317	90.6	41.5
	26	0.297	84.9	44
	27	0.309	88.3	41.8
	28	0.307	87.7	42.6
	29 30	0.309	88.3 97.7	41.8
	31	0.307	07.7 88.0	42.2
	32	0.300	86.0	42.2
	33	0.314	89.7	42
	34	0.311	88.9	42.2
	35	0.318	90.9	42.1
11	36	0.314	89.7	42.1
	37	0.310	88.6	42.2
	38	0.313	89.4	42
	39	0.311	88.9	42.2
	40	0.315	90.0	41.9
	41	0.312	89.1	42.3
	average (middle foot)	0.308	88.1	41.8
	standard dev. (middle foot)	0.005	1.461	
8	C.O.V. (middle foot)	0.017	0.017	
	maximum (middle foot)	0.319	91.1	1
	minimum (middle foot)	0.297	84.9	

Page 1 PDIPLOT2 2017.2.58.3 - Printed 12-July-2018

N E BOR	RING SPT	CAL (NEWE	BURGH, ME	:) - S-3 (15-	17)		N	IOBILE B-53 Date: 03-Ju	3 (D-26) Jv-2018
	1 43 in ²	and the second						SP: 0.	492 k/ft ³
	19 00 ft							EM: 30	000 ksi
WS 16	807 9 f/s							JC: (35
DDM: D	007.3 1/3	~					Maximum	Velocity	
DPIVI. D							Maximum	Acceleration	n
		lergy	Datad			DENI	Final Dien	Acceleration	
EIR. E	nergy fran	sier Ralio - I	Raleu			EVD:	Final Disp	acement	tionality
FIVIA. IV		bice				EVE.	T UICE/VEN	ocity i topoi	lionality
		Spiacement	стр	EMAY				DEN	E\/D
BL#	BPIN	EIVIX		FIVIA	DIVIA	VIVIA		DEN	FVF
	mqa	к-п	(%)	RIPS	1 70	10.9	2 104	1 71	1 0 1 9
1	1.9	0.310	88.5	39	1.72	10.0	2,104	1./1	1.010
2	41.7	0.311	89.0	39	1.18	16.1	2,133	1.10	1.000
3	41.7	0.311	89.0	38	1.26	16.6	2,132	1.26	0.970
4	41.4	0.313	89.4	39	1.21	16.6	2,169	1.21	1.011
5	41.8	0.308	88.0	39	1.23	16.4	2,096	1.21	0.997
6	41.6	0.309	88.4	39	1.10	16.1	2,109	1.10	0.997
7	41.7	0.307	87.7	38	1.15	15.7	2,136	1.15	0.974
8	41.4	0.308	88.0	39	0.98	15.5	2,091	0.98	0.991
9	41.8	0.306	87.5	37	1.17	14.5	2,052	1.17	0.973
10	41.7	0.306	87.3	38	1.03	14.7	2,208	1.03	0.974
11	41.5	0.309	88.2	37	0.71	14.7	2,143	0.71	0.972
12	41.7	0.319	91.1	38	0.78	14.8	2,107	0.78	0.980
13	41.6	0.318	90.9	37	0.81	14.7	2,092	0.81	0.972
14	41.7	0.307	87.7	36	0.64	15.2	1,955	0.64	0.956
15	41.4	0.312	89.1	37	0.84	16.0	2,083	0.84	0.937
16	42.0	0.302	86.4	37	0.98	16.2	2.074	0.98	0.963
17	41.3	0.311	88.9	39	1.07	16.7	2,112	1.07	0.961
18	42.0	0.304	86.8	37	0.89	15.6	2,030	0.89	1.000
19	41.6	0.307	87.7	38	0.92	16.0	2,093	0.92	1.025
20	41.5	0.309	88.3	38	0.95	15.3	2 111	0.95	0.963
21	11.0	0.304	86.9	38	0.96	15.9	2 147	0.96	0.983
21	41.6	0.307	87.8	38	0.00	15.8	2,220	0.91	0.981
22	41.0	0.307	87.0	37	0.89	15.6	2 123	0.89	0.987
23	41.7	0.303	07.0	39	0.05	15.3	2,120	0.00	0.007
24	41.5	0.311	00.0	20	0.95	15.5	2,247	0.85	0.307
25	41.5	0.317	90.4	30	0.00	10.1	2,242	0.00	0.007
26	44.0	0.297	85.0	30	0.09	14.5	2,137	0.09	0.900
27	41.8	0.309	88.3	30	0.78	14.4	2,040	0.70	0.900
28	42.6	0.307	87.6	36	0.81	14.4	2,089	0.01	0.919
29	41.8	0.309	88.2	35	0.66	14.6	1,970	0.66	0.970
30	42.2	0.307	87.7	36	0.75	14.5	2,126	0.75	0.961
31	42.2	0.308	88.1	35	0.85	15.1	2,047	0.85	0.938
32	42.4	0.301	85.9	35	0.86	15.2	2,150	0.86	0.952
33	42.0	0.314	89.8	37	0.85	15.3	2,200	0.85	0.940
34	42.2	0.311	89.0	36	0.88	14.9	2,136	0.88	0.980
35	42.1	0.318	90.7	37	0.95	15.2	2,192	0.95	0.976
36	42.1	0.314	89.6	36	0.96	15.5	2,112	0.96	0.956
37	42.2	0.310	88.7	36	0.94	15.3	2,132	0.94	0.955
38	42.0	0.313	89.4	35	1.02	15.4	2,002	1.02	0.988
39	42.2	0.311	88.9	36	1.02	15.3	2,092	1.02	0.958
40	41.9	0.315	90.0	37	0.87	15.1	2,151	0.87	0.950
41	42.3	0.312	89.2	36	0.85	14.8	2,139	0.85	0.949
42	42.1	0.318	90.9	36	0.94	14.6	2,206	0.94	0.953
43	42.3	0.312	89.3	35	0.81	14.3	2,122	0.81	0.958
Average	e 41.0	0.310	88.5	37	0.95	15.4	2,118	0.95	0.972

Total number of blows analyzed: 43

GZA GeoEnvironmental Inc. Case Method & iCAP® Results					PDIF	PLOT2 2017	.2.58.3 - Pr	inted 12-Jul	Page 2 ly-2018
N E BOF OP: RS	RING SPT	CAL (NEWE	Burgh, Me	E) - S-3 (15-	·17)		N	IOBILE B-53 Date: 03-Ju	3 (D-26) Jv-2018
BL#	BPM bpm	EMX k-ft	ETR (%)	FMX kips	DMX in	VMX f/s	AMX g's	DFN in	FVP

BL# Sensors

1-43 F3: [117-NWJ-1] 223.5 (1.00); F4: [117-NWJ-2] 223.7 (1.00); A3: [K4800] 340.0 (1.00); A4: [K4161] 378.0 (1.00)

Time Summary

Drive 1 minute 0 second 10:26 AM - 10:27 AM BN 1 - 43

GZA GeoEnvironmental Inc.

Pile Driving Analyzer ®

N E BORING SPT CAL (NEWBURGH, ME)

Project Information Quantity Results PROJECT: N E BORING SPT CAL (NEWBURGH, MCSI 26.6 ksi PILE NAME: C-3 (15-17) CSX 26.0 ksi DESCR: MOBILE B-53 (D-26) CSB 8.7 ksi **OPERATOR: RS** RX7 6 kips FILE: B-3 (15-17).W01 RX8 6 kips 7/3/2018 10:27:14 AM RX9 6 kips Blow Number 18 EMX 0.304 k-ft BPM 42.0 bpm

Pile Properties

LE 19.00 ft AR 1.43 in^2 EM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.6 ksec/ft 2L/C 2.29 ms 0.35 [] JC LP 15.00 ft

ETR 86.8 (%)

<u>Sensors</u>

F3: [117-NWJ-1] 223.45 (1) F4: [117-NWJ-2] 223.7 (1) A3: [K4800] 340 mv/5000g's (1) A4: [K4161] 378 mv/5000g's (1) CLIP: OK

Version 2016.125

Project Name: SPT Energy Testing Location: Newburgh, Maine Date: 7/3/2018 Drill Rig: Mobile B-53, Rig No. D-26 Hammer Type: Northeast Geotech. Custom Automatic Hammer Rated Energy: 350 ft.-Ibs Drilling Contractor: New England Boring Contractors Driller Name: Brad Enos Sample No./Sample Depth: S4 , 17'-19', N=16-14-13-19 Test Type: Top Instrumented Rod Length From Gages To Tip of Spoon: 23 feet Rod Type: NWJ er

Casing	Auger:	Auge
--------	--------	------

Blows Per 6 Inches	Blow Number	Transferred Energy (ftkips)	Transferred Energy Efficiency (percent)	Hammer Blow Count Rate (BPM)
	1	0.320	91.4	52.9
	2	0.317	90.6	8.8
	3	0.315	90.0	42.0
	4	0.319	91.1	42.0
	5	0.322	92.0	41.9
	6	0.310	88.6	42.0
	7	0.307	87.7	44.0
16	8	0.302	86.3	43.3
10	9	0.312	80.5	42.9
	10	0.311	88.0	42.5
	11	0.309	00.9	42.8
	12	0.386	00.3	42.7
	13	0.200	01.7	46.7
	14	0.294	84.0	43.1
	15	0.291	83.1	44.8
	15	0.302	86.3	43.3
	10	0.296		43.9
	10	0.301	86.0	8.1
	10	0.339	96.9	8.0
	19	0.360	102.9	34.4
	20	0.308	88.0	59.5
14	21	0.315	90.0	54.0
	22	0.315	90.0	54.7
14	23	0.315	90.0	54.3
	24	0.317	90.6	54.4
	25	0.312	89.1	54.7
	26	0.317	90.6	54.3
	27	0.316	90.3	54.5
	28	0.315	90.0	54.2
	29	0.314	89.7	54.7
	30	0.309	88.3	54.4
	31	0.308	88.0	54.8
	32	0.310	88.6	54.1
1	33	0.309	88.3	54.6
	34	0.310	88.6	54.4
	35	0.315	90.0	54.4
	36	0.314	89.7	54.9
13	37	0.320	91.4	53.7
	38	0.327	93.4	54.6
	39	0.326	93.1	54.5
	40	0.321	91.7	57.0
	41	0.317	90.6	55.9
	42	0.320	91.4	55.5
	43	0.321	91.7	55.9
	44	0.317	90.6	56.0
	45	0.317	90.6	55.9
	46	0.325	92.9	55.3
	47	0.314	89.7	56.6
	48	0.322	92.0	55.2
	49	0.318	90.9	56.4
	50	0.322	92.0	55.5

Blows Per 6 Inches	Blow Number	Transferred Energy (ftkips)	Transferred Energy Efficiency (percent)	Hammer Blow Count Rate (BPM)
	51	0.312	89.1	56.7
	52	0.316	90.3	55.6
19	53	0.313	89.4	30.6
	54			
	55			
	56			
	57			
	58			
	59			
	60			
	61	8		
	62			
	average (middle foot)	0.317	90.7	50.7
	standard dev. (middle foot)	0.011	3.203	
	C.O.V. (middle foot)	0.035	0.035	
	maximum (middle foot)	0.360	102.9	
	minimum (middle foot)	0.301	86.0	

Page 1 PDIPLOT2 2017.2.58.3 - Printed 12-July-2018

NEB OP: F	ORING SPT	CAL (NEW	BURGH, ME	E) - S-4 (17-	19)		Ν	AOBILE B-5	3 (D-26)
AR:	1.43 in ²							SP. 0	102 k/ft3
LE:	23.00 ft							EM: 30	000 kei
WS:	16,807.9 f/s			1				JC: (0.35
BPM:	Blows/Minu	Ite				VMX	Maximum	Velocity	
EMX:	Maximum E	Energy				AMX	Maximum	Acceleratio	n
ETR:	Energy Tra	nsfer Ratio -	Rated			DFN:	Final Disp	lacement	
FMX:	Maximum F	Force				FVP:	Force/Vel	ocity Propor	tionality
DMX:	Maximum [Displacement	t						
BL#	BPM	EMX	ETR	FMX	DMX	VMX	AMX	DFN	FVP
4	bpm	K-ft	(%)	kips	in	f/s	g's	in	
1	52.9	0.320	91.4	38	2.71	18.8	1,824	2.71	1.046
2	0.0	0.317	90.4	38	1.44	17.0	2,034	1.43	1.040
3	42.0	0.315	90.0	38	1.14	16.6	1,968	1.14	1.055
4	41.9	0.319	91.1	39	0.82	14.6	2,148	0.82	1.026
6	42.0	0.322	91.9	39	0.97	14.8	2,137	0.97	1.014
7	44.0	0.310	00.0	30	0.99	14.7	1,989	0.99	1.018
8	43.3	0.307	07.7 86.4	30	1.00	15.1	1,919	1.08	1.043
a	42.5	0.302	80.4	30	1.01	15.2	1,007	0.94	1.031
10	42.0	0.312	89.0	38	0.96	15.0	2,031	1.01	1.049
11	42.0	0.309	88.4	38	0.30	14.5	2,000	0.90	1.020
12	46.7	0.286	81.6	36	0.85	13.7	1 902	0.85	1.004
13	43.1	0.294	84.0	36	0.68	13.8	2,000	0.68	1.034
14	44.8	0.291	83.1	37	0.81	14.0	1,953	0.81	1.010
15	43.3	0.302	86.2	37	0.92	14.0	1,882	0.92	1.007
16	43.9	0.296	84.4	37	0.92	14.0	1,941	0.92	1 042
17	8.1	0.301	86.1	38	0.90	14.3	1,980	0.90	1.047
18	8.0	0.339	96.9	40	1.14	15.4	2,138	1.14	1.035
19	34.4	0.360	102.8	41	0.97	15.1	2,124	0.97	1.061
20	59.5	0.308	88.1	38	0.76	14.3	2,054	0.74	0.991
21	54.0	0.315	90.1	39	0.91	14.7	2,133	0.91	1.004
22	54.7	0.315	89.9	39	1.14	16.0	2,070	1.12	1.039
23	54.3	0.315	90.0	39	0.98	15.9	2,172	0.95	1.001
24	54.4	0.317	90.5	39	0.98	15.3	2,220	0.96	1.008
25	54.7	0.312	89.1	38	0.96	15.1	2,088	0.94	1.016
26	54.3	0.317	90.5	39	1.04	15.5	2,226	1.03	1.030
27	54.5	0.316	90.3	39	1.04	15.4	2,089	1.02	1.002
28	54.2	0.315	89.9	39	0.93	15.1	2,022	0.92	1.003
29	54.7	0.314	89.7	39	1.00	15.2	1,992	0.97	1.041
30	54.4	0.309	88.4	38	1.02	14.8	1,991	1.00	1.021
31	04.0 54.1	0.300	07.9	30	0.92	14.0	1,940	0.90	1.017
32	54.1	0.310	88.4	38	1.01	14.7	1,975	1.01	1.000
34	54.0	0.309	88 7	30	1.02	15.2	2,006	1.00	1.035
35	54.4	0.315	90.0	39	0.96	15.3	2,000	0.94	1.033
36	54.9	0.314	89.6	38	0.30	14.6	2,044	0.73	1.001
37	53.7	0.320	91.4	39	0.75	14.6	2,025	0.75	1.021
38	54.6	0.327	93.3	38	0.91	14.6	2,038	0.91	0.986
39	54.5	0.326	93.2	39	1.01	14.8	2,158	1.01	0.998
40	57.2	0.321	91.6	39	1.23	15.5	2,244	1.22	0.982
41	55.8	0.317	90.6	39	1.07	15.0	2,204	1.07	1.003
42	55.5	0.320	91.3	39	1.03	15.0	2,269	1.02	0.985
43	55.9	0.321	91.8	39	1.17	15.5	2,137	1.16	1.014
44	56.0	0.317	90.7	39	1.05	15.7	2,263	1.04	0.989
45	55.9	0.317	90.5	39	0.99	15.1	2,161	0.98	1.016

	Page 2
PDIPLOT2 2017.2.58.3 - Printed	12-July-2018

N E BORI	ING SPT	CAL (NEWE	Burgh, Me	E) - S-4 (17-	19)		M	OBILE B-5	3 (D-26)
OP: RS								Date: 03-Ju	uly-2018
BL#	BPM	EMX	ETR	FMX	DMX	VMX	AMX	DFN	FVP
	bpm	k-ft	(%)	kips	in	f/s	g's	in	
46	55.3	0.325	92.7	40	1.08	15.6	2,190	1.08	1.024
47	56.6	0.314	89.8	39	1.01	15.0	2,305	1.01	0.971
48	55.2	0.322	92.1	39	1.09	15.1	2,200	1.09	0.974
49	56.4	0.318	90.8	39	1.06	15.0	2,099	1.05	1.020
50	55.5	0.322	92.1	39	1.12	15.4	2,237	1.12	0.982
51	56.7	0.312	89.2	38	1.05	15.4	2,122	1.05	0.997
52	55.6	0.316	90.2	39	1.19	14.7	2,062	1.19	0.977
53	30.6	0.313	89.4	38	1.20	14.7	2,077	1.20	0.993
Average	48.5	0.314	89.8	38	1.03	15.1	2,074	1.02	1.017
Total number of blows analyzed: 53									

BL# Sensors

1-53 F3: [117-NWJ-1] 223.5 (1.00); F4: [117-NWJ-2] 223.7 (1.00); A3: [K4800] 340.0 (1.00); A4: [K4161] 378.0 (1.00)

Time Summary

Drive 1 minute 20 seconds 10:32 AM - 10:33 AM BN 1 - 53

-26)

GZA GeoEnvironmental Inc.

Pile Driving Analyzer ®

N E BORING SPT CAL (NEWBURGH, ME)

Project Information	Oua	ntity	Results
PROJECT: N E BORING SPT CAL (NEWBURGH,	MCSI	27.5	ksi
PILE NAME: S-4 (17-19)	CSX	27.4	ksi
DESCR: MOBILE B-53 (D-26)	CSB	5.6	ksi
OPERATOR: RS	RX7	8	kips
FILE: B-3 (17-19).W01	RX8	8	kips
7/3/2018 10:33:15 AM	RX9	8	kips
Blow Number 23	EMX	0.315	k-ft
	BPM	54.3	bpm

Pile Properties

LE 23.00 ft AR 1.43 in^2 EM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.6 ksec/ft 2L/C 2.78 ms 0.35 [] 17.00 ft JC LP

ETR 90.0 (%)

Sensors

F3: [117-NWJ-1] 223.45 (1) F4: [117-NWJ-2] 223.7 (1) A3: [K4800] 340 mv/5000g's (1) A4: [K4161] 378 mv/5000g's (1) CLIP: OK

Version 2016.125

Project Name: SPT Energy Testing Location: Newburgh, Maine Date: 7/3/2018 Drill Rig: Mobile B-53, Rig No. D-26 Hammer Type: Northeast Geotech. Custom Automatic Hammer Rated Energy: 350 ft.-lbs Drilling Contractor: New England Boring Contractors Driller Name: Brad Enos Sample No./Sample Depth: S5, 19'-21', N=10-9-9-10 Test Type: Top Instrumented Rod Length From Gages To Tip of Spoon: 24 feet Rod Type: NVVJ Casing/Auger: Auger

Blows Per 6 Inches	Blow Number	Transferred Energy (ftkips)	Transferred Energy Efficiency (percent)	Hammer Blow Count Rate (BPM)
	1	0.335	95.7	58.9
	2	0.327	93.4	57.8
	3	0.329	94.0	56.7
	4	0.337	96.3	55.7
	5	0.333	95.1	57.3
10	6	0.333	95.1	56.8
	7	0.330	94.3	56.6
	8	0.324	92.6	56.5
	9	0.325	92.9	56.7
	10	0.322	92.0	56.7
	11	0.322	92.0	56.9
	12	0.329	94.0	55.8
	13	0.334	95.4	56.3
	14	0.334	95.4	56.5
9	15	0.337	96.3	55.8
	16	0.331	94.6	57.3
	17	0.331	94.6	55.9
	18	0.333	95.1	56.3
	19	0.333	95.1	56.3
	20	0.335	95.7	56.2
	21	0.337	96.3	56.5
	22	0.334	95.4	56.3
	23	0.333	95.1	56.8
9	24	0.339	96.9	56.1
	25	0.335	95.7	57
	26	0.325	92.9	57.5
	27	0.331	94.6	55.9
	28	0.330	94.3	56.8
	29	0.331	94.6	57.2
	30	0.312	89.1	58.1
	31	0.316	90.3	56.7
	32	0.307	87.7	57.1
10	33	0.319	91.1	55.1
10	34	0.318	90.9	57.2
	35	0.313	89.4	56.9
	36	0.314	89.7	57.4
	37	0.314	89.7	56.6
	38	0.307	87.7	57.4
	average (middle foot)	0.332	95.0	56.5
	standard dev. (middle foot)	0.004	1.189	
	C.O.V. (middle foot)	0.013	0.013]
	maximum (middle foot)	0.339	96.9]
	minimum (middle foot)	0.322	92.0	

Page 1 PDIPLOT2 2017.2.58.3 - Printed 12-July-2018

NEB OP: R	ORING SPT	CAL (NEW	Burgh, Me	E) - S-5 (19-	21)		N	OBILE B-5	3 (D-26)
AR:	1.43 in ²	······						Date: 03-J	402 k/ft3
LE:	24.00 ft							SP. U	.492 K/IC
WS: 1	6,807.9 f/s								000 KSI
BPM:	Blows/Minut	e					Maximum	Velocity	0.35
EMX:	Maximum Er	nerav					· Maximum	Acceleratio	'n
ETR:	Energy Tran	sfer Ratio -	Rated			DEN	Einal Dian	Acceleratio	11
FMX:	Maximum Fo	orce	, latou			EV/D	Force//el	acement	tionality
DMX:	Maximum Di	splacement	t			TVF.	I UICE/VEI		lionality
BL#	BPM	EMX	ETR	FMX	DMX	VMX	AMX	DEN	F\/P
	bpm	k-ft	(%)	kips	in	f/s	a's	in	1 11
1	58.9	0.335	95.6	37	1.73	16.1	1 898	1 73	1 028
2	57.8	0.327	93.5	38	1.07	15.2	2,123	1.07	1 014
3	56.7	0.329	94.1	38	1.07	14.9	2,238	1.07	1 002
4	55.7	0.337	96.2	39	1.14	15.0	2,159	1.14	1.032
5	57.3	0.333	95.2	39	1.07	14.7	2,293	1.07	1.042
6	56.8	0.333	95.0	39	0.96	14.8	2,200	0.96	1.028
7	56.6	0.330	94.3	39	0.97	14.7	2,134	0.97	1.031
8	56.5	0.324	92.6	39	0.91	14.6	2,217	0.91	1.036
9	56.7	0.325	92.7	39	0.94	14.7	2,063	0.94	1.025
10	56.7	0.322	92.1	38	0.99	14.6	1,994	0.99	1.031
11	56.9	0.322	91.9	39	1.00	14.6	2,099	1.00	1.036
12	55.8	0.329	94.0	39	1.19	14.9	2,104	1.19	1.000
13	56.3	0.334	95.4	40	1.34	15.4	2,148	1.34	1.007
14	56.5	0.334	95.4	39	1.26	15.8	2,090	1.26	1.017
15	55.8	0.337	96.2	38	1.41	15.9	2,159	1.41	1.014
16	57.3	0.331	94.6	39	1.32	15.9	2,080	1.32	1.031
17	55.9	0.331	94.7	39	1.23	15.6	2,167	1.23	1.006
18	56.3	0.333	95.0	39	1.04	15.2	2,137	1.03	1.030
19	56.3	0.333	95.1	38	0.93	15.3	2,120	0.92	1.023
20	56.2	0.335	95.8	39	1.23	15.3	2,230	1.23	1.007
21	50.5	0.337	96.2	39	1.17	15.1	2,184	1.17	0.993
22	50.3	0.334	95.4	39	1.13	14.9	2,174	1.13	0.992
23	50.0 56 1	0.333	95.3	38	1.14	15.4	2,239	1.14	0.999
24	57.0	0.339	90.9	30	1.17	15.6	2,195	1.17	1.006
20	57.0	0.335	95.0	39	1.20	15.3	2,180	1.20	1.000
20	55.9	0.323	92.0	30	1.12	15.0	2,175	1.12	0.999
28	56.8	0.330	94.7	37	0.99	15.0	2,190	1.17	1.009
29	57.2	0.331	94.2	38	1.07	15.1	2,292	0.99	1.000
30	58 1	0.312	89.0	36	0.01	14.7	2,299	1.00	1.009
31	56.7	0.316	90.3	37	0.91	14.7	1,950	0.91	0.000
32	57.1	0.307	87.8	36	0.86	14.4	2,270	0.97	0.902
33	55.1	0.319	91.2	37	0.00	15.0	2,279	0.05	0.975
34	57.2	0.318	91.0	37	1 02	15.0	2,307	1.02	0.930
35	56.9	0.313	89.5	38	0.84	14 9	2 442	0.84	0.903
36	57.4	0.314	89.7	37	1.03	14.9	2 443	1 03	0.934
37	56.6	0.314	89.6	37	1.03	14 7	2,409	1.03	0.922
38	57.4	0.307	87.8	37	1.00	14.7	2,346	1.00	0.958
39	56.0	0.317	90.7	38	0.97	15.1	2,408	0.96	0.957
40	57.4	0.310	88.5	37	1.31	14.9	2,407	1.31	0.927
Averag	ge 56.7	0.326	93.3	38	1.10	15.1	2,211	1.09	0.998

93.3 38 1.10 15.1 Total number of blows analyzed: 40

Page 2 PDIPLOT2 2017.2.58.3 - Printed 12-July-2018

N E BORING SPT CAL (NEWBURGH, ME) - S-5 (19-21) OP: RS MOBILE B-53 (D-26) Date: 03-July-2018

BL# Sensors

1-40 F3: [117-NWJ-1] 223.5 (1.00); F4: [117-NWJ-2] 223.7 (1.00); A3: [K4800] 340.0 (1.00); A4: [K4161] 378.0 (1.00)

Time Summary

Drive 41 seconds 10:47 AM - 10:48 AM BN 1 - 40

GZA GeoEnvironmental Inc.

Pile Driving Analyzer ®

N E BORING SPT CAL (NEWBURGH, ME)

LE

AR

EM

SP

EA/C

2L/C

JC LP 24.00 ft

30000 ksi

WS 16807.9 f/s

1.43 in^2

0.492 k/ft3

2.87 ms

0.35 [] 19.00 ft

2.6 ksec/ft

Project Information	Qua	ntity	<u>Results</u>
PROJECT: N E BORING SPT CAL (NEWBURGH,	MCSI	27.2	ksi
PILE NAME: S-5 (19-21)	CSX	26.8	ksi
DESCR: MOBILE B-53 (D-26)	CSB	10.5	ksi
OPERATOR: RS	RX7	6	kips
FILE: B-3 (19-21).W01	RX8	6	kips
7/3/2018 10:47:46 AM	RX9	6	kips
Blow Number 23	EMX	0.333	k-ft
	BPM	56.8	bpm
<u>Pile Properties</u>	ETR	95.3	(%)

<u>Sensors</u> F3: [117-NWJ-1] 223.45 (1) F4: [117-NWJ-2] 223.7 (1) A3: [K4800] 340 mv/5000g's (1) A4: [K4161] 378 mv/5000g's (1) CLIP: OK

Version 2016.125

Project Name: *SPT Energy Testing* Location: Newburgh, Maine Date: 7/3/2018 Drill Rig: Mobile B-53, Rig No. D-26 Hammer Type: Northeast Geotech. Custom Automatic Hammer Rated Energy: 350 ft.-lbs Drilling Contractor: New England Boring Contractors Driller Name: Brad Enos Sample No./Sample Depth: S6, 21'-23', N=10-9-9-11 Test Type: Top Instrumented Rod Length From Gages To Tip of Spoon: 26 feet Rod Type: NWJ Casing/Auger: Auger

Blows Per 6 Inches	Blow Number	Transferred Energy	Transferred Energy Efficiency	Hammer Blow
blows rei o mones	Diew Number	(11K(ps)	(percent)	Count Rate (BPM)
	1	0.336	96.0	55.9
	2	0.329	94.0	2.3
	3	0.327	93.4	56.2
	4	0.331	94.6	56.4
10	5	0.334	95.4	56.6
10	6	0.332	94.9	56.2
	7	0.339	96.9	56.0
	8	0.337	96.3	56.5
	9	0.334	95.4	57.3
	10	0.341	97.4	55.9
	11	0.336	96.0	56.6
	12	0.342	97.7	56.3
	13	0.344	98.3	56.5
	14	0.342	97.7	56.7
9	15	0.348	99.4	56.3
	16	0.346	98.9	56.4
	17	0.338	96.6	56.8
	18	0.338	96.6	56.7
	19	0.345	98.6	55.9
	20	0.335	95.7	57.3
	21	0.345	98.6	56.3
	22	0.342	97.7	56.5
	23	0.344	98.3	56.4
9	24	0.346	90.9	50.0
	25	0.344	98.3	56.7
	20	0.341	97.4	56.7
	27	0.341	97.7	56.6
	20	0.338	96.6	56.7
	30	0.335	95.7	56.6
1	31	0.341	97.4	56.5
1	32	0.339	96.9	56.5
	33	0.335	95.7	56.9
11	34	0.330	94.3	56.8
	35	0.333	95.1	56.8
	36	0.335	95.7	56.5
	37	0.331	94.6	57.0
	38	0.333	95.1	57.2
1	39	0.334	95.4	56.8
	average (middle foot)	0.342	97.8	56.5
	standard dev. (middle foot)	0.004	1.020	
	C.O.V. (middle foot)	0.010	0.010	
	maximum (middle foot)	0.348	99.4	
	minimum (middle foot)	0.335	95.7	

Page 1 PDIPLOT2 2017.2.58.3 - Printed 12-July-2018

NEB OP: R	ORING SPT	CAL (NEW	BURGH, ME	i) - S-6 (21-	23)		N	OBILE B-5	3 (D-26)
AR:	1.43 in ²								102 L/FH3
LE:	26.00 ft							EM: 30	492 K/IC
WS: 1	6.807.9 f/s								1 35
BPM:	Blows/Minut	e				VMX	Maximum	Velocity	5.55
EMX:	Maximum Er	nerav					Maximum	Acceleratio	n
ETR:	Energy Tran	sfer Ratio -	Rated			DEN	Einal Dien	Acceleratio	11
FMX:	Maximum Fo	orce	, latou			F\/P	ForceAlel	acement	tionality
DMX:	Maximum Di	isplacement				1 VI .		beity i ropoi	lionality
BL#	BPM	EMX	ETR	FMX	DMX	VMX	ΑΜΧ	DEN	F\/D
	bpm	k-ft	(%)	kips	in	f/s		in	I VF
1	1.9	0.323	92.3	36	2 04	16.8	1 571	2 04	1 066
2	55.9	0.336	95.9	37	1.38	15.8	2 047	1.38	1.000
3	2.3	0.329	93.9	37	1.32	15.5	2 148	1.32	1.002
4	56.2	0.327	93.4	36	1.01	14.8	1,961	1.02	1.020
5	56.4	0.331	94.7	37	1.28	15.3	2,170	1.28	0.988
6	56.6	0.334	95.4	37	1.40	15.1	2 359	1 40	0.986
7	56.2	0.332	94.9	37	1.25	15.3	2 226	1 25	0.996
8	56.0	0.339	97.0	38	1.22	15.7	2,385	1 22	0.967
9	56.5	0.337	96.2	38	1.17	15.3	2,259	1 17	0.984
10	57.3	0.334	95.5	39	1.29	15.3	2,438	1 29	0.960
11	55.9	0.341	97.4	38	1.43	15.5	2,388	1.43	0.975
12	56.6	0.336	96.1	37	1.40	15.3	2.293	1.40	0.985
13	56.3	0.342	97.6	39	1.38	15.4	2.411	1.38	0.972
14	56.5	0.344	98.4	39	1.36	15.4	2,420	1.36	0.991
15	56.7	0.342	97.8	38	1.40	15.3	2,434	1.40	0.981
16	56.3	0.348	99.5	39	1.45	15.5	2,424	1.44	0.988
17	56.4	0.346	98.8	39	1.33	15.6	2,475	1.33	0.989
18	56.8	0.338	96.6	39	1.32	15.1	2,397	1.32	0.964
19	56.7	0.338	96.5	38	1.26	15.1	2,335	1.26	0.992
20	55.9	0.345	98.6	40	1.42	15.6	2,472	1.42	0.963
21	57.3	0.335	95.8	39	1.33	15.1	2,380	1.33	0.964
22	56.3	0.345	98.4	40	1.42	15.6	2,408	1.42	0.981
23	56.5	0.342	97.8	40	1.39	15.5	2,489	1.39	1.000
24	56.4	0.344	98.4	40	1.39	15.6	2,504	1.39	0.961
25	56.6	0.346	98.9	40	1.40	15.7	2,497	1.40	0.966
26	56.7	0.344	98.2	40	1.29	15.6	2,529	1.29	1.002
27	56.4	0.341	97.4	40	1.27	15.4	2,468	1.27	1.005
28	56.7	0.341	97.5	39	1.21	15.4	2,440	1.21	0.990
29	56.6	0.342	97.6	39	1.13	15.6	2,386	1.13	0.966
30	56.7	0.338	96.7	39	1.10	15.3	2,411	1.10	0.972
31	56.6	0.335	95.8	38	1.05	15.0	2,360	1.05	0.979
32	56.5	0.341	97.6	38	1.17	15.3	2,389	1.17	0.975
33	56.5	0.339	96.7	38	1.07	15.5	2,329	1.07	0.973
34	56.9	0.335	95.6	38	1.03	15.0	2,191	1.03	0.978
35	56.8	0.330	94.4	37	0.93	14.9	2,268	0.93	0.972
36	56.8	0.333	95.2	37	1.08	15.2	2,356	1.08	0.965
37	56.5	0.335	95.7	37	1.02	15.4	2,350	1.02	0.959
30	57.0	0.331	94.4	38	1.11	15.2	2,372	1.11	0.967
39	56.9	0.333	90.Z	30	1.07	15.5	2,329	1.07	0.963
Avera	52.0	0.334	06 5	39	1.10	15.0	2,443	1.18	0.967
Aveia	ye 00.0	0.330	Total nu	umber of bl	ows analyze	ed: 40	2,338	1.27	0.983

Page 2 PDIPLOT2 2017.2.58.3 - Printed 12-July-2018

N E BORING SPT CAL (NEWBURGH, ME) - S-6 (21-23) OP: RS

MOBILE B-53 (D-26) Date: 03-July-2018

BL# Sensors

1-40 F3: [117-NWJ-1] 223.5 (1.00); F4: [117-NWJ-2] 223.7 (1.00); A3: [K4800] 340.0 (1.00); A4: [K4161] 378.0 (1.00)

Time Summary

Drive 1 minute 6 seconds 10:51 AM - 10:52 AM BN 1 - 40

GZA GeoEnvironmental Inc.

Pile Driving Analyzer ®

N E BORING SPT CAL (NEWBURGH, ME)

C-6 (21-23)

Project Information	Qua	ntity Results
PROJECT: N E BORING SPT CAL (NEWBURGH,	MCSI	27.4 ksi
PILE NAME: C-6 (21-23)	CSX	26.9 ksi
DESCR: MOBILE B-53 (D-26)	CSB	12.1 ksi
OPERATOR: RS	RX7	10 kips
FILE: B-3 (21-23).W01	RX8	10 kips
7/3/2018 10:52:21 AM	RX9	10 kips
Blow Number 19	EMX	0.338 k-ft
	BPM	56.7 bpm
Pile Properties	ETR	96.5 (%)

Pile Properties

LE 26.00 ft AR 1.43 in^2 EΜ 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.6 ksec/ft 2L/C 3.14 ms 0.35 [] 21.00 ft JC LP

<u>Sensors</u> F3: [117-NWJ-1] 223.45 (1) F4: [117-NWJ-2] 223.7 (1) A3: [K4800] 340 mv/5000g's (1) A4: [K4161] 378 mv/5000g's (1) CLIP: OK

Version 2016.125

Appendix B – Field Boring Log

	TEST BORING LOG															
G	GZA GeoEnvironmental, Inc. Engineers and Scientists					Inc.	SPT Energy Measurements Newburgh, ME			EXPLORATION NO.: B-3 SHEET: 1 of 1 PROJECT NO: 02.0173791.00 REVIEWED BY: J. Jagello						
Logg Drill Fore	ged By: ing Co. eman:	R. Sh New Brad	namas England	Borin	ig Cor	ntractors	Type o Rig Mo Drilling	f Rig: ATV del: Mobile B-53 g Method: HSA	Boring Lo Ground S Final Bori Date Star	ocation: urface Ele ing Depth t - Finish:	v. (ft.): (ft.): 23 7/3/2018 - 7/3/2	2018	F /	I. Datu /. Datu	m: m:	
Ham Ham	mer Ty mer We	pe:Au eight (utomatic	Hamı 40	ner		Sample Sample	er Type: SS er O.D. (in.): 2.0		Date	Ground Time	wate V	r Dept /ater [h (ft.) Depth	Stab.	Time
Ham Aug	mer Fa er or Ca	ll (in.) asing (: 30 D.D./I.D	Dia (i	n.): 3	-1/4	Sample Core B	er Length (in.): 24 arrel Size: N/A								
Depth	Casing Blows/		Depth	Samp	Rec	Plown	CDT	Sample Des	cription and	d Identificat	ion	lark	Field	÷.	STRATU	M 5 a
(ft)	Core Rate	No.	(ft.)	(in)	(in)	(per 6 in.) Value	(Modified	Burmister	Procedure)		Rem	Data	Der Der	Descripti	on≞∉
-																
.		-														
5_																
-	-															
-																
10_		SS-1	10-12			15 10	19	SS-1 : Medium dense, b	rown, mediu	um to coars	e SAND, some					
-						98		Gravel								
-		SS-2	13-15	24	12	6 12	22	SS-2 : Medium dense, b	rown, mediu	um to coars	e SAND, some					
15 _		SS-3	15-17	24	13	8 10	22	SS-3 : Medium dense, b	rown, fine to	o coarse S/	AND, some					
-						12 11		Gravel			(12, 00/10					
-	_	SS-4	17-19	24	11	16 14 13 19	27	SS-4 : Medium dense, fin trace Silt	ne to coarse	e SAND, so	ome Gravel,					
20 _		SS-5	19-21	24	11	10 9	18	SS-5 : Medium dense, b	rown, medii	um to coars	e SAND, some					
-		SS-6	21-23	24	8	10 9	18	SS-6 : Medium dense, bi	rown, mediu	um to coars	e SAND, some					
-						9 11		Gravel								
-								End of exploration at 23	feet below g	grade.						
20_																
-																
-																
30	30															
RKS																
REMA																
Strati	fication	lines r	epresent	appro	oximal	te boundai	ries betv	veen soil and bedrock type	es. Actual tr	ansitions m	nay be gradual.		E	xplo	ration N B-3	lo.:
															-	

Attachment C

Boring ID: Drilled Date: Surface Eleva	ation (ft):	J-1 and J-1A (o 6/22/2021 11.5	ffset of J	-1)		Boring ID: Drilled Date: Surface Elevatio	on (ft):	HA1 5/21/2012 11.1		Not representative soil conditions belo ft.	of the actual ow depth 32
Layer No.	Soil / Rock	Average SPT N-Value	UCS (ksi)	Average Thickness (ft)	di/Ni	Layer No.	Soil / Rock	Average SPT N-Value	UCS (ksi)	Average Thickness (ft)	di/Ni
1	SM	9		2	0.222	1		6		2	0.333
2	SM	21		3	0.143	2		17		3	0.176
3	SM/SP	26		2	0.077	3		6		2	0.333
4	SP	47		3	0.064	4		53		3	0.057
5	SP	41		5	0.122	5		39		2	0.051
6	SP	50		5	0.100	6		53		3	0.057
7	SP	11		5	0.455	7		13		2	0.154
8	SP	10		5	0.500	8		9		3	0.333
9	ML	6		4	0.667	9		13		5	0.385
10	CL-ML/ML	7		6	0.857	10		10		5	0.500
11	ML	3		5	1.667	11		11		70	6.364
12	SM	30		5	0.167						
13	SM	80		5	0.063						
14	SM	80		5	0.063						
15	GM	100		40	0.400						
16	Rock										
			Total =	100	5.564				Total =	100	8.743
Average SP	N-value:	18				Average SPT N	-value:	11			
Site Class:		D				Site Class:		F			

Seismic Site Classification based on Table 3.10.3.1-1 Site Class Definitions of AASHTO LRFD

ΔΤ Hazards by Location

Search Information

Coordinates:	41.281978, -72.901035
Elevation:	10 ft
Timestamp:	2021-09-13T15:49:23.776Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	Ш
Site Class:	D

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	0.2	MCE _R ground motion (period=0.2s)
S ₁	0.053	MCE _R ground motion (period=1.0s)
S _{MS}	0.32	Site-modified spectral acceleration value
S _{M1}	0.128	Site-modified spectral acceleration value
S _{DS}	0.213	Numeric seismic design value at 0.2s SA
S _{D1}	0.086	Numeric seismic design value at 1.0s SA

Additional Information

Name	Value	Description
SDC	В	Seismic design category
F _a	1.6	Site amplification factor at 0.2s
Fv	2.4	Site amplification factor at 1.0s
CR _S	0.943	Coefficient of risk (0.2s)

9/13/21, 11:49 A	М		ATC Hazards by Location
CR ₁	0.927	Coefficient of risk (1.0s)	
PGA	0.112	MCE _G peak ground acceleration	
F _{PGA}	1.577	Site amplification factor at PGA	
PGA _M	0.176	Site modified peak ground acceleration	
ΤL	6	Long-period transition period (s)	
SsRT	0.2	Probabilistic risk-targeted ground motion ((0.2s)
SsUH	0.212	Factored uniform-hazard spectral accelerate exceedance in 50 years)	ation (2% probability of
SsD	1.5	Factored deterministic acceleration value	(0.2s)
S1RT	0.053	Probabilistic risk-targeted ground motion ((1.0s)
S1UH	0.058	Factored uniform-hazard spectral accelerate exceedance in 50 years)	ation (2% probability of
S1D	0.6	Factored deterministic acceleration value	(1.0s)
PGAd	0.5	Factored deterministic acceleration value	(PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

Spectral Period
Peak Ground Acceleration
Time Horizon
Return period in years
2475

Component

Summary statistics for, Deaggregation: Total

Deaggregation targets	Recovered targets				
Return period: 2475 yrs Exceedance rate: 0.0004040404 yr ⁻¹ PGA ground motion: 0.10958548 g	Return period: 2472.3996 yrs Exceedance rate: 0.00040446536 yr ⁻¹				
Totals	Mean (over all sources)				
Binned: 100 %	m: 5.59				
Residual: 0 %	r: 44.36 km				
Trace: 1.56 %	ε ₀ : -0.07 σ				
Mode (largest m-r bin)	Mode (largest m-r- ε_0 bin)				
m: 4.9	m: 4.9				
r: 12.87 km	r: 13.53 km				
ε.: -0.88 σ	ε ο: -0.76 σ				
Contribution: 7.99 %	Contribution: 2.17 %				
Discretization	Epsilon keys				
r: min = 0.0, max = 1000.0, ∆ = 20.0 km	ε0: [-∞2.5)				
m: min = 4.4, max = 9.4, Δ = 0.2	ε1: [-2.52.0)				
ε: min = -3.0, max = 3.0, Δ = 0.5 σ	ε2: [-2.01.5)				
	ε3: [-1.51.0)				
	ε4: [-1.00.5)				
	ε5: [-0.50.0)				
	ε6: [0.00.5)				
	ε7: [0.51.0)				
	ε8: [1.01.5)				
	ε9: [1.52.0)				
	ε10: [2.02.5)				

Deaggregation Contributors

Source Set 💪 Source	Туре	r	m	٤ ₀	lon	lat	az	%
USGS Adaptive Smoothing Zone 2 (opt)	Grid							26.94
PointSourceFinite: -72.901, 41.529		27.36	5.38	-0.04	72.901°W	41.529°N	0.00	3.47
PointSourceFinite: -72.901, 41.439		17.89	5.24	-0.63	72.901°W	41.439°N	0.00	3.24
PointSourceFinite: -72.901, 41.349		8.90	5.15	-1.72	72.901°W	41.349°N	0.00	2.39
PointSourceFinite: -72.901, 41.484		22.61	5.30	-0.29	72.901°W	41.484°N	0.00	2.15
PointSourceFinite: -72.901, 41.574		32.10	5.45	0.15	72.901°W	41.574°N	0.00	2.01
PointSourceFinite: -72.901, 41.394		13.26	5.19	-1.10	72.901°W	41.394°N	0.00	1.96
PointSourceFinite: -72.901, 41.664		41.52	5.61	0.42	72.901°W	41.664°N	0.00	1.53
PointSourceFinite: -72.901, 41.619		36.82	5.53	0.31	72.901°W	41.619°N	0.00	1.50
PointSourceFinite: -72.901, 41.709		46.21	5.69	0.52	72.901°W	41.709°N	0.00	1.11
PointSourceFinite: -72.901, 41.754		50.88	5.77	0.59	72.901°W	41.754°N	0.00	1.01
SSCn Adaptive Smoothing Zone 4 (opt)	Grid							26.12
PointSourceFinite: -72.901, 41.529		27.36	5.38	-0.04	72.901°W	41.529°N	0.00	3.47
PointSourceFinite: -72.901, 41.439		17.89	5.24	-0.63	72.901°W	41.439°N	0.00	3.24
PointSourceFinite: -72.901, 41.349		8.90	5.15	-1.72	72.901°W	41.349°N	0.00	2.39
PointSourceFinite: -72.901, 41.484		22.61	5.30	-0.29	72.901°W	41.484°N	0.00	2.15
PointSourceFinite: -72.901, 41.574		32.10	5.45	0.15	72.901°W	41.574°N	0.00	2.01
PointSourceFinite: -72.901, 41.394		13.26	5.19	-1.10	72.901°W	41.394°N	0.00	1.96
PointSourceFinite: -72.901, 41.664		41.52	5.61	0.42	72.901°W	41.664°N	0.00	1.53
PointSourceFinite: -72.901, 41.619		36.82	5.53	0.31	72.901°W	41.619°N	0.00	1.50
PointSourceFinite: -72.901, 41.709		46.21	5.69	0.52	72.901°W	41.709°N	0.00	1.11
PointSourceFinite: -72.901, 41.754		50.88	5.77	0.59	72.901°W	41.754°N	0.00	1.01
USGS Fixed Smoothing Zone 2 (opt)	Grid							22.57
PointSourceFinite: -72.901, 41.529		27.36	5.38	-0.04	72.901°W	41.529°N	0.00	2.46
PointSourceFinite: -72.901, 41.439		17.89	5.24	-0.63	72.901°W	41.439°N	0.00	2.41
PointSourceFinite: -72.901, 41.349		8.90	5.15	-1.72	72.901°W	41.349°N	0.00	1.87
PointSourceFinite: -72.901, 41.574		32.10	5.45	0.15	72.901°W	41.574°N	0.00	1.66
PointSourceFinite: -72.901, 41.484		22.61	5.30	-0.29	72.901°W	41.484°N	0.00	1.62
PointSourceFinite: -72.901, 41.394		13.26	5.19	-1.10	72.901°W	41.394°N	0.00	1.54
PointSourceFinite: -72.901, 41.664		41.52	5.61	0.42	72.901°W	41.664°N	0.00	1.18
PointSourceFinite: -72.901, 41.619		36.82	5.53	0.31	72.901°W	41.619°N	0.00	1.08
SSCn Fixed Smoothing Zone 4 (opt)	Grid							21.20
PointSourceFinite: -72.901, 41.529		27.36	5.38	-0.04	72.901°W	41.529°N	0.00	2.46
PointSourceFinite: -72.901, 41.439		17.89	5.24	-0.63	72.901°W	41.439°N	0.00	2.41
PointSourceFinite: -72.901, 41.349		8.90	5.15	-1.72	72.901°W	41.349°N	0.00	1.87
PointSourceFinite: -72.901, 41.574		32.10	5.45	0.15	72.901°W	41.574°N	0.00	1.66
PointSourceFinite: -72.901, 41.484		22.61	5.30	-0.29	72.901°W	41.484°N	0.00	1.62
PointSourceFinite: -72.901, 41.394		13.26	5.19	-1.10	72.901°W	41.394°N	0.00	1.54
PointSourceFinite: -72.901, 41.664		41.52	5.61	0.42	72.901°W	41.664°N	0.00	1.18
PointSourceFinite: -72.901, 41.619		36.82	5.53	0.31	72.901°W	41.619°N	0.00	1.08
SSCn Fixed Smoothing Zone 7 (opt)	Grid							1.32

SPT-BASED LIQUEFACTION ANALYSIS

Project:	PAC
Structure:	Process Air Facility
Site Location:	New Haven, CT

References: (1) Youd et al. (2001). "Liquefaction Resistance fo Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils". J. of Geotech. And Geoenv. Eng., 124. (2) Idriss, I. M. and Boulanger R. W. (2008). " Soil Liquefaction during Earthquaks", Earthquake Engineering Research Institute, MNO-12 (3) Seed et al. (2003). "Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework", 26th Annual Geotechnical Spring Seminar. (4) Ishihara, K., and Yoshimine, M., (1992). "Evaluation of settlements in sand deposits following liquefaction during earthquakes", Soils and Foundations 32(1), 173–88. (5) Zhang et al. (2002). "Estimating liquefaction-induced ground settlements from CPT for level ground" Can. Geotech. J. 39, 1168–1180

Design Parameters:					
Boring Number:	J-1, J-1A				
Ground Surface Elevation (ft):	11.5				
Depth to Groundwater During Field Exploration (ft):	8				
Design Groundwater Depth (ft):					
SPT Hammer Energy Ratio (ER): {Enter as a percent} See Note 4 & Table 1.					
Standard Sampler? {Yes or No}					
Liner Used in Sampler? {Yes or No}	NO				
Peak Horizontal Ground Acceleration (a _{max} /g):	0.176				
Design Earthquake Magnitude (M):	5.59				

Table 1: Range of Hammer Energy Ratios							
Equipment:	Range ¹	Recommended Value ²					
Safety Hammer	42% - 72%	60%					
Donut Hammer	30% - 60%	50%					
Automatic-Trip Donut-Type Hammer	48% - 78%	80%					
1) after recommendations by NCEER, 1997							
2) for good-quality equipment and procedures conforming to ASTM D-1686.							

Depth	Laver		Total Unit	Field	Estimated	Plasticity		Youd et a	al. (2001)			Idriss & Boula	nger (2008)			Seed et a	al. (2003)			F.S. Sta	tistics		Iddriss and Boulanger (2008)	Zhang et al. (2002)
(ft)	Thickness (ft)	Soil Type	Weight (pcf)	SPT N-value	Fines (%)	Index	Cyclic Stress Ratio	Cyclic Resistance Ratio	Factor of Safety	Factor of Safety	Cyclic Stress Ratio	Cyclic Resistance Ratio	Factor of Safety	Factor of Safety	Cyclic Stress Ratio	Cyclic Resistance Ratio	Factor of Safety	Factor of Safety	FS. Standard Deviation	FS. Average	COV	FS. Settlement	Settlement (in)	Settlement (in)
1	2	SM	115	9	20	0	0.11	0.24	4.41	2.00	0.11	0.25	3.52	2.00	0.11	5.91	101.57	2.00	0.00	2.00	0.00	2.00	0.00	0.32
3	3	SM	115	21	20	0	0.14	1.96	30.00	2.00	0.14	4.40	52.23	2.00	0.14	24.20	344.32	2.00	0.00	2.00	0.00	2.00	0.00	0.32
6	2	SP	115	26	20	0	0.18	3.08	36.99	2.00	0.18	4.40	41.39	2.00	0.17	13.63	154.24	2.00	0.00	2.00	0.00	2.00	0.00	0.32
8	3	SP	130	47	4	0	0.19	18.38	210.48	2.00	0.18	4.40	39.78	2.00	0.18	119.32	1303.50	2.00	0.00	2.00	0.00	2.00	0.00	0.32
11	5	SP	130	41	4	0	0.19	9.76	107.89	2.00	0.19	2.75	24.32	2.00	0.18	37.25	402.38	2.00	0.00	2.00	0.00	2.00	0.00	0.32
16	5	SP	130	50	4	0	0.20	22.66	244.88	2.00	0.19	2.79	24.76	2.00	0.18	76.45	853.69	2.00	0.00	2.00	0.00	2.00	0.00	0.32
21	5	SP	120	11	4	0	0.20	0.18	1.89	1.89	0.18	0.16	1.39	1.39	0.17	0.32	3.80	2.00	0.32	1.76	0.18	1.39	0.00	0.32
26	5	SP	120	10	4	0	0.20	0.15	1.60	1.60	0.18	0.15	1.40	1.40	0.15	0.25	3.18	2.00	0.30	1.67	0.18	1.40	0.00	0.32
31	4		125	0	95	0	0.20	0.16	1.66	1.00	0.17	0.14	1.37	1.37	0.14	0.26	3.65	2.00	0.31	1.68	0.19	1.37	0.00	0.32
35	0		125	1	95	0	0.19	0.17	1.87	1.87	0.17	0.15	1.51	1.51	0.13	0.28	4.32	2.00	0.25	1.79	0.14	1.51	0.00	0.32
41	5		120	30	25	0	0.19	1.58	10.05	2.00	0.10	3.90	1.15	2.00	0.12	2.08	2.32	2.00	0.00	2.00	0.55	2.00	0.00	0.32
40 50	5	SM	135	80	25	0	0.10	103 72	1305.87	2.00	0.13	3.30	40.05	2.00	0.11	401.40	7508.28	2.00	0.00	2.00	0.00	2.00	0.00	0.00
55	5	SM	135	80	25	0	0.17	77 19	1029.61	2.00	0.14	J.40	52 54	2.00	0.10	2/18 71	4876.01	2.00	0.00	2.00	0.00	2.00	0.00	0.00
60	5	GM	135	100	25	0	0.10	156.43	2216.13	2.00	0.13	4.25	56.25	2.00	0.10	1202 29	24124 37	2.00	0.00	2.00	0.00	2.00	0.00	0.00
00	Ŭ	Cim	100	100	20	Ŭ	0.22	0.04	0.43	0.43	0.22	0.06	0.47	0.47	0.22	0.06	0.52	0.52	0.04	0.47	0.09	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.00	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.00	0.44	0.44	0.22	0.00	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
							0.22	0.04	0.43	0.43	0.22	0.06	0.44	0.44	0.22	0.06	0.52	0.52	0.05	0.46	0.10	0.43	0.00	0.00
																					9%			

Page 1

SPT-BASED LIQUEFACTION ANALYSIS

Project:	PAC
Structure:	Process Air Facility
Site Location:	New Haven, CT

Page 2

102 of 270

Attachment D

Micropile Design

based on FHWA-NHI-05-039 (2005) Micropile Design and Construction

New Haven PACS WTP with Crawl Space

Calculation by: JP	Checked by: Em.C	Date: 9-3-2021
,	,	

Units

$$psf := \frac{lbf}{ft^2}$$
 $pci := \frac{lbf}{in^3}$ $pcf := \frac{lbf}{ft^3}$ $ksi := 1000psi$ $kips := 1000lbf$ $kPa := 1000Pa$

Structural Inputs

	P _{design} := 206kips	Design load of micropiles
	d _{drillhole} := 11.25in	Drillhole diameter
	$d_{casing} := (10.75 - 0.236)in$	Outside diameter of casing, 3 mm of corrosion correction
	$t_{casing} := (0.595 - 0.118)in$	Thickness of casing, 3 mm of corrosion correction
	$EL_{casing} := -54ft$	Top elevation of the bond zone, which is also the bottom elevation of the casing.
	d _{bar} := 1.41in	Diameter of reinforcing bar, #11 threaded bar
	$F_{y_casing} := 80ksi$	Yield strength of casing (Max. Fy allowable for IBC is 32 ksi, therefore max Fy_casing is 80 ksi)
	$F_{y bar} := 150 ksi$	Minimum Yield strength of reinforcing bar
	$f_c := 4ksi$	Compressive strength of concrete
Soil	Inputs	Juan: Lets use 10 ft as cut-off elevation (instead of 11 ft)
	GSE := 10ft	Ground surface elevation (approx. from boring)
	GWE := 10ft	Ground water elevation
	$FS_{soil} := 2.5$	Factor of safety for soil-grout bond strength

-49	0.01
-54	0.01
-104	1000
	-49 -54 -104

See Table 5-2 on last page for ultimate bond strength values

Structural Design

Cross sectional areas of micropile components

$$\begin{split} & A_{bar} := \frac{\pi}{4} \cdot d_{bar}^2 & A_{bar} = 1.56 \text{ in}^2 \\ & A_{casing} := \frac{\pi}{4} \cdot \left[d_{casing}^2 - (d_{casing} - 2 \cdot t_{casing})^2 \right] & A_{casing} = 15.04 \cdot \text{in}^2 \\ & A_{conc} := \frac{\pi}{4} d_{drillhole}^2 & A_{conc} = 99.4 \cdot \text{in}^2 \\ & A_{conc_bar} := A_{conc_bar} & A_{conc_bar} = 97.84 \cdot \text{in}^2 \\ & A_{conc_casing} := \frac{\pi}{4} d_{casing}^2 - A_{casing} - A_{bar} & A_{conc_casing} = 70.22 \cdot \text{in}^2 \\ \hline & \text{Allowable capacities for upper cased section} \\ & F_y := \min(F_{y_casing} \cdot F_{y_bar}) \\ & \text{Allowable tension (2015 IBC Table 1810.3.2.6)} \\ & P_{t_allow} := 0.6 \cdot F_{y_bar} \cdot A_{bar} + 0.6 \cdot F_{y_casing} A_{casing} & P_{t_allow} = 862.49 \cdot \text{kips} \\ & \text{Allowable compression (2015 IBC Table 1810.3.2.6)} \\ & P_{c_allow} := (0.4 \cdot f_c \cdot A_{conc_casing}) + 0.5 \cdot F_y \cdot A_{bar} + 0.4 \cdot F_y \cdot A_{casing} \\ & P_{c_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tassere} = 0 \text{ kips} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + P_{transfer} \\ & P_{tcase_allow} := 0.6 \cdot F_y \cdot A_{bar} + 0.1 \cdot A_{tot} (A_{layer}) \\ & A_{lowable} = 0.6 \cdot F_y \cdot A_{bar} + 0.1 \cdot A_{tot} (A_{layer}) \\ & A_{tot} := 1.4 \cdot A_{tot} = 0.6 \cdot F_y \cdot A_{bar} + 0.1 \cdot A_{tot} (A_{layer}) \\ & A_{tot} := 1.4 \cdot A_{tot} = 0.6 \cdot F_y \cdot A_{tot} = 0$$

Allowable Load Transfer

$$ALT := \frac{\alpha_{ultimate}}{FS_{soil}} \cdot \pi \cdot d_{drillhole} \qquad \qquad \alpha_{ultimate} = \begin{pmatrix} 1.5 \times 10^{-3} \\ 1.5 \times 10^{-3} \\ 1.5 \times 10^{-3} \\ 1.5 \times 10^{-3} \\ 145.0 \end{pmatrix} \cdot psi$$

$$ALT = \begin{pmatrix} 2.46 \times 10^{-4} \\ 2.46 \times 10^{-4} \\ 24.61 \end{pmatrix} \cdot \frac{kips}{ft}$$

Required bond length

$$P_{i} := \sum_{ii=0}^{i} (ALT_{ii} \cdot t_{bearing_{ii}})$$

$$P_{index_{i}} := if(P_{i} > P_{design}, 1, 0)$$

$$P = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1.23 \times 10^{3} \end{pmatrix} \cdot kips$$

$$P = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1.23 \times 10^{3} \end{pmatrix}$$

$$k := 0$$
.. bearing

$$L_{geotech_min} \coloneqq \begin{bmatrix} \frac{P_{design}}{ALT_{layer1}} & \text{if } match(1, P_{index})_0 = layer1 \\ \\ \sum_{l=0}^{bearing-1} t_{bearing_l} + \frac{P_{design} - \sum_{m=0}^{bearing-1} (ALT_m \cdot t_{bearing_m})}{ALT_{bearing}} \end{bmatrix}$$

 $L_{geotech_min} = 8.4 \cdot ft$

$L_{plunge} := 0ft$

$P_{transfer_check} \coloneqq ALT_{layer1} \cdot L_{plunge}$	$P_{transfer_check} = 0 \cdot kips$
$L_{casing} := GSE - EL_{casing}$	$L_{casing} = 64 \text{ft}$
$L_{total} := L_{casing} - L_{plunge} + L_{geotech_min}$	$L_{total} = 72.37 \text{ft}$

Soil / Rock Description	Grout-to-Ground Bond Ultimate Strengths, kPa (psi)							
3017 Rock Description	Type A	Type B	Type C	Type D				
Silt & Clay (some sand) (soft, medium plastic)	35-70 (5-10)	35-95 (5-14)	50-120 (5-17.5)	50-145 (5-21)				
Silt & Clay (some sand) (stiff, dense to very dense)	50-120 (5-17.5)	70-190 (10-27.5)	95-190 (14-27.5)	95-190 (14-27.5)				
Sand (some silt) (fine, loose-medium dense)	70-145 (10-21)	70-190 (10-27.5)	95-190 (14-27.5)	95-240 (14-35)				
Sand (some silt, gravel) (fine-coarse, medvery dense)	95-215 (14-31)	120-360 (17.5-52)	145-360 (21-52)	145-385 (21-56)				
Gravel (some sand) (medium-very dense)	95-265 (14-38.5)	120-360 (17.5-52)	145-360 (21-52)	145-385 (21-56)				
Glacial Till (silt, sand, gravel) (medium-very dense, cemented)	95-190 (14-27.5)	95-310 (14-45)	120-310 (17.5-45)	120-335 (17.5-48.5)				
Soft Shales (fresh-moderate fracturing, little to no weathering)	205-550 (30-80)	N/A	N/A	N/A				
Slates and Hard Shales (fresh- moderate fracturing, little to no weathering)	515-1,380 (75-200)	N/A	N/A	N/A				
Limestone (fresh-moderate fracturing, little to no weathering)	1,035-2,070 (150-300)	N/A	N/A	N/A				
Sandstone (fresh-moderate fracturing, little to no weathering)	520-1,725 (75.5-250)	N/A	N/A	N/A				
Granite and Basalt (fresh- moderate fracturing, little to no weathering)	1,380-4,200 (200-609)	N/A	N/A	N/A				

Table 5-3. Summary of Typical α_{bond} (Grout-to-Ground Bond) Values for Micropile Design.

Type A: Gravity grout only Type B: Pressure grouted through the casing during casing withdrawal Type C: Primary grout placed under gravity head, then one phase of secondary "global" pressure grouting Type D: Primary grout placed under gravity head, then one or more phases of secondary "global" pressure grouting

API N-80 Pipe - O	Common Size	s			
Casing OD Wall ⁽¹⁾ , mm (in.)	139.7 (5.500)	139.7 (5.500)	177.8 (7.000)	177.8 (7)	244.5 (9.625)
Wall Thickness ⁽¹⁾ , mm (in.)	9.17 (0.361)	10.5 (0.415)	12.6 (0.498)	18 .5 (0.73)	12.0 (0.472)
Area ⁽²⁾ , mm ² (in. ²)	3760 (5.83)	4280 (6.63)	6560 (10.2)	9280 (14.4)	8760 (13.6)
Yield Strength ⁽³⁾ , kN (kip)	2,070 (466)	2,360 (530)	3,620 (814)	5,120 (1,151)	4,830 (1,086)
ASTM A519, A10	6 Pipe – Cor	nmon Sizes ⁽⁵⁾	İ.		
Casing OD Wall ⁽¹⁾ , mm (in.)	139.7 (5.50)	168.3 (6.625)	203.2 (8.00)	273.1 (10.75)	() -
Wall Thickness ⁽¹⁾ , mm (in.)	12.7 (0.50)	12.7 (0.50)	12.7 (0.50)	16 (0.625)	(71)
Area ⁽²⁾ , mm ² (in. ²)	5,067 (7.85)	6,208 (9.62)	7,600 (11.8)	12,850 (19.9)	
Yield Strength ⁽³⁾ , kN (kip)	1,270 (286)	1,540 (346)	1,890 (425)	3,190 (717)	1411

Table 4-5. Dimensions and Yield Strength of Common Micropile Pipe Types and Sizes.

Notes: ⁽¹⁾Casing outside diameter (OD) and wall thickness (t) are nominal dimensions. ⁽²⁾Steel area is calculated as $A_s = (\pi/4) \times (OD^2 - ID^2)$. ⁽³⁾Nominal yield stress for API N-80 steel is $F_y = 552$ MPa (80 ksi). ⁽⁴⁾Nominal yield stress for ASTM A519 & A106 steel is $F_y = 241$ MPa (36 ksi). ⁽⁵⁾Other pipe sizes are manufactured but may not be readily available. Check for availability

through suppliers.

Juan: Use FS = 2.5 when only axial test on sacrificial pile is performed. If using FS =2.0 then axial test on sacrificial + proof test on 5% of production piles should be performed
_____ LPile for Windows, Version 2019-11.009 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved _____ This copy of LPile is being used by: Jacobs Engineering Virginia Serial Number of Security Device: 419704768 This copy of LPile is licensed for exclusive use by: CH2M Hill Inc., Global License, Use of this program by any entity other than CH2M Hill Inc., Global License, is a violation of the software license agreement. Files Used for Analysis -----Path to file locations: \\ORION\Groups2\Geotechnical\Shared_Projects\New Haven\Process Air Compressor Project\2021 Design\Analysis\3. Micropile\Lateral Analysis\12x12 grid, new\ Name of input data file: Micropile Analysis_freepilehead.lp11d Name of output report file: Micropile Analysis_freepilehead.lp110 Name of plot output file: Micropile Analysis_freepilehead.lp11p Name of runtime message file: Micropile Analysis_freepilehead.lp11r Date and Time of Analysis -----_____

Date:	September	5,	2021
-------	-----------	----	------

Time: 9:27:15

Problem Title	
Project Name: New Haven PACS	
Job Number: E2X90000	
Client: GNHWPCA	
Engineer: Jacobs	
Description: Micropile Lateral Analysis	
Program Options and Settings	
Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations - US Customary System Units (pounds, feet, inches)	:
 Analysis Control Options: Maximum number of iterations allowed Deflection tolerance for convergence Maximum allowable deflection Number of pile increments 	= 500 = 1.0000E-05 in = 100.0000 in = 100
Loading Type and Number of Cycles of Loading: - Static loading specified	
- Use of p-y modification factors for p-y curves not	selected

- Analysis uses layering correction (Method of Georgiadis)

_	No	distributed	lateral	l oads	are	entered	
---	----	-------------	---------	--------	-----	---------	--

- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural	Properties and	Geometry

Number of pile sections defined	=	2
Total length of pile	=	70.000 ft
Depth of ground surface below top of pile	=	0.0000 ft

Pile diameters used for p-y curve computations are defined using 4 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	i nches
1	0.000	10.5140
2	60.000	10. 5140
3	60.000	10.5140
4	70.000	10. 5140

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a drilled shaft with permanent casing		
Length of section	=	60.000000 ft
Casing outside diameter	=	10.514000 in

Shear capacity of section	=	0.0000	Ibs
Pile Section No. 2:			
Section 2 is a round drilled shaft, bored pile, or Length of section Shaft Diameter Shear capacity of section	CIDH = = =	pile 10.000000 10.514000 0.0000	ft in Ibs
Ground Slope and Pile Batter A	ngl es		
Ground Slope Angle	=	0.000 0.000	degrees radi ans
Pile Batter Angle	=	0.000 0.000	degrees radi ans
Soil and Rock Layering Informa	ti on		
The soil profile is modelled using 8 layers			
Layer 1 is sand, p-y criteria by Reese et al., 1974			
Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Effective unit weight at bottom of layer Friction angle at top of layer Friction angle at bottom of layer Subgrade k at top of layer		$\begin{array}{c} 0.\ 0000\\ 7.\ 000000\\ 52.\ 600000\\ 52.\ 600000\\ 29.\ 000000\\ 29.\ 000000\\ 30.\ 000000\\ 30.\ 000000\end{array}$	ft pcf pcf deg. deg. pci pci
Layer 2 is sand, p-y criteria by Reese et al., 1974			
Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Effective unit weight at bottom of layer Friction angle at top of layer Friction angle at bottom of layer Subgrade k at top of layer		$\begin{array}{c} 7.\ 000000\\ 15.\ 00000\\ 67.\ 60000\\ 67.\ 60000\\ 34.\ 00000\\ 34.\ 00000\\ 100.\ 00000\\ 100.\ 00000\\ \end{array}$	ft pcf pcf deg. deg. pci pci

Layer 3 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Effective unit weight at bottom of layer Friction angle at top of layer Friction angle at bottom of layer Subgrade k at top of layer	= = = = = =	15.000000 ft 24.000000 ft 57.600000 pcf 57.600000 pcf 31.000000 deg 31.000000 deg 45.000000 pci
Subgrade k at top of layer Subgrade k at bottom of layer	=	45.000000 pci 45.000000 pci

Layer 4 is stiff clay without free water

Distance from top of pile to top of layer	=	24.000000 ft
Distance from top of pile to bottom of layer	=	31.000000 ft
Effective unit weight at top of layer	=	62.600000 pcf
Effective unit weight at bottom of layer	=	62.600000 pcf
Undrained cohesion at top of layer	=	1200. psf
Undrained cohesion at bottom of layer	=	1200. psf
Epsilon-50 at top of layer	=	0.007000
Epsilon-50 at bottom of layer	=	0.007000

Layer 5 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer	=	31.000000 ft
Distance from top of pile to bottom of layer	=	45.000000 ft
Effective unit weight at top of layer	=	57.600000 pcf
Effective unit weight at bottom of layer	=	57.600000 pcf
Undrained cohesion at top of layer	=	500.000000 psf
Undrained cohesion at bottom of layer	=	500.000000 psf
Epsilon-50 at top of layer	=	0.010000
Epsilon-50 at bottom of layer	=	0.010000

Layer 6 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	45.000000 ft
Distance from top of pile to bottom of layer	=	60.000000 ft
Effective unit weight at top of layer	=	72.600000 pcf
Effective unit weight at bottom of layer	=	72.600000 pcf
Friction angle at top of layer	=	35.000000 deg
Friction angle at bottom of layer	=	35.000000 deg
Subgrade k at top of layer	=	140.000000 pci
Subgrade k at bottom of layer	=	140.000000 pci

Layer 7 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	60.000000 ft
Distance from top of pile to bottom of layer	=	65.000000 ft
Effective unit weight at top of layer	=	77.600000 pcf
Effective unit weight at bottom of layer	=	77.600000 pcf
Friction angle at top of layer	=	37.000000 deg
Friction angle at bottom of layer	=	37.000000 deg
Subgrade k at top of layer	=	160.000000 pci
Subgrade k at bottom of layer	=	160.00000 pci

Layer 8 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer	=	65.000000 ft
Distance from top of pile to bottom of layer	=	100.000000 ft
Effective unit weight at top of layer	=	87.600000 pcf
Effective unit weight at bottom of layer	=	87.600000 pcf
Uniaxial compressive strength at top of layer	=	500.000000 psi
Uniaxial compressive strength at bottom of layer	=	500.000000 psi
Initial modulus of rock at top of layer	=	80000. psi
Initial modulus of rock at bottom of layer	=	80000. psi
RQD of rock at top of layer	=	35.000000 %
RQD of rock at bottom of layer	=	35.000000 %
k rm of rock at top of layer	=	0.0005000
k rm of rock at bottom of layer	=	0.0005000

(Depth of the lowest soil layer extends 30.000 ft below the pile tip)

_____ Summary of Input Soil Properties _____ Layer Effective Cohesion Layer Soil Type Angle of Uni axi al E50 Rock Mass Unit Wt. Num. Name Depth Friction Modul us RQD % qu or kpy pcf psf ft (p-y Curve Type) deg. psi krm pci psi _____ ----------_ _ _ _ _ _ _ _ _ _ _____ U. 00 30. 000((Reese, et al.) --Sand --(Reese, et al.) --100. 0000 --100. 0000 --100. 0000 --100. 0000 0.00 1 Sand 52.6000 - -29.0000 30.0000 --- ---29.0000 52.6000 30.0000 --_ _ 34.0000 2 67.6000 --100.0000 - -67.6000 --34.0000 100.0000 - -- -

3 Sand 15.0000 57.6000		31.0000
45.0000		
(Reese, et al.) 24.0000 57.6000		31.0000
45.0000		
4 Stiff Clay 24.0000 62.6000	1200.	
0.00700		
w/o Free Water 31.0000 62.6000	1200.	
0.00700		
5 Soft 31.0000 57.6000	500.0000	
0.01000		
Clay 45.0000 57.6000	500.0000	
0.01000		
6 Sand 45.0000 72.6000		35.0000
140.0000		
(Reese, et al.) 60.0000 72.6000		35.0000
140.0000		
7 Sand 60.0000 77.6000		37.0000
160.0000		
(Reese, et al.) 65.0000 77.6000		37.0000
160.0000		
8 Weak 65.0000 87.6000		
500.0000 35.0000 5.00E-04 8000	.00	
Rock 100.0000 87.6000		

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

_____ ------Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1Load Load Condi ti on Condition Axial Thrust Compute Top y Run Analysis No. Type 1 2 1 Force, Ibs No. Туре vs. Pile Length ----- ---------------1 2 V = 12400. Ibs S = 0.0000 in/in 206000. Yes No

V = shear force applied normal to pile axis
M = bending moment applied to pile head

y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 2 Pile Section No. 1:

Dimensions and Properties of Drilled Shaft (Bored Pile) with Permanent Casing:

Length of Section	=	60.000000	ft
Outer Diameter of Casing	=	10.514000	in
Concrete Cover Thickness Inside Casing	=	4.070000	in
Casing Wall Thickness	=	0.477000	in
Moment of Inertia of Steel Casing	=	189. 832167	i n^4
Yield Stress of Casing	=	80000.	psi
Elastic Modulus of Casing	=	29000000.	, psi
Number of Reinforcing Bars	=	1	bar
Area of Single Reinforcing Bar	=	1.577711	sq. in.
Edge-to-Edge Bar Spacing	=	-1.417323	in
Maximum Concrete Aggregate Size	=	0.0010000	in
Ratio of Bar Spacing to Aggregate Size	=	-1417.32	
Offset of Center of Rebar Cage from Center of Pile	=	0.0000	in
Yield Stress of Reinforcing Bars	=	150000.	psi
Modulus of Elasticity of Reinforcing Bars	=	29000000.	, psi
Gross Area of Pile	=	86.821209	sq. in.
Area of Concrete	=	70. 202655	sq. in.
Cross-sectional Area of Steel Casing	=	15.040843	sq. in.
Area of All Steel (Casing and Bars)	=	16.618554	sq. in.
Area Ratio of All Steel to Gross Area of Pile	=	19.14	percent
Axial Structural Capacities:			
Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As	=	1678.613	ki ps
Tensile Load for Cracking of Concrete	=	-84.799	kips
Nominal Axial Tensile Capacity	=	-1439. 924	kips

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar	Bar Diam.	Bar Area	X	Y
Number	inches	sq. in.	i nches	i nches
1	1. 417323	1. 577711	0. 00000	0. 00000

NOTE: The positions of the above rebars were computed by LPile

Concrete Properties:

Compressive Strength of Concrete	=	4000.	psi
Modulus of Elasticity of Concrete	=	3604997.	psi
Modulus of Rupture of Concrete	=	-474.341649	psi
Compression Strain at Peak Stress	=	0.001886	
Tensile Strain at Fracture of Concrete	=	-0.0001154	
Maximum Coarse Aggregate Size	=	0.0010000	in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	ki ps
1	206.000

Definitions of Run Messages and Notes:

- C = concrete in section has cracked in tension.
- Y = stress in reinforcing steel has reached yield stress.
- T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACI 318, Section 10.3.4.
- Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature. Position of neutral axis is measured from edge of compression side of pile. Compressive stresses and strains are positive in sign. Tensile stresses and strains are negative in sign.

Axial Thrust	t Force = 2	206.000 kips			
Bendi ng	Bendi ng	g Bendi ng	Depth to	Max Comp	Max Tens

	Max Conc Curvature Stress rad/in.	Max Steel Moment Stress in-kip	Max Casing Stiffness Stress kip-in2	Run N Msg	Axis in	Strain in∕in	Strain in∕in
_		N3I	K3I				
-							
	0.00000125	8.7487443	6998995.	222.	6039235	0.0002783	0.0002651
	1.0928457	7.9035996	8.06/4866	110	0016044	0 0002040	
	0.00000250	17.4974819	0770773. 8 2562322	113.	9310344	0.0002848	0.0002585
	0.0000375	26 2462060	6998988	77	7080592	0 0002914	0 0002520
	1. 1397273	7.9533735	8. 4450345		,0000,2	010002711	0.0002020
	0.00000500	34.9949097	6998982.	59.	5966625	0.0002980	0.0002454
	1.1630357	7.9783455	8. 6338934				
	0.00000625	43.7435865	6998974.	48.	7301372	0.0003046	0.0002389
	1.1862556	8.0033742	8.8228091				
	0.0000750	52.4922295	6998964.	41.	4860476	0.0003111	0.0002323
	1.2093871	8.0284595	9.0117814				
	0.00000875	61.2408320	6998952.	36.	3119212	0.0003177	0.0002257
	1.2324300	8.0536016	9.2008104	20	1215210	0 0002242	0 0000100
	0.00001000	09.9093072 8 0788003	0790939. 0 3808061	32.	4310219	0.0003243	0.0002192
	0 00001125	78 7378884	6998923	29	4136073	0 0003309	0 0002126
	1.2782497	8. 1040557	9. 5790384	27.	1100070	0.0000007	0.0002120
	0.00001250	87.4863287	6998906.	26.	9994320	0.0003375	0.0002061
	1.3010263	8.1293677	9. 7682375				
	0.00001375	96.2347015	6998887.	25.	0243397	0.0003441	0.0001995
	1.3237140	8.1547365	9.9574932				
	0.00001500	104.9830000	6998867.	23.	3785599	0.0003507	0.0001930
	1.3463127	8. 1801619	10. 1468056	0.1	00/0070	0 0000570	0.00010/4
	0.00001625	113. /3121/5	6998844.	21.	9860972	0.0003573	0.0001864
		8.2000440	10.3301/4/	20	7026604	0 0002620	0 0001700
	1 3012/28	8 2311828	10 5256005	20.	/920094	0.0003039	0.0001799
	0 00001875	131 2273822	6998794	19	7584696	0 0003705	0 0001733
	1. 4135739	8.2567783	10. 7150830		,	010000700	010001700
	0.00002000	139.9753159	6998766.	18.	8536425	0.0003771	0.0001668
	1.4358157	8.2824305	10. 9046221				
	0.00002125	148. 7231416	6998736.	18.	0553576	0.0003837	0.0001603
	1. 4579681	8.3081394	11.0942179				
	0.00002250	157.4708525	6998705.	17.	3458580	0.0003903	0.0001537
	1.4800309	8.3339048	11.2838/03	1/	7111040	0,0000000	0 0001470
	0.00002375	100.2184418	09980/1.	10.	/111248	0.0003969	0.0001472
	1.5020042	8.3397270 177 0650026	6008636	16	1200/21	0 0004035	0 0001406
	1 5238877	8 3856059	11 6633454	10.	1377431	0.0004033	0.0001400
	0.00002625	183, 7132284	6998599.	15.	6232342	0.0004101	0,0001341
	1.5456815	8. 4115416	11.8531681				
	0.00002750	192. 4604123	6998560.	15.	1535699	0. 0004167	0.0001276
	1.5673854	8.4375339	12.0430474				

0.00002875	201.2074476	6998520.	14.7248139	0.0004233	0.0001211
1.5889993	8.4635829	12.2329833			
0.00003000	209. 9543274	6998478.	14.3318528	0.0004300	0.0001145
1.6105232	8. 4896886	12. 4229760			
0.00003125	218. 7010452	6998433.	13.9703912	0.0004366	0.0001080
1.6319570	8. 5158511	12.6130254			
0.00003250	227.4475940	6998388.	13.6367944	0.0004432	0.0001015
1.6533006	8.5420702	12.8031315			
0.00003375	236. 1939672	6998340.	13. 3279665	0.0004498	0.00009497
1.6745538	8.5683460	12.9932943			
0.00003500	244.9401580	6998290.	13.0412535	0.0004564	0.00008845
1.695/16/	8.5946785	13. 1835138	40.7740470	0.0004/04	0.0000101
0.00003625	253.6861596	6998239.	12.//436/9	0.0004631	0.00008194
1. /16/891	8.6210677	13.3/3/900		0 000 1 (07	0 00007540
0.00003750	262. 4319652	6998186.	12.5253267	0.0004697	0.00007542
1. /3///09	8.64/513/	13.5641229	40,000,000	0 000 17 / 0	0.0000/001
0.00003875	2/1.1//5681	6998131.	12.2924032	0.0004763	0.00006891
1. /586621	8.6/40163	13. /545125	40.0740040	0 000 1000	0 0000/040
0.00004000	279.9229616	6998074.	12.0740862	0.0004830	0.00006240
1. //94626	8. /005/5/	13.9449589	11 0/00/01	0.0004004	0 00005500
0.00004125	288.6681389	6998015.	11.8690481	0.0004896	0.00005590
1.8001722	8. /2/191/	14.1354619	11 /7/1170	0.0004070	0,00004000
0.00004250	297.4130932	6997955.	11.6/611/0	0.0004962	0.00004939
1.8207910	8. /538645	14.3260217	11 4040550	0 0005000	0 0000 4000
0.00004375		6997893. 14 F177200	11.4942552	0.0005029	0.00004289
1.8413187		14.5100382	11 2025402		0,00002/20
0.00004500	314.9023057	0997829.	11. 3225403	0.0005095	0.00003638
0.00004625	0.00/3003	14.7073114	11 1601/07	0 0005162	0 00000000
1 9921000	223.0400004 0 0210020	0997703. 17 0000712	11.1001497	0.0003102	0.00002900
0.00004750	222 2005/52	6007606	11 0062470	0 0005228	0 00003330
1 0022552	2 2611220	0997090. 15 0000200	11.0003470	0.0003228	0.00002339
0.00004875	2/1 12/2821	6007626	10 8604710	0 0005201	0 00001680
1 0225181	8 8880703	15 2706713	10.0004717	0.0003294	0.00001009
0 00005125	358 620961/	6007/82	10 5001836	0 0005427	0 00000390
1 9625696	8 9421623	15 6615283	10. 3701030	0.0003427	0.00000370
0.00005375	376 1065313	6997331	10 3451840	0 0005561	-0 00000907
2 0022548	8 9964723	16 0436122	10.0101010	0.0000001	0.00000707
0.00005625	393 5909388	6997172	10 1221013	0 0005694	-0 00002204
2 0415728	9 0510093	16 4259231	10. 1221010	0.0000071	0.00002201
0.00005875	411.0741029	6997006.	9, 9181375	0.0005827	-0.00003501
2.0805230	9.1057730	16.8084608	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.000001	
0.00006125	428.5554400	6996824.	9.7309489	0.0005960	-0.00004796
2.1191043	9.1607590	17.1912208			
0.00006375	446.0336417	6996606.	9.5585561	0.0006094	-0.00006091
2.1573149	9.2159562	17.5741919			
0.00006625	463.5072169	6996335.	9.3992771	0.0006227	-0.00007385
2.1951529	9. 2713515	17.9573612			
0.00006875	480.9746983	6995996.	9. 2516746	0.0006361	-0.00008678
2. 2326162	9. 3269314	18. 3407150			
0.00007125	498.4347441	6995575.	9.1145133	0.0006494	-0.00009971

2.2697032	9.3826830	18. 7242406			
0.00007375	515.8861470	6995066.	8.9867258	0.0006628	-0.0001126
2.3064121	9. 4385945	19.1079260			
0.00007625	530.0577278	6951577.	8.8534534	0.0006751	-0.0001266
2.3398402	9. 4638482	19.4609537 C			
0.00007875	546.5693452	6940563.	8.7381809	0.0006881	-0.0001398
2.3749662	9. 5108847	19.8357641 C			
0.00008125	562.9807071	6928993.	8.6296094	0.0007012	-0.0001531
2.4096313	9.5569959	20.2096493 C			
0.00008375	579.2985056	6916997.	8. 5271566	0.0007141	-0.0001664
2.4438422	9. 6022251	20.5826524 C			
0.00008625	595.5298712	6904694.	8.4303118	0.0007271	-0.0001797
2.4776064	9.6466257	20.9548270 C			
0.00008875	611. 6822206	6892194.	8.3386258	0.0007401	-0.0001931
2.5109320	9.6902612	21.3262364 C			
0.00009125	627.7631216	6879596.	8. 2517021	0.0007530	-0.0002064
2.5438277	9.7332044	21.6969536 C			
0.00009375	643.7603308	6866777.	8.1690878	0.0007659	-0.0002198
2.5762785	9.7752599	22.0667830 C			
0.00009625	659.6949517	6853974.	8.0905386	0.0007787	-0.0002333
2.6083091	9.8166831	22.4359801 C			
0.00009875	675.5763520	6841280.	8.0157861	0.0007916	-0.0002467
2.6399312	9.85/5893	22.8046604 C			
0.0001013	691.4054915	6828696.	7.9445498	0.0008044	-0.0002602
2.6/11466	9.89/9810	23.1728260 C	7 07/470/	0 0000170	0 000070/
0.0001038	/0/.1649510	6816048.	/.8/64/96	0.0008172	-0.0002/36
2. /019326	9.93/5692	23.5401882 C	7 0445450	0 000000	0 000074
0.0001063	/22.889249/	6803664.	7.8115158	0.0008300	-0.0002871
2. / 323332	9.9768591	23.90/2519 C		0 0000407	0 0000007
0.0001088		0/91382.	7.7493650	0.0008427	-0.0003007
2. /623290		24.2/3/6// L	7 (000400		0 0000140
0.0001113	10 0520274	0//9230.	7.0898480	0.0008555	-0.0003142
2.7919243	10.0030270	24.039/004 C	7 600000	0 0000600	0 0002277
0.0001130	109.7000730	0707300. 25 0055421 C	1.0320/02	0.0006062	-0.0003277
0.0001162	795 2290100	20.0000421 C 6755510	7 5701550	0 0008810	0 0002/12
2 9/00512	10 1201/21	0700010. 05 2706210 C	7.5761559	0.0006610	-0.0003413
0 0001188	800 853/3/0	23. 3700310 C 6744020	7 5257225	0 0008037	0 0003540
2 8783989	10 1664102	25 7356729 C	7. 5257255	0.0000737	-0.0003347
0 0001213	816 3243688	6732572	7 4752555	0 0009064	-0 0003684
2 9064372	10 2029816	26 1000182 C	7.4752555	0.0007004	0.0003004
0 0001238	831 7794751	6721450	7 4268197	0 0009191	-0 0003820
2 9341186	10 2395283	26 4643389 C	7. 1200177	0.0007171	0.0003020
0.0001263	847, 1915577	6710428.	7.3801548	0.0009317	-0.0003956
2.9614050	10. 2755357	26.8281201 C			
0.0001288	862.5807244	6699656.	7.3352578	0.0009444	-0.0004093
2.9883254	10. 3113774	27.1917358 C			
0.0001313	877.9457153	6689110.	7.2920173	0.0009571	-0.0004229
3.0148775	10.3470143	27.5551467 C			
0.0001338	893.2724364	6678672.	7.2502691	0.0009697	-0.0004365
3.0410419	10. 3821693	27.9180756 C			

0.0001363	908. 5921278	6668566.	7.2100857	0.0009824	-0.0004502
3.0668634	10. 4174539	28.2811342 C			
0.0001388	923.8690317	6658516.	7.1711994	0.0009950	-0.0004638
3.0922902	10. 4521314	28.6435856 C			
0.0001413	939. 1297246	6648706.	7.1336749	0.0010076	-0.0004775
3. 1173615	10. 4867481	29.0059763 C			
0.0001438	954.3833251	6639188.	7.0974861	0.0010203	-0.0004911
3.1420904	10. 5214923	29.3684945 C			
0.0001463	969. 5891266	6629669.	7.0623559	0.0010329	-0.0005048
3.1664174	10. 5554788	29.7302548 C			
0.0001488	984.7871757	6620418.	7.0284325	0.0010455	-0.0005185
3. 1904018	10. 5895771	30.0921271 C			
0.0001588	1045.	6585190.	6.9031505	0.0010959	-0.0005732
3. 2827607	10. 7247146	31.5383604 C			
0.0001688	1106.	6552505.	6.7923326	0.0011462	-0.0006280
3.3694185	10.8579722	32.9827138 C			
0.0001788	1166.	6522100.	6.6936413	0.0011965	-0.0006829
3.4504223	10. 9898165	34.4256539 C			
0.0001888	1226.	6493754.	6.6052411	0.0012467	-0.0007378
3. 5258138	11. 1207508	35.8676840 C			
0.0001988	1285.	6467280.	6.5256720	0.0012970	-0.0007927
3.5956285	11.2513135	37.3093425 C			
0.0002088	1345.	6442512.	6. 4537594	0.0013472	-0.0008476
3.6598951	11. 3820762	38.7512010 C			
0.0002188	1404.	6419147.	6.3883628	0.0013975	-0.0009025
3.7185891	11.5124655	40.1926862 C			
0.0002288	1463.	6397130.	6.3287556	0.0014477	-0.0009574
3. //1/444	11.6433306	41.6346470 C	<i>.</i>		
0.0002388	1522.	6376321.	6.2/42486	0.0014980	-0.0010122
3.8193637	11. //49355	43.07/34// C	(0044700	0 0045400	0 0040/74
0.0002488	1581.	6356544.	6.2241/38	0.0015483	-0.0010671
3.8614282	11.9068993	44.5204073 C	(1701004	0.001500/	0 0011010
0.0002588	1040.	633//46.	6. 1781094	0.0015986	-0.0011219
3.89/949/	12.0399130	45.9645168 C	/ 105/1/0	0 001/400	0 00117/7
0.0002688	1098.	6319828.	6. 1356168	0.0016489	-0.0011/6/
3. 9289170	12.1/404/5	47.4097471 C	(00/0057	0 001/002	0 0010015
0.0002788	1/3/.	0302044.	0.0902337	0.0010993	-0.0012315
3. 9343092	12.3080878	48.8004832 U	4 0500150	0 0017400	0 0012041
0.0002888	1010. 10 115775	020023U. E0 2021400 C	0.0398139	0.0017498	-0.0012801
0.000000	12.4402770 1070	50. 505 1000 C	6 0250222	0 0010000	0 0012400
0.0002900 2.0002450	10/3. 17 5076207	0270424. 51 7516252 C	0.0239222	0.0018002	-0.0013406
2. 2002020	12. 0020002	6255190	5 0012100	0 0019509	0 0012054
2 0060807	12 7011052	53 2012081 C	5. 7745477	0.0010500	-0.0013754
0 0003188	12.7211233	62/0523	5 06/07/0	0 0010013	0 0014500
2 0000068	12 8616036	51 6527822 C	5. 7047740	0.0019013	-0.0014300
0 0003288	2017	6226362	5 0375750	0 0010520	_0 0015045
3 9995181	13 0039012	56 1061756 C	5. /5/5/5/	0.001/020	0.0010040
0 0003388	2105	6212587	5 9118291	0 0020026	-0 0015500
3 9999227	13 1466241	57 5599943 C	0.7110071	0.0020020	0.0010070
0.0003488	2162	6199242	5.8877794	0.0020534	-0.0016134

3.9993453	13.2913828	59.0158488 C			
0.0003588	2219.	6186276.	5.8652633	0.0021042	-0.0016677
3.9991633	13.4382459	60.4738078 C			
0.0003688	2277.	6173635.	5.8441744	0.0021550	-0.0017220
3.9994554	13.5873124	61.9339700 C			
0.0003788	2334.	6161265.	5,8243260	0.0022060	-0.0017762
3, 9996030	13. 7377721	63.3955255 C	01 02 10200	0.0011000	0.00
0.0003888	2390.	6149162.	5.8056343	0.0022569	-0.0018304
3.9996507	13.8897599	64.8586091 C			
0.0003988	2447.	6137344.	5.7880633	0.0023080	-0.0018845
3.9996157	14.0438670	66.3238120 C			
0.0004088	2504.	6125806.	5.7715253	0.0023591	-0.0019385
3.9994859	14.2000269	67.7910677 C			
0.0004188	2560.	6114543.	5.7559401	0.0024103	-0.0019924
3.9992216	14.3581652	69.2603018 C			
0.0004288	2617.	6103552.	5.7412345	0.0024616	-0.0020463
3.9987549	14.5182016	70.7314340 C			
0.0004388	2673.	6092825.	5.7273230	0.0025129	-0.0021002
3.9987977	14.6798112	72.2041394 C			
0.0004488	2729.	6082333.	5.7140975	0.0025642	-0.0021540
3.9999568	14.8422813	73.6777053 C			
0.0004588	2786.	6072098.	5.7015775	0.0026156	-0.0022077
3.9996242	15.0064646	75.1529844 C			
0. 0004688	2842.	6062122.	5.6897084	0.0026671	-0.0022614
3. 9988189	15.1722355	76.6298511 C			
0.0004788	2898.	6052405.	5.6784428	0.0027186	-0.0023150
3. 9994534	15.3395014	78.1082128 C			
0.0004888	2953.	6042919.	5.6677501	0.0027701	-0.0023686
3.9997322	15.5083532	79.5881604 C			
0.0004988	3008.	6032054.	5.6581595	0.0028220	-0.0024219
3.9986714	15.6869433	80.000000 CY			
0.0005088	3062.	6018129.	5.6502549	0.0028746	-0.0024744
3.9999982	15.8848426	80.000000 CY	- ///07-7		0.00050/4
0.0005188	3113.	6000222.	5.6443/5/	0.0029280	-0.0025261
3. 9994653	16. 1086334	80.000000 CY	F (40(001	0 000005	0 00057/0
0.0005288	3161.	5977868.	5.6406981	0.0029825	-0.0025768
3.9978821	16.3627710	80.000000 CY	F (200F22	0.0000001	0.000/0/0
0.0005388	3206.	5951025.	5.6392532	0.0030381	-0.0026263
3.9999022	10.04905/5		F (207202	0 0020040	0 000/740
	3249. 14 0442015	5920524.	5. 639/303	0.0030948	-0.0026748
3.9988543	10. 9002913			0 0024454	
0.0000088 2.000007	3403. 10 1750004	00 000000 CV	0.0040000	0.0034454	-0.0029330
J. 7777U71 A AAAAAA	17. 1700200 2601	5281226	5 6686061	0 0027000	0 0033404
2 0000550	2001. 21 2261611	9304220. 80 000000 CV	5.0000004	0.003/909	-0.0032404
0 0007088	∠1. ∠JU4U44 2607		5 6683833	0 00/1202	-0 0035313
2 0007200	JU72. 23 1270272	80 0000000 CV	J. 0003032	0.0041300	-0.0030312
5. ////211	20.10/00/0				

Summary of Results for Nominal Moment Capacity for Section 1

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load No.	Axial Thrust kips	Nominal Mom. Cap. in-kip	Max. Comp. Strain
1	206.000	3175.038	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axi al Sti ff.	Resist.	Nomi nal	Nomi nal	UIt. (Fac)	UIt. (Fac)	Bend.
Load UIt Mom	Factor	Ax. Thrust	Moment Cap	Ax. Thrust	Moment Cap	at
No. kip-in^2		ki ps	in-kips	ki ps	in-kips	
1 6222330.	0.65	206.000000	3175.	133. 900000	2064.	
1 6151121.	0. 75	206.000000	3175.	154. 500000	2381.	
1 6059359.	0.90	206.000000	3175.	185. 400000	2858.	

Pile Section No. 2:

Dimensions and Properties of Drilled Shaft (Bored Pile):

Length of Section	=	10.000000 ft
Shaft Diameter	=	10.514000 in
Concrete Cover Thickness (to edge of long. rebar)	=	4.500000 in

Number of Reinforcing Bars	=	1 bar
Yield Stress of Reinforcing Bars	=	150000. psi
Modulus of Elasticity of Reinforcing Bars	=	2900000. psi
Gross Area of Shaft	=	86.821209 sq. in.
Total Area of Reinforcing Steel	=	1.577711 sq. in.
Area Ratio of Steel Reinforcement	=	1.82 percent
Edge-to-Edge Bar Spacing	=	-1.417323 in
Maximum Concrete Aggregate Size	=	0.0010000 in
Ratio of Bar Spacing to Aggregate Size	=	-1417.32
Offset of Center of Rebar Cage from Center of Pile	=	0.0000 in
Axial Structural Capacities:		
Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As	=	526.485 kips
Tensile Load for Cracking of Concrete	=	-40.732 kips
Nominal Axial Tensile Capacity	=	-236.657 kips

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar	Bar Diam.	Bar Area	X	Y
Number	inches	sq. in.	i nches	i nches
1	1. 417323	1. 577711	0. 00000	0. 00000

NOTE: The positions of the above rebars were computed by LPile

Concrete Properties:

Compressive Strength of Concrete	=	4000.	psi
Modulus of Elasticity of Concrete	=	3604997.	psi
Modulus of Rupture of Concrete	=	-474.341649	psi
Compression Strain at Peak Stress	=	0. 001886	
Tensile Strain at Fracture of Concrete	=	-0.0001154	
Maximum Coarse Aggregate Size	=	0.0010000	in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	ki ps
	206 000
I	200.000

Definitions of Run Messages and Notes:

- C = concrete in section has cracked in tension.
- Y = stress in reinforcing steel has reached yield stress.
- T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACI 318, Section 10.3.4.
- Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature. Position of neutral axis is measured from edge of compression side of pile. Compressive stresses and strains are positive in sign. Tensile stresses and strains are negative in sign.

Axial Thrust Force = 206.000 kips

Bending Max Conc	Bending	Bendi ng Run	Depth to	Max Comp	Max Tens
Curvature	Moment	Sti ffness	N Axis	Strain	Strain
rad/in. ksi	in-kip ksi	™sg kip-in2	in	in/in	in/in
0.00000125	2.1975408	B 1758033.	474. 7080471	0.0005934	0.0005802
2.1206124	17.0423741	4750040	000 00/011/	0.000/000	0 0005707
0.00000250	4. 3950454	4 1758018.	239.9868116	0.0006000	0.0005737
2.1395082		2 175700/	161 7492055	0 0006066	0 0005671
2 1583292	17 0927503	5 1757774.	101.7403033	0.000000	0.0003071
0.0000500	8. 7898017	7 1757960.	122, 6304819	0.0006132	0.0005606
2. 1770749	17.1182493			0.0000.02	
0.0000625	10. 9869811	1 1757917.	99. 1609314	0. 0006198	0.0005540
2.1957451	17.1439556				
0.0000750	13. 1839798	3 1757864.	83.5155174	0.0006264	0.0005475
2.2143395	17.1698692				
0.0000875	15.3807616	5 1757801.	72.3410386	0.0006330	0.0005410
2.2328577	17.1959901	175770	42 040004E	0 0006206	0 0005245
0.00001000 2.2512004	17.5772904	4 1/5//29.	03.9008945	0.0006396	0.0005345
0 00001125	19 7735301	1 1757647	57 4436401	0 0006462	0 0005280
2 2696643	17 2488539	1 1757047.	57. 4450401	0.0000402	0.0003200
0.00001250	21.9694444	4 1757556.	52.2304087	0.0006529	0.0005215
2.2879521	17. 2755968				
0.00001375	24.1649971	1 1757454.	47.9655576	0.0006595	0.0005150
2.3061625	17. 3025471				
0.00001500	26.3601522	2 1757343.	44.4119919	0.0006662	0.0005085
2.3242952	17.3297049				
0.00001625	28.5548733	3 1757223.	41. 4055689	0.0006728	0.0005020
2.3423498	17.35/0/01				

0.00001750	30.7491244	1757093.	38.8290437	0.0006795	0.0004955
2.3603261	17.3846428				
0.00001875	32.9428691	1756953.	36.5964369	0.0006862	0.0004890
2.3782237	17.4124231				
0.00002000	35.1360713	1756804.	34.6432638	0.0006929	0.0004826
2.3960423	17.4404109				
0.00002125	37.3286948	1756644.	32.9202127	0.0006996	0.0004761
2.4137816	17.4686063				
0.00002250	39. 5207031	1756476.	31. 3889300	0.0007063	0.0004697
2.4314412	17.4970094				
0.00002375	41.7120602	1756297.	30.0191366	0.0007130	0.0004632
2.4490210	17.5256203		~~ ~~ / / ~ ~ /		
0.00002500	43.902/29/	1/56109.	28. /866091	0.000/19/	0.0004568
2.4665204	17.5544389	4755044	07 (717001	0 00070//	0 000 150 1
0.00002625	46.0926753	1/55911.	27.6717381	0.0007264	0.0004504
2.4839393	17.5834653	4755704	0/ / 50 / 700	0 0007004	
0.00002750	48.2818607	1/55/04.	26.6584798	0.0007331	0.0004440
2.5012774	17.6126997	1755407		0 0007000	0 000407/
0.00002875	50.4702496	1/5548/.	25.7335803	0.0007398	0.0004376
2.5185342	17.6421420	17550/0	24 0050040	0 00074//	0 0004212
	52.6578056	1755260.	24.8859948	0.0007466	0.0004312
2.5357095	17.0/1/923	1755004	24 1044450	0 0007522	0 0001210
	04.0444924	1755024.	24. 1004458	0.0007533	0.0004248
2. 3328029		1751770	22 207020	0 0007401	0 000/10/
0.00003230 2.5609142	07.0302735 17 7217175	1754776.	23. 3070030	0.0007001	0.0004164
2. 3090142	50 2151125	1751500	22 7212100	0 0007668	0 000/120
2 5867/31	17 7610020	1754522.	22.7212190	0.0007000	0.0004120
0 00003500	61 3080731	175/256	22 1031220	0 0007736	0 000/056
2 6035891	17 7924751	1754250.	22.1031220	0.0007730	0.0004030
0.00003625	63 5818187	1753981	21 5278506	0 0007804	0 0003993
2 6203520	17 8231666	1700701.	21. 0270000	0.0007001	0.0000770
0.00003750	65.7636148	1753696.	20, 9911224	0.0007872	0.0003929
2.6370315	17.8540655			0.000.0.2	0.0000/2/
0.00003875	67.9443210	1753402.	20. 4892073	0.0007940	0.0003865
2.6536272	17.8851740				
0.00004000	70. 1239028	1753098.	20. 0188418	0.0008008	0.0003802
2.6701389	17.9164912				
0.00004125	72.3023235	1752784.	19. 5771578	0.0008076	0.0003739
2.6865663	17.9480172				
0.00004250	74.4795467	1752460.	19. 1616247	0.0008144	0.0003675
2.7029089	17.9797520				
0.00004375	76.6555356	1752127.	18.7700010	0.0008212	0.0003612
2.7191665	18.0116957				
0.00004500	78.8302536	1751783.	18. 4002943	0.0008280	0.0003549
2.7353388	18.0438484				
0.00004625	81.0036641	1751431.	18.0507277	0.0008348	0.0003486
2.7514254	18.0762103				
0.00004750	83.1757303	1751068.	17.7197113	0.0008417	0.0003423
2.7674260	18. 1087815				
0.00004875	85.3464156	1750696.	17.4058181	0.0008485	0.0003360

2.7833403 0.00005125	18. 1415619 89. 6834961	1749922.	16.8243903	0.0008623	0.0003234
2.8149088	18.2077514				
0.00005375	94.0146111	1749109.	16. 2975869	0.0008760	0.0003109
2.8461282	18.2747797				
0.00005625	98.3394653	1/4825/.	15.8181253	0.0008898	0.0002984
2.8/69959	18.3426478	1717766	15 2700425	0 0000026	
2 9075095	102.0077032	1747300.	10. 3799020	0.0009030	0.0002639
0.00006125	106 9692083	1746436	14 9780421	0 0009174	0 0002734
2. 9376662	18. 4809077	17 10 100.	11. 7700121	0.0007171	0.0002701
0.00006375	111.2735037	1745467.	14.6081009	0.0009313	0.0002610
2.9674635	18. 5513017				
0.00006625	115. 5703517	1744458.	14.2665192	0.0009452	0.0002486
2.9968987	18. 6225399				
0.00006875	119.8594539	1743410.	13.9502038	0.0009591	0.0002362
3. 0259694	18. 6946237				
0.00007125	124.1405112	1742323.	13.6564959	0.0009730	0.0002239
3.0546728	18.7675542				
0.00007375	128. 4132237	1741196.	13.3830970	0.0009870	0.0002116
3.0830063	18.8413329	4740000	40, 4000400	0.0010010	0 0004000
0.00007625	132.6772906	1740030.	13.1280100	0.0010010	0.0001993
3.1109672	18.9159612	1720024	10 0004017	0 0010150	0 0001071
0.00007875 2.1205520	130. 9324104	1/38824.	12.8894917	0.0010150	0.0001871
3. 1300030 0. 00008125	10.9914404	1737570	12 6660132	0 0010201	0 0001740
3 1657610	19 0677721	1757577.	12.0000152	0.0010271	0.0001749
0 00008375	145 4145980	1736294	12 4562283	0 0010432	0 0001627
3 1925886	19 1449578	1700271.	12. 1002200	0.0010102	0.0001027
0.00008625	149.6410582	1734969.	12.2589470	0.0010573	0.0001505
3.2190329	19. 2229992				
0.00008875	153.8573561	1733604.	12.0731132	0.0010715	0.0001384
3.2450915	19. 3018979				
0.00009125	158.0631853	1732199.	11.8977867	0.0010857	0.0001263
3.2707615	19. 3816556				
0.00009375	162.2582386	1730755.	11.7321275	0.0010999	0.0001142
3.2960403	19. 4622741				
0.00009625	166.4422076	1729270.	11. 5753831	0.0011141	0.0001022
3. 3209252	19.5437551				
0.00009875	1/0.614/829	1/2//45.	11.4268770	0.0011284	0.00009015
3.3454135	19.6261007	470/470	44 0050005	0 0011107	0 0000704/
0.0001013	1/4. //56540	1/261/9.	11.2859995	0.0011427	0.00007816
3.3095024	170 0245000	1704574	11 150000	0 0011570	0 00004401
2 2021001	1/0.9243090	1/243/4.	11. 1522000	0.0011370	0.0000021
0 0001063	183 06103/0	170007	11 02/070/	0 001171/	0 00005429
3 4164710	19 8783440	1722727.	11.0247774	0.0011714	0.00003427
0.0001088	187. 1849175	1721241	10.9038848	0.0011858	0.00004240
3. 4393453	19.9641674			0.000	0.00001210
0.0001113	191.2958413	1719513.	10. 7885037	0.0012002	0.00003054
3.4618091	20.0508656				

0.0001138	195.3934895	1717745.	10. 6784602	0.0012147	0.00001871
3. 4838598	20. 1384408				
0.0001163	199. 4775438	1715936.	10.5734105	0.0012292	0.0000691
3.5054944	20. 2268952				
0.0001188	203. 5476847	1714086.	10.4730400	0.0012437	-0.0000486
3. 5267102	20. 3162313				
0.0001213	207.6034307	1712193.	10.3770589	0.0012582	-0.00001660
3.5475041	20. 4064479				
0.0001238	211.6440032	1710255.	10. 2851991	0.0012728	-0.00002831
3.5678729	20. 4975375				
0.0001263	215.6684612	1/08265.	10.19/2126	0.0012874	-0.00003999
3.58/8131	20. 5894885	170/000	40 4400700	0.0010000	0 000054/5
0.0001288	219.6758045	1/06220.	10.1128/02	0.0013020	-0.00005165
3.6073212	20.6822878	4704444	10 0010500	0 00101/7	0 0000/007
0.0001313	223.6650094	1704114.	10.0319599	0.0013167	-0.00006327
3.6263937	20. 7759209	4704044	0 05 40057	0.0010011	0 00007404
0.0001338	227.6350718	1701944.	9.9542857	0.0013314	-0.0000/486
3.6450270	20.8/03/3/	1/00707	0.070///1	0 00104/1	0.00000(42
0.0001363	231.5850844	1699707.	9.8/96661	0.0013461	-0.00008643
3.6632180	20. 9656335	1/07000	0.007000/	0.0010/00	
0.0001388	235.5140936	1697399.	9.8079326	0.0013609	-0.00009797
3.0809033	21.0010800 220 4211515	1405017	0 7200205	0 0012754	0 0001005
	239.4211515	1695017.	9.7389285	0.0013756	-0.0001095
3.0982597	21. 1000101 240 2451021	1470104	0 4555005	0 0012000	0 0001224
0.0001430	240.3031931 21 1052000 C	10/2100.	9.0000200	0.0013660	-0.0001234
0 0001462	21.1002900 0	1665620	0 5880635	0 0014022	0 0001354
2 7221022	243.377724	1005057.	7.0000000	0.0014023	-0.0001334
0 0001/88	21.2070300 0	1658036	0 5227357	0 001/165	_0 0001475
3 7435806	240.7007710 21 3493777 C	1030730.	7. 5227557	0.0014105	-0.0001475
0 0001588	258 6238473	1620127	9 2796740	0 0014731	_0 0001959
3 8002985	21 6656330 C	1027127.	7.2770740	0.0014731	0.0001737
0 0001688	269 3668300	1596248	9 0626337	0 0015293	-0 0002449
3 8495497	21 9682580 C	10,0210.	1.0020007	0.0010270	0.0002117
0 0001788	279 1108216	1561459	8 8675278	0 0015851	-0 0002943
3.8915457	22,2587003 C	10011071	010070270	010010001	01 0002 / 10
0.0001888	287.9377695	1525498.	8.6910143	0.0016404	-0.0003441
3.9264584	22.5377475 C				
0.0001988	295.9334461	1488973.	8.5305030	0.0016954	-0.0003942
3.9544529	22.8066572 C				
0.0002088	303. 2023257	1452466.	8.3841229	0.0017502	-0.0004446
3. 9756871	23.0680139 C				
0.0002188	309.8079999	1416265.	8.2501550	0.0018047	-0.0004952
3.9902663	23.3232079 C				
0.0002288	315. 7581736	1380364.	8.1268226	0.0018590	-0.0005461
3.9982649	23.5712544 C				
0.0002388	321. 1446488	1345108.	8.0133033	0.0019132	-0.0005970
3.9998701	23.8157149 C				
0.0002488	325.9770192	1310460.	7.9086597	0.0019673	-0.0006481
3.9998754	24.0583590 C				
0.0002588	330. 2869401	1276471.	7.8120619	0.0020214	-0.0006991

3.9997627	24.3006804 C				
0.0002688	334.1270312	1243263.	7.7227549	0.0020755	-0.0007501
3.9994205	24.5438021 C				
0.0002788	337.5057230	1210783.	7.6397167	0.0021296	-0.0008012
3.9999620	24.7858014 C				
0.0002888	340. 4929781	1179196.	7.5625215	0.0021837	-0.0008522
3.9994869	25.0285654 C				
0.0002988	343.1561205	1148640.	7.4908361	0.0022379	-0.0009032
3.9998963	25.2742909 C				
0.0003088	345.5154220	1119078.	7.4240071	0.0022922	-0.0009540
3.9999634	25.5219215 C				
0.0003188	347.5569994	1090375.	7.3612652	0.0023464	-0.0010049
3.9992510	25.7685730 C				
0.0003288	349.4002342	1062814.	7.3030050	0.0024009	-0.0010556
3.9994965	26.0215613 C				
0.0003388	350.9607702	1036047.	7.2478065	0.0024552	-0.0011064
3.9996050	26.2708351 C				
0.0003488	352.3752694	1010395.	7. 1965281	0.0025098	-0.0011570
3.9996291	26.5277416 C	005500	- 4477040	0 0005/40	0 004007/
0.0003588	353.5514342	985509.	7.1477343	0.0025642	-0.0012076
3. 9995583	26. /80/544 C	0/1/7/	7 1000/70	0.000/100	0 0010500
0.0003688	354.6181084	961676.	7.1023673	0.0026190	-0.0012580
3.9993899	27.0421132 0	0205/0		0 000/70/	0.001000/
0.0003788		938568.	7.0590050	0.0026736	-0.0013086
3.9990333	27.2991783 6	016200	7 0102062	0 0007001	0 0012500
0.0003000	330. 2423337 27 5620222 C	910300.	7.0103003	0.0027204	-0.0013369
0 0002088	27.00202030 0	805008	6 0200220	0 0027822	0 0014001
2 0000788	22 8280720 C	075000.	0. 9000020	0.0027033	-0.0014091
0 000/088	357 3765300	87/316	6 9/3/525	0 0028381	_0 001/505
2 0007/20	28 0017500 C	074510.	0. 7434323	0.0020301	-0.0014373
0 0004188	20.0717370 0	854446	6 9091084	0 0028932	-0 0015095
3 9991358	28 3619533 C	004440.	0. 7071004	0.0020752	0.0013073
0 0004288	358 1323513	835294	6 8765260	0 0029483	-0 0015596
3.9991571	28.6341323 C	0002711	0.0.00100	0.002/100	0.00.0070
0.0004388	358. 3396613	816729.	6.8452219	0.0030033	-0.0016097
3.9998065	28.9036782 C				
0.0004488	358.4924637	798869.	6.8157520	0.0030586	-0.0016596
3.9989313	29.1789365 C				
0.0004588	358.5963634	781681.	6.7879648	0.0031140	-0.0017093
3.9999944	29.4594898 C				
0.0004688	358.5963634	765006.	6.7610900	0.0031693	-0.0017592
3.9994029	29.7363294 C				
0.0004788	358.5963634	749026.	6.7354414	0.0032246	-0.0018090
3. 9986131	30.0146059 C				
0.0004888	358. 5963634	733701.	6.7112363	0.0032801	-0. 0018586
3.9995812	30.2984654 C				
0.0004988	358.5963634	718990.	6.6883044	0.0033358	-0.0019081
3.9977256	30.5867021 C				
0.0005088	358.5963634	704858.	6.6662342	0.0033914	-0.0019576
3.999581/	30.8/43512 C				

0.0005188	358.5963634	691270.	6.6448358	0.0034470	-0.0020071
3.9980221	31.1593052 C				
0.0005288	358.5963634	678196.	6.6245648	0.0035027	-0.0020565
3. 9993781	31.4491363 C				
0.0005388	358.5963634	665608.	6.6052640	0.0035586	-0.0021058
3.9995887	31.7423685 C				
0.0005488	358. 5963634	653479.	6.5869860	0.0036146	-0.0021549
3.9988932	32.0406807 C				
0.0006088	358.5963634	589070.	6.5317589	0.0039762	-0.0024242
3.9969249	34.5690258 C				

Summary of Results for Nominal Moment Capacity for Section 2

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load	Axial Thrust	Nominal Mom. Cap.	Max. Comp.
No.	kips	in-kip	Strain
1	206.000	358. 327	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Stiff.	Resist.	Nomi nal	Nomi nal	Ult. (Fac)	Ult. (Fac)	Bend.
Load	Factor	Ax. Thrust	Moment Cap	Ax. Thrust	Moment Cap	at
No. kip-in^2		ki ps	in-kips	ki ps	i n-ki ps	
1 1698927.	0. 65	206.000000	358. 327075	133.900000	232. 912599	
1 1598150.	0.75	206.000000	358. 327075	154. 500000	268.745306	

1	0.90	206.000000	358. 327075	185. 400000	322. 494367
1335431.					

	Layering Correction Equivalent Depths of Soil & Rock Layers							
Layer No.	Top of Layer Below Pile Head ft	Equi val ent Top Depth Bel ow Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer Ibs	F1 Integral for Layer Ibs		
1	0.00	0.00	N. A.	No	0.00	12385.		
2	7.0000	6. 0201	Yes	No	12385.	130087.		
3	15.0000	15.2921	Yes	NO	142473.	263720.		
4	24.0000	46.1507	No	No	406192.	66174.		
5	31.0000	122. /005	No	No	4/2366.	55327.		
6	45.0000	21. 1800	No	No	527693.	1857765.		
7	60.0000	36.2829	Yes	No	2385458.	1062757.		
8	65.0000	65.0000	No	Yes	N. A.	N. A.		

Notes: The FO integral of Layer n+1 equals the sum of the FO and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Pile-head Rotation (Loading Type 2)

Shear force at pile head	=	12400.0 Ibs
Rotation of pile head	=	0.000E+00 radians
Axial load at pile head	=	206000.0 Ibs

(Zero slope for this load indicates fixed-head conditions)

Depth	Deflect.	Bendi ng	Shear	SI ope	Total	Bendi ng	Soi I
Res. Soil	Spr. Distr	rib.				-	
Х	у	Moment	Force	S	Stress	Stiffness	р
Es*H	Lat. Lo	bad					

feet Ib/inch	i nches I b/i nch	in-Ibs Ib/inch	Ibs	radi ans	psi *	lb-in^2
	 2803		12/00	0 00	0 00	6 82F±09
0.00	0.00	0.00	12400.	0.00	0.00	0.022+07
0.7000	0. 2857	-597648.	12313.	-8.01E-04	0.00	6.82E+09
-20. 7236	609.3583	0.00				
1.4000	0. 2759	-492928.	12052.	-0.00146	0.00	7.00E+09
-41.4570	1262.	0.00				
2.1000	0. 2611	-390109.	11639.	-0.00199	0.00	7.00E+09
-56. 9180	1831.	0.00				
2.8000	0. 2423	-290495.	11112.	-0.00240	0.00	7.00E+09
-68. 4271	2372.	0.00				
3.5000	0. 2207	-195107.	10498.	-0.00269	0.00	7.00E+09
-//./850	2961.	0.00	07/0	0 00007	0.00	7 005 00
4.2000	0.19/1	-104801.	9769.	-0.00287	0.00	7.00E+09
-95. /938	4083.	0.00	0005	0 00005	0.00	7 005 00
4.9000	0.1/24	-21038.	8885.	-0.00295	0.00	7.00E+09
-114./4/9	5591.	0.00	7045	0 00000	0.00	7 005 00
5.6000	0.14/5	54673.	/845.	-0.00293	0.00	7.00E+09
-132.0120	/ 303.	120900	6660	0 00202	0.00	
0.3000	10062	120099.	0000.	-0.00282	0.00	7.00E+09
7 0000	0 1001	176464	5121	0 00265	0 00	
-1/6 9581	12228	0 00	5451.	-0.00203	0.00	7.00L+09
7 7000	0 07871	221292	2080	-0 00241	0 00	7 00F+09
-196 2860	20948	0 00	3707.	0.00241	0.00	7.002107
8 4000	0 05960	251811	2309	-0 00212	0 00	7 00F+09
-203.7124	28710.	0.00	20071	0100212	0.00	,
9.1000	0.04303	267433.	607.3232	-0.00181	0.00	7.00E+09
-201.4504	39322.	0.00				
9.8000	0.02916	268285.	-1031.	-0.00149	0.00	7.00E+09
-188.6319	54337.	0.00				
10.5000	0.01799	255270.	-2515.	-0.00118	0.00	7.00E+09
-164.6153	76851.	0.00				
11.2000	0.00940	230110.	-3737.	-8.85E-04	0.00	7.00E+09
-126.3185	112896.	0.00				
11. 9000	0.00312	195559.	-4455.	-6.30E-04	0.00	7.00E+09
-44.6204	119952.	0.00				
12.6000	-0.00118	157453.	-4567.	-4.18E-04	0.00	7.00E+09
17.8069	127008.	0.00				
13.3000	-0.00389	120276.	-4231.	-2.51E-04	0.00	7.00E+09
62.1271	134064.	0.00				
14.0000	-0.00540	8/234.	-3590.	-1.2/E-04	0.00	7.00E+09
90.6369	141120.	0.00	07/0	0 705 05	0.00	7 005 00
14. /000	-0.00602	60405.	-2/63.	-3./9E-05	0.00	7.00E+09
100.15/2		0.00	2107		0.00	
15.4000	-U. UU6U3	40942.	-2107.	2.29E-05	0.00	7.00E+09
16 1000	07004. _0 00560	0.00	1600	6 215 05	0 00	
10.1000	-0.00505	24755.	-1070.	0.24L-00	0.00	1.00L+09

48.9745	73030.	0.00				
16.8000	-0.00498	12327.	-1295.	8.48E-05	0.00	7.00E+09
45.2056	76205.	0.00				
17.5000	-0.00421	2886.	-937.9076	9.39E-05	0.00	7.00E+09
39.7708	79380.	0.00				
18 2000	-0 00341	-3754	-630 3193	9 34F-05	0 00	7 00F+09
33 4645	82555	0 00	000.0170	JUDIE 00	0.00	7.00E+07
18 0000	_0_00264	-8026	-376 6327	8 63F_05	0 00	7 00F±09
26 0271	25730	0.00	-370.0327	0.03L-03	0.00	7.00L+07
10 4000	0.00105	10201	176 6111		0.00	
19.0000	-0.00193	-10301.	-1/0.0111	7.03E-00	0.00	7.00E+09
20.0872	88906.				0.00	
20.3000	-0.00137	-11254.	-26.4446	6.23E-05	0.00	7.00E+09
15.0668	92081.	0.00				
21.0000	-9.08E-04	-11041.	80.0723	4.89E-05	0.00	7.00E+09
10. 2944	95256.	0.00				
21.7000	-5.52E-04	-10078.	150. 4974	3.63E-05	0.00	7.00E+09
6. 4735	98431.	0.00				
22.4000	-2.99E-04	-8638.	192.8604	2.50E-05	0.00	7.00E+09
3.6129 1	01606.	0.00				
23.1000	-1.32E-04	-6925.	214, 9511	1.57E-05	0.00	7.00E+09
1.6468 1	04782.	0.00				
23 8000	-3 52E-05	-5081	223 7649	8 48F-06	0 00	7 00F+09
0 4518 1	07957	0.00	220.7017	0. 102 00	0.00	7.00E+07
24 5000		2105	210 1721	2 525 O6	0 00	
24.0000	1.052-05	-3175.	210.4731	3. 52L-00	0.00	7.00L+09
-3.0100 Z	2090007. 2 20F OF	0.00	160 6410		0.00	
23.2000	Z. 39E-00	-1007.	100.0410	0.03E-07	0.00	7.00E+09
-8.2481 2	2895867.	0.00	04 (001		0.00	
25.9000	2. 17E-05	-498.1643	94.6331	-5.68E-07	0.00	7.00E+09
-7.4682 2	2895867.	0.00				
26.6000	1.44E-05	34.7749	42.44/1	-8.46E-07	0.00	7.00E+09
-4.9570 2	895867.	0.00				
27.3000	7.44E-06	217.8768	10. 8481	-6.95E-07	0.00	7.00E+09
-2.5666 2	2895867.	0.00				
28.0000	2.71E-06	219. 4276	-3.8520	-4.32E-07	0.00	7.00E+09
-0.9334 2	895867.	0.00				
28.7000	1.82E-07	154.6597	-8.0366	-2.08E-07	0.00	7.00E+09
-0.06290	2895867.	0.00				
29 4000	-7 83E-07	85 1321	-7 1664	-6.39E-08	0 00	7 00F+09
0 2701 28	95867	0.00		0.072 00	0.00	
30 1000	_8 91F_07	34 4859	-4 7416	7 88F_09	0 00	7 00F+09
0 3072 28	0.712 07	0 00	4.7410	7.00L 07	0.00	7.00E+07
20 2000	6 515 07	0.00 5 1156	2 5001	2 10E A0	0 00	
0 2245 20	-0.01E-07	0.00	-2.3004	3. TOE-UO	0.00	7.00E+09
0.2240 20		0.00	0 0020		0.00	
31.5000	-3.50E-U/	-7.7000	-0.8939	3.04E-08	0.00	7.00E+09
0.1599 37	70261.	0.00	0 0 4 4 0 5		0.00	7 005 00
32.2000	-1.40E-07	-9.6//9	0.04105	2.00E-08	0.00	7.00E+09
0.06270 3	3770261.	0.00				
32.9000	-2.07E-08	-7.1456	0.3433	9.88E-09	0.00	7.00E+09
0.00928 3	3770261.	0.00				
33.6000	2.63E-08	-3.9438	0. 3327	3.23E-09	0.00	7.00E+09
-0.01181	3770261.	0.00				

34.3000	3.35E-08	-1.5674	0.2199	-8.02E-11	0.00	7.00E+09
-0.01506	3770261.	0.00				
35.0000	2.50E-08	-0.2501	0. 1095	-1.17E-09	0.00	7.00E+09
-0.01121	3770261.	0.00				
35.7000	1.39E-08	0.2770	0. 03631	-1.15E-09	0.00	7.00E+09
-0.00623	3770261.	0.00				
36.4000	5.57E-09	0.3640	-3.42E-04	-7.70E-10	0.00	7.00E+09
-0.00250	3770261.	0.00				
37.1000	9.37E-10	0.2739	-0. 01261	-3.87E-10	0.00	7.00E+09
-4.21E-04	3770261.	0.00				
37.8000	-9.36E-10	0. 1535	-0. 01261	-1.31E-10	0.00	7.00E+09
4.20E-04	3770261.	0.00				
38.5000	-1.26E-09	0.06244	-0.00847	-1.25E-12	0.00	7.00E+09
5.66E-04	3770261.	0.00				
39.2000	-9.57E-10	0. 01118	-0.00429	4.29E-11	0.00	7.00E+09
4.29E-04	3770261.	0.00				
39.9000	-5.40E-10	-0.00980	-0.00147	4.38E-11	0.00	7.00E+09
2.42E-04	3770261.	0.00				
40.6000	-2.22E-10	-0.01367	-3.46E-05	2.97E-11	0.00	7.00E+09
9.95E-05	3770261.	0.00				
41.3000	-4.15E-11	-0.01049	4.62E-04	1.52E-11	0.00	7.00E+09
1.86E-05	3770261.	0.00				
42.0000	3.31E-11	-0.00597	4.77E-04	5.29E-12	0.00	7.00E+09
-1.48E-05	3770261.	0.00				
42.7000	4.74E-11	-0.00249	3.26E-04	0.00	0.00	7.00E+09
-2.13E-05	3770261.	0.00				
43.4000	3.67E-11	-5.01E-04	1.67E-04	-1.57E-12	0.00	7.00E+09
-1.65E-05	3770261.	0.00				
44.1000	2.10E-11	3.22E-04	5.80E-05	-1.68E-12	0.00	7.00E+09
-9.42E-06	3770261.	0.00				
44.8000	8.49E-12	4.80E-04	2.44E-06	-1.20E-12	0.00	7.00E+09
-3.81E-06	3770261.	0.00				
45.5000	0.00	3.67E-04	-1.38E-05	0.00	0.00	7.00E+09
-6.29E-08	642096.	0.00				
46.2000	-3.14E-12	2.50E-04	-1.31E-05	0.00	0.00	7.00E+09
2.44E-07	651974.	0.00				
46.9000	-4.58E-12	1.49E-04	-1.05E-05	0.00	0.00	7.00E+09
3.61E-07	661853.	0.00				
47.6000	-4.52E-12	7.34E-05	-7.49E-06	0.00	0.00	7.00E+09
3.61E-07	671731.	0.00				
48.3000	-3.72E-12	2.30E-05	-4.71E-06	0.00	0.00	7.00E+09
3.02E-07	681610.	0.00				
49.0000	-2.68E-12	-6.07E-06	-2.51E-06	0.00	0.00	7.00E+09
2.21E-07	691488.	0.00				
49.7000	-1.71E-12	-1.96E-05	-9.83E-07	0.00	0.00	7.00E+09
1.43E-07	701366.	0.00				
50.4000	0.00	-2.30E-05	-4.92E-08	0.00	0.00	7.00E+09
7.94E-08	711245.	0.00				
51.1000	0.00	-2.07E-05	4.27E-07	0.00	0.00	7.00E+09
3.39E-08	721123.	0.00				
51.8000	0.00	-1.60E-05	5.91E-07	0.00	0.00	7.00E+09

5.19E-09	731002.	0.00				
52.5000	0.00	-1.09E-05	5.70E-07	0.00	0.00	7.00E+09
-1.01E-08	740880.	0.00				
53.2000	0.00	-6.44E-06	4.61E-07	0.00	0.00	7.00E+09
-1.60E-08	750758.	0.00				
53.9000	0.00	-3.13E-06	3.26E-07	0.00	0.00	7.00E+09
-1.61E-08	760637.	0.00				
54.6000	0.00	-9.54E-07	2.02E-07	0.00	0.00	7.00E+09
-1.34E-08	770515.	0.00				
55.3000	0.00	2.80E-07	1.05E-07	0.00	0.00	7.00E+09
-9.68E-09	780394.	0.00				
56.0000	0.00	8.32E-07	3.89E-08	0.00	0.00	7.00E+09
-6.14E-09	790272.	0.00				
56.7000	0.00	9.49E-07	-7.39E-10	0.00	0.00	7.00E+09
-3.31E-09	800150.	0.00				
57.4000	0.00	8.30E-07	-2.02E-08	0.00	0.00	7.00E+09
-1.33E-09	810029.	0.00				
58.1000	0.00	6.16E-07	-2.62E-08	0.00	0.00	7.00E+09
-1.12E-10	819907.	0.00				
58.8000	0.00	3.93E-07	-2.45E-08	0.00	0.00	7.00E+09
5.17E-10	829786.	0.00				
59.5000	0.00	2.06E-07	-1.91E-08	0.00	0.00	7.00E+09
7.65E-10	839664.	0.00	1 015 00	0.00	0.00	4 7/5 00
60.2000	0.00	7.21E-08	-1.21E-08	0.00	0.00	1. /6E+09
9.23E-10	970906.	0.00		0.00	0.00	1 7/5 00
60.9000	0.00	2.89E-09	-5.51E-09	0.00	0.00	I. /6E+09
6.35E-10	982195.		1 475 00	0.00	0.00	1 7/5.00
01.0000	0.00	-2. ISE-08	-1.4/E-09	0.00	0.00	I. /6E+09
3. Z/E-10	993485.		2 025 10	0.00	0.00	1 745,00
02.3000	1004774	-2.20E-U0	3. 02E-10	0.00	0.00	1.70E+09
1. 14E-10 62 0000	1004774.		0 OFE 10	0 00	0.00	1 76E,00
7 71E 12	1016064	-1.57E-06	0.93E-10	0.00	0.00	1.70E+09
63 7000	0.00	_7 96F_09	8 21F-10	0 00	0 00	1 76F±00
-2 <i>1</i> /F_11	1027354		0. 24L-10	0.00	0.00	1.70L+07
64 4000	0 00	_1 88F_09	6 48F-10	0 00	0 00	1 76F±09
-1 77F-11	1038643		0.102 10	0.00	0.00	1.702107
65 1000	0 00	2 96F-09	1 32F-10	0 00	0 00	1 76F+09
-1 05F-10	7 74F+07		1.022 10	0.00	0.00	1. / 02 / 0 /
65, 8000	0.00	3.66F-10	-1.78F-10	0,00	0,00	1.76F+09
3. 11E-11	1.49E+08	0.00			0.00	
66. 5000	0.00	-3.21E-11	-2.21E-11	0.00	0.00	1.76E+09
6.00E-12	2.21E+08	0.00				
67.2000	0.00	-6.05E-12	1.92E-12	0.00	0.00	1.76E+09
0.00 2.92	2E+08	0.00				
67.9000	0.00	0.00	0.00	0.00	0.00	1.76E+09
0.00 3.36	6E+08	0.00				
68.6000	0.00	0.00	0.00	0.00	0.00	1.76E+09
0.00 3.36	6E+08	0.00				
69.3000	0.00	0.00	0.00	0.00	0.00	1.76E+09
0.00 3.36	5E+08	0.00				

70.0000		0.00	0.00	0.00	0.00	0.00	1.76E+09
0.00	1.68E+08	0.00					

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

Pile-head deflection	=	0.28930975	i nches
Computed slope at pile head	=	0.00000	radi ans
Maximum bending moment	=	-702557.	inch-Ibs
Maximum shear force	=	12400.	Ibs
Depth of maximum bending moment	=	0.00000	feet below pile head
Depth of maximum shear force	=	0.00000	feet below pile head
Number of iterations	=	11	
Number of zero deflection points	=	14	
Computed slope at pile head Maximum bending moment Maximum shear force Depth of maximum bending moment Depth of maximum shear force Number of iterations Number of zero deflection points	= = = = = =	0.000000 -702557. 12400. 0.000000 0.000000 11 14	radians inch-lbs lbs feet below pile head feet below pile head

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, Ibs, and Load 2 = Moment, M, in-Ibs Load Type 2: Load 1 = Shear, V, Ibs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, Ibs, and Load 2 = Rot. Stiffness, R, in-Ibs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-Ibs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load	Load		Axi al	Pile-head	Pile-head	Max
Shear Max Moment Case Type Pile-head Pile in Pile	Туре	Pile-head	Loadi ng	Deflection	Rotation	in
No. 1 Load 1 in-Ibs	2	Load 2	l bs	i nches	radi ans	Ibs
1 V, Ib 12400. 12400702557.	S, rad	0.00	206000.	0. 2893	0.00	

Maximum pile-head deflection = 0.2893097549 inches Maximum pile-head rotation = 0.0000000000 radians = 0.000000 deg. The analysis ended normally.

LPile 2019.11.09, © 2019 by Ensoft, Inc.

139 of 270

Attachment E

GEOTECHNICAL ENGINEERING AND ENVIRONMENTAL REPORT WET WEATHER CAPACITY IMPROVMENETS – PHASE 1 EAST SHORE WATER POLLUTION ABATEMENT FACILITY NEW HAVEN, CONNECTICUT

by

Haley & Aldrich, Inc. Rocky Hill, Connecticut

for

CH2M Hill Wethersfield, Connecticut

File No. 37176-000 4 September 2012

Haley & Aldrich, Inc. 100 Corporate Place Suite 105 Rocky Hill, CT 06067

> Tel: 860.282.9400 Fax: 860.721.0612 HaleyAldrich.com

Revised 4 September 2012 22 June 2012 File No. 37176-000

CH2M HILL 119 Cherry Hill Road Suite 300 Parsippany, NJ 07054

Attention: Mr. Eric Muir, P.E.

Subject: Geotechnical Engineering and Environmental Report Wet Weather Capacity Improvements and Nitrogen Reduction – Phase 1 East Shore Water Pollution Abatement Facility Greater New Haven Water Pollution Control Authority (GNHWPCA) New Haven, Connecticut

Ladies and Gentlemen:

Refer to set of drawing named "407000_WWCI and Nitrogen Reduction Record Drawings"

This report presents the results of our geotechnical engineering studies for the proposed Wet Weather Capacity Improvements at the East Shore Water Pollution Abatement Facility in New Haven, Connecticut. Our work was performed in accordance with our Agreement dated 8 March 2012.

In summary, we recommend structures be supported on spread footings on natural glaciodeltaic sand, or compacted granular fill after over-excavation of unsuitable fill and organic soils, or on the existing fill after improvement with aggregate piers, or on timber piles. Utility pipes may be soil-supported on 1 ft of compacted granular fill. Premium geotechnical costs will be associated with over-excavation of fill, aggregate piers or timber piles, and dewatering.

The existing fill at the proposed methanol building, odor control facilities area, and storage tank is environmentally-impacted. Some portions of the natural soils are also environmentally-impacted while other portions are not. Additional environmental testing may be necessary, depending on the proposed disposal location. There will be premium costs associated with disposal of environmentally-impacted soils if off-site disposal is planned.

Detailed geotechnical design recommendations are included in Section 5, environmental evaluation in Section 6, and construction considerations are in Section 7. Please call if you have any questions or require additional information.

Sincerely yours, HALEY & ALDRICH, INC.

AL

Chris G. Harriman, L.E.P. Vice President

Enclosures

Thomas Valan

Thomas W. Nolan, P.E. Vice President

G:\37176 GNHWPCA Elec Infrastructure\000\Deliverables\Final Report\2012-0904-HAI GNHWPCA ESWTP-F.doc

TABLE OF CONTENTS

			Page		
LIST	T OF TA	BLES	iii		
LIST	OF FIC	GURES	iii		
1.	INTI	INTRODUCTION			
	11	General	1		
	1.2	Purpose and Scope	1		
	1.3	Elevation Datum	1		
	1.4	Limitations	1		
2.	PRO	POSED CONSTRUCTION	3		
3.	EXIS	STING STRUCTURES	4		
4.	FIEI	LD AND LABORATORY INVESTIGATIONS	5		
	4.1	Site Conditions	5		
	4.2	Recent Test Borings	5		
	4.3	Previous Test Borings	5		
	4.4	Subsurface Conditions	5		
	4.5	Groundwater Conditions	6		
	4.6	Corrosion Testing	6		
5.	GEOTECHNICAL ENGINEERING RECOMMENDATIONS				
	5.1	Foundation Type	7		
	5.2	Spread Footing or Mat Foundations	7		
	5.3	Aggregate Piers	8		
	5.4	Piles	8		
	5.5	Hydrostatic Uplift	9		
		5.5.1 Seismic Site Class	9		
		5.5.2 Floor Slabs	9		
	5.6	Corrosion	10		
	5.7	Backfill Materials	10		
		5.7.1 Compacted Granular Fill	10		
		5.7.2 Common Fill 5.7.2 Crushed Stone	10		
		5.7.5 Clusieu Stolle 5.7.4 Cestavtile Eilter	10		
	5 0	Compaction	10		
	J.0 5 0	Use of On-Site Excavated soil	11		
	5.9	Site Settlement	11		
	5.10	Itilities	11		
	5.11	C tintes	11		

i

6.	ENV	ENVIRONMENTAL CONSIDERATIONS				
	6.1	Laboratory Testing	12			
	6.2	Results of Chemical Testing	12			
	6.3	Recommendations	13			
		6.3.1 Permitting	13			
		6.3.2 Soil Reuse and Disposal Options	13			
		6.3.3 Additional Chemical Testing	14			
7.	CONSTRUCTION CONSIDERATIONS					
	7.1	General	15			
	7.2	Excavation Support and Dewatering	15			
	7.3	Protection and Monitoring of Existing Structures	15			
	7.4	Construction Monitoring	15			

TABLES

FIGURES

APPENDIX A – Test Boring Logs

APPENDIX B - Geotechnical Laboratory Test Results

APPENDIX C - Ground Water Observation Well Installation and Monitoring Report

APPENDIX D – Structure Summary Sheets

APPENDIX E – Laboratory Analytical Data Reports and Chain of Custody Documentation

Page
LIST OF TABLES

Table No.	Title
Ι	Summary of Subsurface Data
Ш	Summary of Laboratory Analytical Data for Soil
III	Summary of Laboratory Analytical Data for Groundwater

LIST OF FIGURES

Figure No.	Title
1	Project Locus
2	Exploration Location Plan
3	At-Rest Lateral Pressures on Below-Grade Walls
4	Recommended Limits of Compacted Granular Fill

1. INTRODUCTION

1.1 General

This report presents geotechnical engineering recommendations for foundation design and construction for the Wet Weather Capacity Improvements and Nitrogen Reduction – Phase 1 at the East Shore Water Pollution Abatement Facility in New Haven, Connecticut. The project locus is shown on Figure 1. The project owner is GNHWPCA of New Haven, Connecticut. The design engineer is CH2M Hill, Wethersfield, Connecticut.

1.2 Purpose and Scope

This investigation was undertaken to obtain information on subsurface conditions and to provide geotechnical and environmental recommendations.

The scope of our geotechnical engineering services included:

- review existing subsurface information
- plan and monitor a subsurface exploration program
- perform geotechnical engineering analysis and make recommendations for foundation type, design and construction
- prepare the geotechnical engineering sections of this report.

The environmental component of our work scope, which was integrated with our geotechnical services, included:

- plan and monitor a soil pre-characterization (chemical testing) program to assess options for onsite reuse and off-site disposition of excavated soils
- perform chemical testing on representative soil samples
- prepare the environmental section of this report.

1.3 Elevation Datum

Elevations in this report are referenced to the North American Vertical Datum of 1988 (NAVD88).

1.4 Limitations

This report has been prepared for specific application to the project. In the event that changes in the nature, design, or location of structures are planned, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing. The analyses and recommendations submitted in this report are based in part upon data obtained from referenced explorations. The nature and extent of variations between the explorations may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report.

The planned construction will be supported on or in the soil or rock at the site and below-grade structures will be close to or penetrate the design groundwater level for the project. Any recommendations presented in this report for foundation and floor drainage, moisture protection and waterproofing address only the conventional geotechnical engineering related aspects of design and construction and are not intended to provide an environment that would prohibit infestation of mold or other biological pollutants. Our work scope did not include the development of criteria or procedures to minimize the risk of mold or other biological pollutant infestations in or near any structure.

This report is prepared for the exclusive use of the project team in connection with the environmental and geotechnical aspects of the project.

2. PROPOSED CONSTRUCTION

The project consists of several new structures and utilities at the East Shore Water Pollution Abatement Facility (ESWPAF) as shown on Figure 2. Proposed construction includes:

- Methanol Storage Building
 Electric Building
 Standby Emergency Power Generators
 Distribution Conduits
 Odor Control Scrubber Pad
 Sludge Storage Tank
- Buffering (sound wall or soil berm)

Details of proposed structures are provided on the Structure Summary Sheets in Appendix D.

3. EXISTING STRUCTURES

There are several structures at the plant near the proposed construction including:

- Administration Building (Headworks)
- Gravity Thickeners and Sludge Storage Tank
- Inlet Works
- Primary Clarifiers
- Odor Control Scrubbers
- Aeration Basins
- Chlorine Contact Tanks
- Yard Piping

We reviewed drawings associated with previous additions and upgrades at the ESWPAF, including:

- "Sewage Disposal Project for East Shore District, Contract No. 2 Settling and Digestion Tanks

 Control Chamber" drawings prepared by the City of New Haven Connecticut Bureau of
 Engineering, dated March 1949.
- "East Shore Water Pollution Abatement Project, Contract No. 1 Wastewater Treatment Plant" drawings prepared by Camp Dresser & McKee, dated July 1975.
- "Boulevard-East Street Water Pollution Abatement Project, East Shore S.T.P. Modifications" drawings prepared by CE Maguire, Inc., dated November 1985.
- "Odor Control Improvements, East Shore Water Pollution Abatement Facility" drawings prepared by CH2M HILL, dated November 1996.

General information about the structures that are near the proposed upgrades is discussed on the Structure Summary Sheets in Appendix D.

4. FIELD AND LABORATORY INVESTIGATIONS

4.1 Site Conditions

Locations of the proposed structures are shown on Figure 2. Site conditions consist of wastewater treatment plant structures surrounded by paved and gravel surfaces, grass and landscaped areas. There are woods and wetlands to the east of the primary settling tanks. Ground surface elevations range from approximately El. 12 at the proposed storage tank, approximately El. 14 near the proposed odor control, emergency generators, and electric building, and approximately El. 11 to 12 at the proposed methanol building.

Beyond the eastern fence line of the main plant, grade slopes down to a wetland area at approximately El. 6 and is relatively level at El. 6 to 7 in the area of the proposed buffer, which is planned further east of the fence line.

4.2 Recent Test Borings

The test boring program consisting of eight borings (HA-1 through HA-7 and HA-9) which were drilled between 18 and 21 May 2012 by General Borings, Inc., of Prospect, Connecticut. Boring HA-8 was not performed at the request of GNHWPCA. The borings were advanced using hollow stem augers to depths of 21.7 to 42 ft below ground surface. Standard penetration tests were performed at maximum 5 ft intervals. Six of the borings were terminated at refusal on bedrock at 21.7 to 42 ft below ground surface. Test boring locations are shown on Figure 2 and logs are presented in Appendix A.

4.3 **Previous Test Borings**

Test borings and test pits were performed for previous projects at the site in 1972. Test boring locations are shown on Figure 2 and the logs are presented in Appendix A.

4.4 Subsurface Conditions

Subsurface conditions consist of fill, organic deposits, and glacial deltaic sand and silt over sandstone bedrock at a depth of about 18 to 55 ft. Soils encountered are described below in order of increasing depth below ground surface. Strata thicknesses are summarized on Table I.

Strata Thickness (ft)	Generalized Description
3.5 to 19.5	FILL - Loose to dense brown, dark brown, gray brown, silty SAND with varying amounts of gravel, coal, asphalt, slag, and brick fragments. Portions of the fill consist of soft gray SILT with varying amounts of clay, organics and shells.
2 to 5	ORGANIC DEPOSITS – Very soft to soft brown and black interbedded SILT and CLAY with organics or medium dense brown medium to fine SAND little silt with organics. An approximately 1 ft thick layer of stiff brown fibrous PEAT was encountered at 13 ft at HA-2.

13 to 45 (GLACIODELTAIC SAND AND SILT) – Medium dense brown medium to fine SAND, little silt, trace gravel with zones of fine sandy SILT, trace clay.

SANDSTONE BEDROCK – The upper few feet of bedrock is weathered in some areas.

Detailed soil and rock conditions are included on the test boring and test pit logs in Appendix A.

4.5 Groundwater Conditions

Groundwater level in the borings generally ranged from about El. 10.2 to -4.0, about 5 to 20 ft below the ground surface. Groundwater levels at test borings are summarized in Table I. An observation well was installed at HA-5. The installation report and water level data are included in Appendix B. Water levels are expected to be higher in the spring and during times of above normal precipitation. Groundwater levels will fluctuate with season, precipitation, and nearby construction activity.

We understand the 100 year flood is El. 10.

4.6 Corrosion Testing

SJB Services of Henrietta, New York and Complete Environmental Testing of Stratford, Connecticut, tested for corrosivity parameters in soil samples collected from borings. Three composite samples were submitted for testing. Testing parameters included DIPRA analyses (pH, electrical resistivity, reactive sulfide, and redox), water soluble sulfates (EPA 300), and chloride ion (EPA 300). Test results are provided in Appendix C.

5. GEOTECHNICAL ENGINEERING RECOMMENDATIONS

Our recommendations for foundation design and construction are presented for each proposed structure in Appendix D. The basis for the recommendation is a maximum allowable total settlement of the new structures of 1 in., and maximum allowable differential settlement between the new and existing structures of $\frac{1}{2}$ in.

The existing fill and organic soils are not suitable to support the structures on spread footings or mat foundations. Accordingly, we recommend the structures be supported on spread footings bearing on natural sand deposits or on compacted granular fill after overexcavation of unsuitable fill and organic soil. To avoid overexcavation, the existing soils could be improved with aggregate piers or foundations could be supported on driven timber piles.

Assuming the overexcavated soils can be reused on site, we anticipate overexcavation and replacement with compacted granular fill will be the least expensive option where the thickness of unsuitable material is 10 ft or less. Where the thickness of unsuitable material is greater than 10 ft, we believe timber piles or footings on aggregate pier improved soil will be least expensive. If soils will be disposed of off-site, there will be premium costs because they are typically environmentally impacted, and this will make the timber pile or aggregate pier options more cost effective at shallower overexcavation depths. Also, if the timber piles or Aggregate Piers are planned in certain areas, they will be more cost effective in the other areas due to the economy of scale and spreading out of the mobilization costs.

5.1 Foundation Type

Based on discussions with CH2M Hill, we understand that excess excavated soil will need to be disposed of offsite. Accordingly, we anticipate the following foundation types for the various structures:

- Methanol Storage Building Timber piles or Aggregate Piers
 Closest one to our proposed
 Process Air Compresor
- Electric Building Timber piles or Aggregate Piers
- Standby Emergency Power Generators Timber piles or Aggregate Piers
- Odor Control Structure– Timber piles or Aggregate Piers
- Sludge Storage Tank Spread footings or mat.

5.2 Spread Footing or Mat Foundations

Refer to the Structure Summary Sheets in Appendix D for specific design recommendations. General recommendations follow.

- Allowable footing bearing pressures may be increased by 1/3 for transient loading conditions.
- Design for a minimum footing width of 18 in.
- Remove unsuitable material below footings and replace with compacted granular fill to the limits shown on Figure 4.

- Design footings to bear a minimum 3.5 ft below proposed exterior grade, for frost protection.
- Locate footings to bear below a 2H:1V slope from the bottom of new or existing utility pipes, pits, or other planned localized excavations.
- Where practical, locate new footings to bear at the same level as existing adjacent footings.
- Where new footings will be at a higher level than existing footings to remain, locate new footings below a 2H:1V zone extending upward from existing footings.
- Where new footings are planned at a level lower than existing footings, locate new footings above a 2H:1V zone extending downward from existing footings or provide excavation support or underpinning of existing footings.

5.3 Aggregate Piers

Aggregate Piers are installed by a specialty contractor by vibrating or driving a probe into the soil to the desired depth of improvement, then compacting processed aggregate within the hole in lifts using the probe. The final product is a dense aggregate pier, surrounded by densified soil. The specialty contractor will perform the actual design, which will be confirmed with a load test during construction. Another variety of Aggregate Pier consists of using augers and a beveled tamper, but this system does not appear feasible here due to the high groundwater level.

Installation of aggregate piers will generate ground vibrations. The ground improvement specification should limit maximum allowable peak particle velocities generated at adjacent structures and utilities, and vibrations should be monitored during construction.

5.4 Piles

Driven timber piles are another option. Design criteria are as follows:

- Compression Capacity: Total = 25 tons
 Downdrag = 5 tons
 Net = 20 tons
- Uplift Capacity: 10 kips soil resistance (structural engineer to check connection and tensile strength of the wood)
- Lateral Capacity: 1.2 kip, free head, ¼ in. deflection.

The group lateral pile capacity is as follows: $P_T = (n)(P_i)C_r$

 $\begin{array}{l} P_T = \mbox{Total Lateral Capacity of Cap} \\ n = \mbox{Number of Piles in Cap} \\ P_i = \mbox{Lateral Capacity of Individual Pile} \\ Cr = \mbox{Group Capacity Reduction Factor (see below)} \end{array}$

Number of	Group Capacity Reduction Factor								
Diles in Con	Perpendicular to Long	Parallel to Long							
r nes ni Cap	Dimension of Pile Cap	Dimension of Pile Cap							
2	1.0	0.72							
3	0.81	0.81							
4	0.72	0.72							
5	0.66	0.66							
6	0.72	0.63							
7	0.66	0.60							
8	0.65	0.60							

Spacing: Minimum center-to-center pile spacing = 30 in.

If possible, the piles should be located at least 5 ft away from existing active pipes (that are in good condition) to reduce risk of damaging the utility during pile driving. If that is not possible or it is concluded that the risk of damage to the pipe is high because of its condition, drilled piles can be used close to the existing pipes. Assume 6.625 in. dia. drilled piles with a capacity of 40 tons (could go higher if there is a pile load test) with 5 ft long rock socket.

5.5 Hydrostatic Uplift

Tanks should be designed to resist hydrostatic uplift pressure when the tank is empty (such as may be the condition during maintenance). Uplift resistance may be provided by the following:

- Dead weight of the structure
- The weight of soil above the projection of the mat foundation
- Tiedown anchors
- The uplift capacity of the piles.

5.5.1 Seismic Site Class

The seismic design criteria are provided in Appendix D.

5.5.2 Floor Slabs

Floor slab recommendations for individual structures are provided in Appendix D. General recommendations are as follows:

- Backfill excavations below slabs-on-grade, such as those for foundations and utilities, with compacted granular fill.
- Existing topsoil, fill, and organic deposits should be removed below proposed slabs-ongrade (practically, much of it will be removed during the footing overexcavation). For Aggregate Pier option, overexcavation will not be required provided the aggregate piers are designed to support the slab. For structural slabs (such as would be used for the Pile Foundation option), overexcavation will not be required.

5.6 Corrosion

The laboratory test results indicate that the soils at HA-2 are corrosive to buried steel. The corrosive soils consist of the existing fill. Sulfate concentrations are relatively low, thus the exposure to sulfate attack on concrete is mild, and Type I cement may be used in the concrete.

5.7 Backfill Materials

5.7.1 Compacted Granular Fill

Compacted granular fill is recommended to backfill below foundation, and slabs, and against tank walls.

Granular fill should be placed in maximum 12-in. thick lifts and compacted to at least 95 percent of the maximum dry density determined by ASTM D1557. In confined areas, use maximum 6-in. thick lifts. Compaction equipment in confined areas may consist of hand-guided vibratory equipment or mechanical tampers.

Granular fill should consist of primarily of sand and gravel, and shall be free of organic material, environmentally-impacted material, snow, ice, frozen soil, or other unsuitable material, and be well-graded within the following limits:

U.S. Standard	Percent Finer
Sieve Size	by Weight
6 in. *	100
No. 4	30-80
No. 40	10-50
No. 200	0-8

* use a maximum 3-in. size for fill placed within 6 in. of concrete slabs or footings

5.7.2 Common Fill

Common fill may be used for raising grades below pavement and sidewalk sections and landscaped areas. Common fill should consist of mineral soil, free of clay, organic soils, deleterious material, and particles larger than 10 in. in size, which can be spread and compacted.

5.7.3 Crushed Stone

Crushed stone may be used as a bearing pad for foundation below groundwater level. It should consist of No. 6 crushed stone (3/4-in. size) in accordance with Connecticut Department of Transportation Form 816, M.01.01. Crushed stone should be separated from surrounding soil using a geotextile filter.

5.7.4 Geotextile Filter

A filtration-type geotextile is recommended between crushed stone and surrounding soil. It should consist of Mirafi Construction Products 140N, ConTech C46NW, Propex Geotex 401, or equivalent.

5.8 Compaction

Recommended compaction requirements are as follow:

Location	Minimum Compaction Requirements
Beneath and around footings, under slabs	95%
Parking, roadways and sidewalks	92% up to 3 ft below finished grade 95% in the upper 3 ft
Landscaped areas	90%

Minimum compaction requirements refer to percentages of the maximum dry density determined in accordance with ASTM D1557C.

5.9 Use of On-Site Excavated soil

Excavations will be in existing fill, organic soils and glacial deltaic sand. The majority of the fill and organic soils will only be suitable for reuse as common fill, and even then will be difficult to compact when wet. Although they may not meet the specification, the more granular portions of the existing fill and the glacial deltaic sand may be used as compacted granular fill. Most of this more granular soil will be generated at the sludge handling facility. Some segregation will be required to separate the soils that are suitable from those that are not.

Excess soil which cannot be re-used onsite will be disposed off site at approved disposal facilities, most likely a landfill. See Section 6.3.2 for environmental comments relative to re-use of soils.

5.10 Site Settlement

Some site settlement will occur from grade raise fill from consolidation of the fill and organic soils. We don't think this will be a concern because the only proposed grade raise is beneath the structures, where the fill and organics will be overexcavated or improved with aggregate piers, thus will not settle appreciably. If onsite filling is planned, such as to dispose of excess unsuitable soil, settlement of the proposed fill area should be reviewed.

5.11 Utilities

Locations of new utilities are not known at the time of this report. We anticipate that underground utilities may be supported with ordinary bedding materials, with an additional 12 in. of compacted granular fill beneath utilities greater than 24 in. in dia. Portions of the on-site fill are corrosive to buried steel.

6. ENVIRONMENTAL CONSIDERATIONS

Haley & Aldrich performed a soil pre-characterization (chemical testing) program to assess options for on-site reuse and off-site disposition of excavated soils.

6.1 Laboratory Testing

Ten composite soil samples (8 Fill and 2 Fill/Natural) were collected from borings HA-1, HA-2, HA-3, HA-4, HA-5, and HA-6/HA-7 and submitted to Complete Environmental Testing, Stratford, Connecticut (a Connecticut state-certified laboratory) for laboratory chemical testing. Each soil sample was analyzed for the following as applicable:

- RCRA 8 metals (and TCLP as necessary);
- Polychlorinated Biphenyls (PCBs) by EPA Method 8082;
- Connecticut Extractable Total Petroleum Hydrocarbons (CT ETPH);
- Volatile Organic Compounds (VOCs) by EPA Method 8260/5035;
- Semi-volatile Organic Compounds (SVOCs) by EPA Method 8270; and
- Waste characteristic parameters (by Method SW 846) Reactive Sulfide and Cyanide, Flashpoint, and pH.

The results of the soil testing are summarized on Table II. The table typically only includes those compounds detected in at least one sample. Copies of the laboratory reports and chain-of-custody documentation for this soil testing are provided in Appendix E.

6.2 Results of Chemical Testing

Results of chemical testing indicate that some Fill and Fill/Natural soils (i.e., HA1-S1, HA2-S2, HA5-S1 and HA5-S2) contain compounds at levels exceeding comparable Connecticut Department of Energy and Environmental Protection (CTDEEP) Pollutant Mobility Criteria (PMC) for areas with groundwater classified as "GB" (GB PMC) by the CTDEEP and exceed the CTDEEP Industrial / Commercial Direct Exposure Criteria. Refer to Table II. Other areas tested did not contain contaminants at concentrations exceeding comparable CTDEEP criteria.

Soil sample test results were also compared to Massachusetts Department of Environmental Protection (MADEP) landfill disposal criteria. The samples tested do not exceed MADEP landfill disposal criteria. In addition, the samples did not exceed typical asphalt batching facility limits. However, much of the excavated soil will not be geotechnically suitable for use in an asphalt mix (organics, shells, etc.) and may be rejected by asphalt batching facilities.

6.3 **Recommendations**

6.3.1 Permitting

State and local permits may be required in the event that certain activities occur on-site as follows:

- In the event excavated soils are stockpiled (whether on-site or off-site), a CTDEEP General Permit for Contaminated Soil and/or Sediment Management (Staging and Transfer) may be required.
- Municipalities may require special permits for proposed construction activities. Some municipalities require special permits for stockpiling and/or earthwork activities (e.g., Special Permit by the City of West Haven).
- If significant amounts of solid waste are encountered, it may be necessary to obtain a Disruption Permit from the CTDEEP for managing and disposing of solid waste (e.g., some types of buried demolition debris).
- If construction dewatering activities include the discharge of contaminated groundwater, such as the contaminated groundwater identified in HA5/OW, and/or storm water, then a CTDEEP General Permit will be required. Assuming that contaminated dewatering effluent is directed to the on-site wastewater treatment facility, then a "General Permit for the Discharge of Groundwater Remediation Wastewater to a Sanitary Sewer" would be required.

6.3.2 Soil Reuse and Disposal Options

The soil samples tested from HA-1 below 5 ft, HA-2 above 5 ft, and HA6/7 would be classified buy CTDEEP as "clean fill." Clean fill is suitable for reuse on site without restriction provided the material meets the geotechnical requirements for granular fill.

The remaining soil samples tested detected contaminants above natural background conditions and would be classified by CTDEEP as either "polluted soil/fill" (those samples collected from HA-3 and HA-4) or "contaminated soil/fill" (those collected from HA-1 (above 5 ft), HA-2 (below 5 ft), and HA-5).

Polluted Soil/Fill

Test results indicate that the "polluted soil/fill" that will be excavated meet CTDEEP criteria for on-site beneficial reuse.

Applicable CTDEEP guidelines for on-site polluted soil reuse include the following:

- A map showing the location and depth of soil placement is maintained by the GNHWPCA;
- Soil is not placed below the water table; and
- Soil is not placed in an area subject to erosion.

Alternatively, this material could be used to create the site buffering "berm" on the eastern side of the property. Details for this option are discussed in Appendix D.

Contaminated Soil/Fill

We recommend that "contaminated soils" be taken off-site for disposal at a MADEP landfill. Alternatively, the property owner could decide to reuse this material on-site to backfill excavations made for foundations up to within 4 ft of landscaped areas and 2 ft of paved areas. CTDEEP guidelines for on-site polluted soil reuse outlined above would also apply.

6.3.3 Additional Chemical Testing

Chemical testing to date has been conducted to characterize soils for possible disposal at a MADEP-permitted landfill, for planning and budgeting purposes. Due to typical landfill volume testing requirements, additional soil testing will be required if off-site disposal is planned.

7. CONSTRUCTION CONSIDERATIONS

7.1 General

This section provides comments related to foundation construction, earthwork, and other geotechnical aspects of the project. It will aid those responsible for the preparation of contract plans and specifications and those involved with construction monitoring. Contractors must evaluate potential construction problems on the basis of their own knowledge and experience in the area and on the basis of similar localities, taking into account their own proposed construction methods and procedures.

7.2 Excavation Support and Dewatering

Conventional heavy construction equipment appears practical for excavation of overburden soils. Excavation geometry should conform to OSHA excavation regulations contained in 29 CFR Part 1926, latest revision. Temporary dewatered soil slopes no greater than 1.5H:1V appear appropriate, but should be confirmed during construction based on conditions at the time of excavation. Temporary excavation support will be required to support existing utilities, and possibly to maintain space for construction and plant operations. We anticipate temporary steel sheet piling will typically be the choice. Open cuts may be considered in some areas.

Groundwater will be encountered for deeper excavations and where overexcavation is planned. We believe dewatering may be accomplished by pumping from sumps and drainage trenches. Storm water runoff should be directed away from excavations, and pumped away if it accumulates in the excavation. An initial lift of crushed stone surrounded by a geotextile filter may be used for backfilling below groundwater level.

7.3 **Protection and Monitoring of Existing Structures**

Existing structures and utilities within 50 ft (aggregate pier or pile option) of the proposed construction should be monitored for horizontal and vertical movement. The excavation support system should also be monitored. Monitoring points should be spaced at 25 ft. Existing structures and utilities should be monitored for vibrations when installing aggregate piers or driving piles within 50 ft.

The existing utilities that are close to or below the footprint of the proposed structures will need to be accurately located before installing Aggregate Piers or piles.

7.4 Construction Monitoring

The foundation recommendations contained in this report are based on the known and predictable behavior of a properly engineered and constructed foundation. It is recommended that personnel qualified by training and experience provide monitoring during the foundation phases of the work. This monitoring program should include:

- overexcavation of unsuitable soils
- placement and compaction of granular fill
- preparation of bearing surfaces for foundations and slabs

- installation of aggregate piers or timber piles
- installation of excavation support systems and underpinning
- installation of dewatering systems
- Instrumentation data review.

TABLE I

SUMMARY OF SUBSURFACE EXPLORATIONS WET WEATHER CAPACITY IMPROVEMENTS - PHASE I EAST SHORE WATER POLLUTION ABATEMENT FACILITY NEW HAVEN, CONNECTICUT

		APPROXIMATE GROUND	TOTAL		THICK	NESS OF S	STRATA (FT)		TOP OF NA	ATURAL SAND (FT)	WATE	R LEVEL FT)	TOP OF PROBABLE BEDROCK (FT)		
BORING NO	•	SURFACE ELEVATION	DEPTH (FT)	BITUMINOUS CONCRETE	TOPSOIL	FILL	ORGANIC DEPOSITS	GLACIODELTAIC DEPOSITS	WEATHERED BEDROCK	DEPTH	ELEVATION	DEPTH	ELEVATION	DEPTH	ELEVATION
RECENT BO	RING	S													
HA1			32.0		0.4	19.1		> 12.5		19.5	-8.4	12.0	-0.9		
HA2	R	14.2	39.1			8.0	5.0	26.1		13.0	1.2	4.0	10.2	38.0	-23.8
HA3	R	16.0	42.0			8.0	5.0	29.0		13.0	3.0	6.0	10.0	42.0	-26.0
HA4		15.5	27.0			19.5		> 7.5		19.5	-4.0	20.0	-4.5		
HA5-OW	R	12.1	24.0	0.5		9.5		14.5		10.0	2.1	10.1	2.0	24.0	-11.9
HA6	R	6.0	21.7		1.5	3.5		13.0	3.7	5.0	1.0	4.5	1.5	18.0	-12.0
HA7	R	7.0	21.9		1.5	3.5		13.0	3.9	5.0	2.0	3.4	3.6	18.0	-11.0
HA8								BORING NOT PER	FORMED						
HA9	R	13.4	27.5		0.6	13.9		13.0		14.5	-1.1	12.0	1.4	27.5	-14.1
PREVIOUS B	BORIN	IGS													
B1	R	12.9	55.7			11.0		44.7		11.0	1.9	15.0	-2.1	55.7	-42.7
B2	R	10.9	45.7			10.0	0.8	44.9		10.8	0.1			45.7	-34.7
B27	С	5.7	33.0			6.0		19.0		6.0	-0.3	4.0	1.7	25.0	-19.3
B38	R	16.5	31.0			14.0		17.0		14.0	2.5	14.0	2.5	31.0	-14.5
B39	R	21.1	39.0			15.0	2.0	22.0		17.0	4.1	15.0	6.1	39.0	-17.9
B40	R	21.4	36.5			11.0	2.0	23.5		13.0	8.4	13.0	8.4	36.5	-15.1
B41	С	21.9	45.5			19.0		26.5		19.0	2.9	18.0	3.9	40.5	-18.6
B42	С	18.9	57.0			18.0		39.0		18.0	0.9	18.0	0.9	47.0	-28.1
PREVIOUS T	EST I	PITS													
TP1		4.9	7.0			3.5		> 3.5		3.5	1.4	0.5	0.5		
TP10		13.6	10.0			> 10						3.5	0.5		
TP12		17.9	10.0			> 10						9.0	0.5		
TP14		12.9	10.0			> 10						8.0	0.5		
TP16		12.4	10.0			8.0	> 2								

NOTES:

1. ">" indicates greater than

"<" indicates less than

OW indicates observation well

(R) indicates boring terminated upon auger or split spoon refusal

(C) indicates rock core was obtained at boring

3. Elevations are in feet and reference NAVD 88 Datum. Elevations on previous logs were converted from NGVD to NAVD by subtracting 1.1 ft.

4. Elevations of explorations were estimated from topographic contours on Figure 2.

5. Groundwater levels were measured shortly after drilling and may not represent stabilized groundwater levels except at HA5-OW.

6. Refer to test boring logs for detailed soil and rock descriptions.

TABLE II

SUMMARY OF LABORATORY ANALYTICAL DATA FOR SOIL

GREATER NEW HAVEN WATER POLLUTION CONTROL AUTHORITY EAST SHORE WATER POLLUTION ABATEMENT FACILITY UPGRADES NEW HAVEN, CONNECTICUT

			Massachusetts			Sample ID:	HA1-S1 0-5ft	HA1-S2 5-19ft	HA2-S1 0-5ft	HA2-S2 5-14ft	HA3-S1 0-5ft	HA3-S2 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft	HA5-S2 5-10ft	HA617-S1 0-5ft
	CIDER	- KOKS	Landfill Criteria		Asphalt S	Sample Date:	5/21/2012	5/21/2012	5/18/2012	5/18/2012	5/18/2012	5/18/2012	5/21/2012	5/18/2012	5/18/2012	5/21/2012
PARAMETER	Industrial /	GB			Batching	Lab ID:	AF03615	AF03616	AF03617	AF03618	AF03619	AF03620	AF03621	AF03622	AF03623	AF03598
	Commercial Direct	Pollutant Mobility	Lined	Unlined	Limits	Soil Type:	FILL	FILL	FILL	FILL/NATURAL	FILL	FILL/NATURAL	FILL	FILL	FILL	FILL
	Exposure Criteria	Criteria	Landfill	Landfill		Soil Depth:	0 to 5	5 to 19	0 to 5	5 to 14	0 to 5	5 to 12	0 to 19	0 to 5	5 to 10	0 to 5
	·															
Volatile Organics (mg/kg)																
Napthalene	-	56	-	-	-		ND(0.005)	ND(0.004)	ND(0.004)	0.13	ND(0.005)	ND(0.005)	ND(0.005)	0.0093	ND(0.004)	ND(0.004)
SUM	-	-	10	4	500					0.13				0.0093		
SUM Total Chlorinated	-	-	-	-	5											
Semivolatile Organics (mg/kg)																
Acenaphthene	2500	84	-	-	-		ND(0.358)	ND(0.341)	ND(0.327)	1.7	ND(0.353)	ND(0.435)	ND(0.334)	ND(0.33)	ND(0.338)	ND(0.341)
Acenaphthylene	2500	84	-	-	-		0.43	ND(0.341)	ND(0.327)	0.56	ND(0.353)	ND(0.435)	ND(0.334)	0.8	0.57	ND(0.341)
Aniline	-	_	-	-	-		ND(0.358)	ND(0.341)	ND(0.327)	ND(0.455)	ND(0.353)	ND(0.435)	ND(0.334)	ND(0.33)	ND(0.338)	ND(0.341)
Anthracene	2500	400	-	-	-		0.37	ND(0.341)	ND(0.327)	22	ND(0.353)	ND(0.435)	ND(0.334)	11	1	ND(0.341)
Benzo(a)anthracene	7.8	1	_	_	_		11	ND(0.341)	ND(0.327)	27	0.38	ND(0.435)	0.47	31	2	ND(0.341)
Benzo(a)pyrene	1	1		_	_		13	ND(0.341)	ND(0.327)	23	ND(0 353)	ND(0.435)	ND(0 334)	2.6	16	ND(0.341)
Benzo(b)fluoranthene	7.8	1	_	_	_		1.0	ND(0.341)	ND(0.327)	2.0	0.48	0.5	0.5	4.3	21	ND(0.341)
Benzo(gbi)pon/lono	2500	12					0.5	ND(0.341)	ND(0.327)	1.7	0.40	0.0 ND(0.435)	0.0 ND(0.334)	0.86	0.38	ND(0.341)
Benzo(k)fluorenthene	2300	42	-	-	-		0.5	ND(0.341)	ND(0.327)	1.7	0.30 ND(0.252)	ND(0.435)	ND(0.334)	1.50	0.30	ND(0.341)
Berizo(k)iluorailitierie	70	1	-	-	-		0.00	ND(0.341)	ND(0.327)	0.94	ND(0.353)	ND(0.435)	ND(0.334)	0.24	0.04 ND(0.229)	ND(0.341)
Carbazole	290		-	-	-		ND(0.356)	ND(0.341)	ND(0.327)	0.64	ND(0.353)	ND(0.435)	ND(0.334)	0.34	ND(0.336)	ND(0.341)
Chrysene Dia but de the late	780	1	-	-	-		1.3	ND(0.341)	ND(0.327)	2.4 ND(0.455)	ND(0.353)	ND(0.435)	0.41	Z.3	1.0	ND(0.341)
Di-n-butyiphthalate	2500	140	-	-	-		ND(0.358)	ND(0.341)	ND(0.327)	ND(0.455)	ND(0.353)	ND(0.435)	ND(0.334)	ND(0.33)	ND(0.338)	ND(0.341)
Di-n-octylphtnalate	2500	20	-	-	-		ND(0.358)	ND(0.341)	ND(0.327)	ND(0.455)	ND(0.353)	ND(0.435)	ND(0.334)	ND(0.33)	ND(0.338)	ND(0.341)
Dibenzo(a,h)anthracene	1	1	-	-	-		ND(0.358)	ND(0.341)	ND(0.327)	0.47	ND(0.353)	ND(0.435)	ND(0.334)	ND(0.33)	ND(0.338)	ND(0.341)
Dibenzofuran	2500	5.6	-	-	-		ND(0.358)	ND(0.341)	ND(0.327)	1.4	ND(0.353)	ND(0.435)	ND(0.334)	0.48	0.4	ND(0.341)
Fluoranthene	2500	56	-	-	-		2	ND(0.341)	ND(0.327)	5.4	0.59	0.56	1	5.2	3.5	ND(0.341)
Fluorene	2500	56	-	-	-		ND(0.358)	ND(0.341)	ND(0.327)	2.3	ND(0.353)	ND(0.435)	ND(0.334)	0.68	1	ND(0.341)
Indeno(1,2,3-cd)Pyrene	7.8	1	-	-	-		0.51	ND(0.341)	ND(0.327)	1.5	ND(0.353)	ND(0.435)	ND(0.334)	0.85	0.35	ND(0.341)
Naphthalene	2500	56	-	-	-		ND(0.358)	ND(0.341)	ND(0.327)	2.2	ND(0.353)	ND(0.435)	ND(0.334)	0.78	0.61	ND(0.341)
Phenanthrene	2500	40	-	-	-		0.66	ND(0.341)	ND(0.327)	6.7	0.42	ND(0.435)	0.5	3.6	4.6	ND(0.341)
Pyrene	2500	40	-	-	-		1.7	ND(0.341)	ND(0.327)	3.8	0.51	0.53	0.75	4.4	3.5	ND(0.341)
SUM		-	100	100			11.92			42.17	2.76	1.59	3.63	32.89	24.05	
Polychlorinated Binhenyls (mg/kg)																
SUM	-	-	2	2	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Metals (mg/kg)																
Lead	1000	-	2000	-	1000		200	9.7	8.6	57	94	68	21	30	31	14
Selenium	10000	-	-	-	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND(1.5)
Cadmium	1000	-	80	-	30		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND(1)
Chromium	100	-	1000	-	500		21	11	12	46	50	42	15	12	19	10
Arsenic	10	-	40	-	30		4.7	ND	2.4	8.1	2.8	8.4	2.5	2.7	2.9	1.6
Barium	140000	-	-	-	-		55	18	24	58	44	60	46	32	43	34
Silver	10000	-	-	-	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	610	-	10	-	10		0.55	ND	ND	0.86	ND	0.94	ND	ND	ND	ND(0.3)
TCLP Lead (mg/l)	-	0.15	5	5	5		0.33									
Extractable Petroleum Hydrocarbons (CTETPH) (mg/kg)	2500	2500	5000	2500	60000		ND(60)	ND(57)	ND(55)	ND(76)	280	ND(73)	ND(56)	890	240	ND(57)
Waste Characterization Parameters							. ,					. ,				. ,
На	-	-	2.5 to 12	2.5 to 12	2 to 12.5		7,28	7,06	8.37	8.07	7,69	8.08	8.12	8.5	8,23	5.42
Cvanide Reactive (mg/kg)	-	-	250	250	NR		ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
Sulfide Reactive (mg/kg)	-	-	500	500	NR		ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)
Ignitability (degree F)	-	-	NI	NI	NI		>200	>200	>200	>200	>200	>200	>200	>200	>200	>200

NOTES:

1. This table typically includes only those compounds detected on the dates indicated.

2. RSR criteria are listed in the same units as the analyte test result reported.

3. NI means not ignitable. NR means not reactive.

4. ND(0.01) means that the compound was not detected above laboratory detection limit. The number in parentheses is the detection limit.

5. - means not applicable or not analyzed.

6. mg/kg means milligrams per kilogram (ppm), mg/l means milligrams per liter.

7. Orange and bolded cells indicate concentration exceeds CT RSR Industrial / Commercial Direct Exposure Critiria (I/C DEC). I/C DEC takes precedence over GB PMC.

8. Blue and bolded cells indicate concentration exceeds CT RSR GB PMC.

9. Red and bolded cells indicate concentrtion exceeds MA Landfill criteria. This takes precedence over I/C DEC.

TABLE III

SUMMARY OF LABORATORY ANALYTICAL DATA FOR GROUNDWATER GREATER NEW HAVEN WATER POLLUTION CONTROL AUTHORITY EAST SHORE WATER POLLUTION ABATEMENT FACILITY UPGRADES NEW HAVEN, CONNECTICUT

CTDEP RSRs Sample ID: HA5-OW Groundwater Remediation Wastewater Industrial / Groundwater Remediation Wastewater Sample Date: 5/21/2012 PARAMETER Groundwater Surface Water Commericial Directly to Surface Water (A area) [7] to a Sanitary Sewer [8] AF03604 Lab ID: Protection Protection Volatilization Criteria Volatile Organics (ug/l) 1,2,4-Trimethylbenzene 350 15 ----Naphthalene 280 4.2 SUM 10 5000 19.2 ---Total Chlorinated 1000 ND Semivolatile Organics (ug/l) Benzo(a)anthracene 0.06 0.3 0.48 Benzo(a)pyrene 0.2 0.3 0.38 Benzo(b)fluoranthene 0.08 0.3 0.44 Indeno(1,2,3-cd)Pyrene 0.2 0.31 -Naphthalene 280 24 2.2 -Phenanthrene 200 0.077 0.54 SUM 5 500 3.87 ---Total PAHs 500 3.87 ---Polychlorinated Biphenyls (ug/l) SUM 0.1 1 ND ---Total Metals (ug/l) 0.021 100 ND(4) Arsenic 50 4 Barium 1000 5000 660 -Cadmium 5 6 10 100 ND(5) Chromium 110 342 1000 ND(50) 50 Lead 15 13 9.8 100 97 Mercurv 2 0.4 1 5 ND(0.4) Selenium 50 50 40 1000 ND(10) Silver 36 12 5 100 ND(12) Extractable Petroleum Hydrocarbons (CTETPH) (ug/l) 500 -5000 100000 ND(0.1) Waste Characterization Parameters pН ---

NOTES:

1. This table typically includes only those compounds detected on the dates indicated.

- 2. RSR criteria are listed in the same units as the analyte test result reported.
- 3. NI means not ignitable.
- ND(0.01) means that the compound was not detected above laboratory detection limit. The number in parentheses is the detection limit.
- 5. means not applicable or not analyzed.

6. ug/l means micrograms per liter (ppb).

- 7. General Permit limit for VOCs is for a surface wate classification as A, for total PAHs is 5 ug/l, and for metals dilution factor 10:1.
- 8. General Permit limit for total PAHs is 500 ug/l.

LEGEND

DESIGNATION AND APPROXIMATE LOCATION OF TEST BORINGS PERFORMED FOR HALEY & ALDRICH BY GENERAL BORINGS, INC. BETWEEN 18 AND 21 MAY 2012.

TP11

DESIGNATION AND APPROXIMATE LOCATION OF PREVIOUS TEST BORINGS.

DESIGNATION AND APPROXIMATE LOCATION OF PREVIOUS TEST PITS.

NOTES:

- 1. BASE PLAN IS DRAWING "GNHWPCA_SURVEY.DWG" PROVIDED BY CH2M HILL ON 2 MAY 2012.
- 2. LOCATIONS OF PREVIOUS BORINGS ARE BASED ON DRAWING C-3 "CONTRACT NO. 1 WASTEWATER TREATMENT PLANT, BORING PLAN" PREPARED BY CAMP DRESSER & MCKEE, INC. DATED JULY 1975.
 - 3. PROPOSED STRUCTURE LOCATIONS BASED ON DRAWING "05-C-XGAN1_407000-06-15-12" PREPARED BY CH2M HILL RECEIVED ON 19 JUNE 2012.

G:\37176_GNHWPCA ELEC INFRASTRUCTURE\000\CAD\FIGURE 3_37176-000- GRANFILL.DWG

APPENDIX A

Test Boring Logs

APPENDIX A (Part 1 of 2)

Recent Boring Logs

H A	HAL ALD	EY& RICI	T H			٦	EST	BORING REPOR	RT		Boring I	No.	HA1		
Pro Clie Cor	iject ent ntracto	We CH or Ger	t Wea 2M H neral I	ther Caj ILL Borings,	pacity Inc.	Impro	vements	- Ph.I GNHWPCA ESW	PAF, New Haven, CT	I	File No. 37 Sheet No. 1 Start	7176-00 of 2 21 May	00 7 2012		
			(Casing	Sam	pler	Barrel	Drilling Equipment	t and Procedures		Finish ² Driller R.	21 May Posa	2012		
Тур	е			HSA	S	5	-	Rig Make & Model: ATV	-mounted Mobile Drill I	B53	H&A Rep.	S. Br	ousseau		
Insid	de Dia	meter ((in.)	3 1/4	13	/8	-	Bit Type: Cutting Head Drill Mud: None			Elevation Datum	11.1 NAV	<mark>(est.)</mark> D88		
Han	nmer \	Neight	(lb)	-	14	0	-	Casing: - Hoist/Hammer: Cat-Head	1 Safety Hammer		Location S	ee Plar	1		
Han	nmer I	Fall (in.)	-	30	0	-	PID Make & Model: Non	ne						
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol			VISUAL-MANU/ (Density/consistenc structure, GEC	AL IDENTIFICATION AND cy, color, GROUP NAME, odor, moisture, optional de OLOGIC INTERPRETATION	DESCR max. par escription ON)	t IPTION rticle size*, ns				
- 0 -	1	S1	0.0	10.7	SM	T	- 1	ilter medium to fine CAND to	-TOPSOIL-	•	J., J.,				
-	2 4 4 5	14 S2	2.0	- 0.4	SM	Loos	e brown s um dense	ilty medium to fine SAND, trad	ce gravel, with few organi ne SAND, trace gravel, w	ics, no oo	dor, dry organics and sh	ells, no	odor, dry		
$\begin{bmatrix} 3 & 32 & 2.0 \\ 7 & 18 & 4.0 \\ 10 & & & \end{bmatrix}$															
	13								I dont see inde	ex lab te	esting				
								\leftarrow	geotechnical la	ab testir	ng reports				
- 5 -	3	S3	5.0		SM	Simi	Similar to S2								
-	33	14	7.0												
-	17	<u>S4</u>	7.0	4.1 7.0	SM	SM Very dense brown medium to fine SAND, little silt, with very few silty clay pockets, no odor, dry									
-	19 34	16	9.0												
	38														
- 10 -	13 17	S5 18	10.0 12.0	_	SM	Dens	e gray-bro	own medium to fine SAND, litt	tle silt, with very few orga	anics and	shells, no odo	r, moist			
Ē	22 27														
-	19	S6	12.0	-	SM	Very	dense gra	y-brown medium to fine SANI	medium to fine SAND, little silt, trace gravel, no odor, wet						
-	24 29 32	18	14.0												
-	52			_											
- 15 -				-3.4 14.5		+	·			·					
	45	S7 16	15.0 17.0		SM	Medi	um dense	brown medium to fine SAND,	little silt, with occasional	silty cla	y seam, no odo	or, wet			
Γ	8 9														
F	7		17.0	-	SM	Loos	e brown n	nedium to fine SAND, little silt	t, bottom 3 in. wood and g	gravel, n	o odor, wet				
F		14	19.0												
ŀ				-					-FILI -						
- 20 -				-8.4 19.5					-1 1LL-						
		Wa	ater Le	evel Dat	a	h /f+\		Sample ID	Well Diagram		Summa	ary			
D	ate	Time	Elap Time	sed (hr.) ^{Bo}	ottom	<u>π (π)</u> Bottom	U: Water	O - Open End Rod T - Thin Wall Tube	Screen	Overb	ourden (ft)	32.0	0		
5/2	21/12	1145	0	.0 1	asing 0.0	<u>or Hole</u> 14.0	12.0 ±	U - Undisturbed Sample	Filter Sand	Samp	bles 1	- 1S			
								S - Split Spoon Sample	Grout Grout Concrete	Borir	ng No.	F	IA1		
Field	d Tests	 5:		Dilatan	cy : R-	Rapid	S - Slow	N - None Plastic	ity: N - Nonplastic L - Lo	w_M-M	edium H - Higl	h			
*No	te: Ma	iximum į	particle	ioughn size (m	ess: ∟ ps)is c	- Low	M - Mediu	m H - High Dry Str	ength: N - None L - Low		um H-High	v - Very	y Hign		
		NO	nte: S	oli iden	uncati	on bas	<u>sea on vi</u>	sual-manual methods of th	ie usus as practiced b	by Haley	<u>/ & Aldrich, li</u>	1C.			

H&A-TEST BORING-07-1 HA-LIB07-1.GLB HA-TB+CORE+WELL-07-1.GDT \HAR\COMMON\37176_GNHWPCA ELEC INFRASTRUCTURE000\DATABASES\2012-0524 37176-000TB GINT 8.GPJ 31 Aug 12

ŀ	HALEY&					TEST BORING REPORT	Boring No.	HA1
P	۹LD ۱	KIC.	H	Î	-		Sheet No. 2 of	2
h (ft)	Blow	e No . (in.)	n (ft)	tum nge pth (ft	symbo			
Dept	Sampler per 6	Sampl & Rec	Sam Dept l	Strat Char Elev/De	nscs s	(Density/consistency, color, GROUP NAME, max. pa structure, odor, moisture, optional descriptio GEOLOGIC INTERPRETATION)	nticle size*, ns	
- 20 -	3 5	S9 12	20.0 22.0		SP	Medium dense gray-brown medium to fine SAND, trace silt, no odor, wet		
-	8 11					Note: 2 ft running sands after sample retrieved		
-				-				
_								
_				-12.9				
- 25 -				24.0		Note: Driff action indicates change at 24.0 ft		
- 25 -	3 4	S10 14	25.0 27.0		ML	Stiff red-brown fine sandy SILT with interbedded clay laminae, no odor, wet		
-	6 5							
-								
_								
_								
20								
- 30 -	4 4	S11 20	30.0 32.0		ML	Stiff red-brown fine sandy SILT, interbedded with clay laminae and fine sand pa	artings, no odor, wet	
_	7 7							
-				-20.9 32.0		Bottom of exploration at 32.0 ft		
						Note: Borehole backfilled with drill cuttings upon completion		
	NOTE:	Soil id	lentifica	tion base	d on vi	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No.	HA1

H A	HAL ALD	EY& RICI	υ Η			1	EST	BORING REPOR	Boring No. HA2						
Pro Clie Cor	ject ent ntracto	We CH or Gei	t Wea 2M H neral I	ther Caj ILL Borings,	pacity Inc.	Impro	ovements	- Ph.I GNHWPCA ESW	PAF, New Haven, CT	File No. 37176-000 Sheet No. 1 of 2 Start 18 May 2012					
			(Casing	Sam	oler	Barrel	Drilling Equipment	and Procedures	Finish 18 May 2012 Driller T. McGovern					
Тур	е			HSA	s		_	Rig Make & Model: Truc	k mounted Mobile Drill	B53 H&A Rep. S. Brousseau					
Insid	de Dia	meter ((in.)	3 1/4	13	/8	-	Bit Type: Cutting Head Drill Mud: None		Elevation 14.2 (est.)					
Han	nmer \	Neight	(lb)	-	14	0	-	Casing: -		Location See Plan					
Han	nmer I	Fall (in.)	-	30)	-	PID Make & Model: Nor	e Safety Hammer						
(Ħ)	slows J.	No.	(ff)	n e h (ft)	mbol			VISUAL-MANU	AL IDENTIFICATION AND	DESCRIPTION					
H H										max. particle size*, escriptions DN)					
- 0 - -	8 11 12 15	S1 18	0.0 2.0		SM	Med	ium dense	e brown medium to fine SAND, little silt, trace gravel, with very few coal fragments, no odor, dry							
-	16 18 11 12	S2 16	2.0 4.0	10.2	SM	Med	ium dense	brown SAND, little silt, trace	gray clay, with few shell f	ragments, no odor, dry					
- 5 -	3 2 2	S3 4	4.0 6.0	4.0	ML	Soft	oft gray SILT, trace medium to fine SAND, trace fine gravel, few organics, organic odor, wet								
-	2 1	S4 10	6.0 8.0	-	ML	Simi	lar to S3								
-	2 3								FILI						
-	4	S5	8.0	6.2 8.0	ML/	Very	soft inter	bedded SILT and CLAY, with	few organics, no odor, we	t					
-	1	24	10.0												
- 10 -	1	\$6	10.0	-	ML/	Simi	lar to S5.	except soft (bottom 4 in, fibrou	is neat)						
-	1 2 4	24	12.0		CL										
-	3	S7	12.0		PT	Med	ium dense	dark brown fibrous PEAT							
-	8	15	14.0	$1.2 \\ 13.0$	SM				-ORGANIC DEPOSITS-						
-	Ĺ			-		Med	ium dense	brown medium to fine SAND,	intrie siit, with common o	rganics, no odor, wet					
- 15 -	_			-				have and the stars							
-	5 13 20 22	S8 8	15.0 17.0		SM	Med	ium dense	brown medium to fine SAND,	little siit, no odor, wet						
-															
-															
<u>- 20 -</u>								-GL	ACIODELTAIC DEPOSI	TS					
<u> </u>		Wa	Elan	evel Data	a Dentl	ר (ft)	to:	Sample ID	Well Diagram	Summary					
D	ate	Time	Time	$(hr.) \frac{Bc}{of C}$	asing	Bottom of Hole	Water	T - Thin Wall Tube	Screen Filter Sand	Overburden (tt) 39.1 Rock Cored (ft) - Samples 13S					
S - Split Spoon Sample Grout Grout Concrete Bentonite Seal										Boring No. HA2					
Field	d Tests	:		Dilatano	cy:R- less:L	Rapid - Low	S - Slow M - Mediu	N - None Plastic m H - High Dry Str	ity: N - Nonplastic L - Lov rength: N - None L - Low	v M - Medium H - High M - Medium H - High V - Very High					
*No	te: Ma	iximum j No	particle	e size (m	ps) is d tificati	etermi on bas	ned by di sed on vi	rect observation within the lim	itations of sampler size. In USCS as practiced b	v Haley & Aldrich, Inc.					

H&A-TEST BORING-07-1 HA-LIB07-1,GLB HA-TB+CORE+WELL-07-1,GDT INHAR/COMMON/37176_GNHWPCA ELEC INFRASTRUCTURE000/DATABASES12012-0524 37176-000TB GINT 8,GPJ

H A	HAL LD	EY& RIC	H			TEST BORING REPORT	Boring No.HA2File No.37176-000Sheet No.2of2				
ft)	lows I.	No.	e ff)	(ff)	lodn	VISUAL-MANUAL IDENTIFICATION AND DESCR					
Depth (Sampler B per 6 in	Sample I & Rec. (Sampl Depth (Stratun Change Elev/Depth	USCS Syr	(Density/consistency, color, GROUP NAME, max. pa structure, odor, moisture, optional descriptio GEOLOGIC INTERPRETATION)	rticle size*, ns				
- 20 -	3 2	S9 22	20.0		SP	Very loose brown medium to fine SAND, trace silt, no odor, wet					
-	1 3										
- - 25 - -	14 22 20 28	S10 18	25.0 27.0	-10.8 25.0	SM	Dense red-brown silty fine SAND, no odor, wet					
- - 30 - -	2 4 6 5	\$11 20	30.0 32.0		ML/ CL	Medium stiff interbedded SILT and CLAY laminae, no odor, wet					
- - 35 - -	1 5 9 9	\$12 24	35.0 37.0	-21.3 35.5	ML/ <u>CL</u> SP	Similar to S11 Medium dense red-brown medium to fine SAND, trace silt, no odor, wet					
-				-23.8 38.0		Note: Drill action indicates change at 38.0 ft					
_	30011			-24.9		Note: USA referred at 20.1 ft					
	1 <u>00/1</u> "	\$13 1	39.0 39.1	39.1		Note: HSA refusal at 39.1 ft					
						-GLACIODELTAIC DEPOSITS- Bottom of exploration at 39.1 ft]			
						Note: Borehole backfilled with drill cuttings upon completion					
	NOTE:	Soil id	lentifica	tion base	d on v	isual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No.	HA2			

H A	IAL LD	EY& RICI	τ Η			٦	EST	BORING REPOR	RT	Boring No. HA3	
Pro Clie Cor	ject ent ntracto	We CH or Ger	t Wea 2M H neral	ather Cap HLL Borings,	pacity Inc.	Impro	vements	- Ph.I GNHWPCA ESWI	PAF, New Haven, CT	File No. 37176-000 Sheet No. 1 of 2 Start 18 May 2012	
Casing			Sam	pler	Barrel	Drilling Equipment and Procedures		Finish 18 May 2012 Driller R. Posa			
Тур	е			HSA	S		-	Rig Make & Model: ATV	-mounted Mobile Drill B5	3 H&A Rep. S. Brousseau	
Insid	de Dia	meter (in.)	3 1/4	13	/8	-	Bit Type: Cutting Head Drill Mud: None	Elevation 16.0 (est.)		
Han	nmer V	Veight	(lb)	-	14	0	-	Location See Plan			
Han	nmer F	all (in.)	-	30)	-	PID Make & Model: Non	e Safety Hammer		
(#)	slows 1.	.)	e (#	Le u	mbol			VISUAL-MANUA	AL IDENTIFICATION AND D	ESCRIPTION	
Depth	Depth (Sampler Bl per 6 in & Rec. (i Sample 1		Samp Depth	Stratur Chang Elev/Dept	USCS Sy			(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)			
- 0 - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			SM	Medi odor	Aedium dense brown to gray-brown silty medium to fine SAND, with gray clay layer, few asphalt fragments, no odor, dry					
-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	SM	Dens dry	e dark bro	wn silty medium to fine SAND, trace gravel, with few organics and asphalt fragments, organic odor,				
- 5 -	3 S3 4.0 5 10 6.0		_	SM	Medi	Medium dense red-brown SAND, little silt, trace gravel, with few shell fragments, no odor, dry					
-	7 S4 6.0			SM	Simi	lar to S3,	except loose, wet				
-	$- \begin{array}{c cccc} 6 & 14 & 8.0 \\ 3 & 3 & 3 \end{array}$										
-	-		8.0		-FILL-						
- - 10 - -	1 1 2 2	\$5 24	10.0 12.0	3.0	ML/ CL	Soft	gray black	x interbedded SILT and CLAY,	with few organics, no odor	, wet	
-				13.0		Note	: Drill act	ion indicates change at 13.0 ft			
-											
- 15 - - -	4 5 7 8	\$6 12	15.0 17.0	_	SP- SM	Medi	ium dense	medium to fine SAND, little si	ilt, no odor, wet		
-						-GLACIODELTAIC DEPOSITS-					
- 20 -		Wa	ter L	evel Data	a	•		Sample ID	Well Diagram	Summary	
D	ate	Time	Ela _l Time	psed e (hr.) ^{Bo} of C	Dept ottom asing	h (ft) f Bottom of Hole	to: Water	O - Open End Rod T - Thin Wall Tube	Image: Constraint of the second se	Overburden (ft) 42.0 Rock Cored (ft) -	
5/1	8/12	1200	0	0.0	4.0	8.0	6.0 ±	U - Undisturbed Sample S - Split Spoon Sample	Grout	Samples 11S	
Field	1 Tact-	•		Dilatan		Ranid	S - Slow	N - None Plactic	Bentonite Seal		
*No	te: Ma	ximum r	partic	Toughn e size (m	ess: L ps) is d	- Low	M - Mediu ned by di	m H - High Dry Str rect observation within the lim	ength: N - None L - Low N itations of sampler size.	1 - Medium H - High V - Very High	

H&A-TEST BORING-07-1 HA-LIB07-1,GLB HA-TB+CORE+WELL-07-1,GDT INHAR/COMMON/37176_GNHWPCA ELEC INFRASTRUCTURE000/DATABASES12012-0524 37176-000TB GINT 8,GPJ

4 S7 6 20 7 4 S7 6 20 7 4 S7 6 20 7 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.0 22.0 25.0 27.0 30.0 30.0 32.0	Stratum Change Elev/Depth (ft)	PR P	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) Medium dense brown medium to fine SAND, trace silt, no odor, wet Medium dense brown medium to fine SAND, trace silt, trace gravel, no odor, wet Note: 2 ft running sands after sample recovered, washed out		
4 S7 6 20 6 20 7 20 4 S8 13 20 21 20 22 20 23 S9 33 18 337 18	20.0 22.0 25.0 27.0 30.0 32.0		SP SP	Medium dense brown medium to fine SAND, trace silt, no odor, wet Medium dense brown medium to fine SAND, trace silt, trace gravel, no odor, wet Note: 2 ft running sands after sample recovered, washed out		
4 S8 13 20 15 21 21 28 S9 31 18 33 37	25.0 27.0 30.0 32.0		SP	Medium dense brown medium to fine SAND, trace silt, trace gravel, no odor, wet Note: 2 ft running sands after sample recovered, washed out		
28 S9 31 18 33 37	30.0					
28 S9 31 18 33 37	30.0	1		Note: Wash out 3 ft running sands before sampling at 30.0 ft		
	52.0		SM	Very dense red-brown silty fine SAND, no odor, wet		
10 S10 11 14 14 21	35.0 37.0				SM	Medium dense red-brown silty SAND, trace gravel (probable weathered sandstone), no odor, moist
0/1" S11 0	40.0 40.0	-26.0 42.0		No recovery Note: HSA refusal at 42.0 ft -GLACIODELTAIC DEPOSITS- Bottom of exploration at 42.0 ft		
				Note: Borehole backfilled with drill cuttings upon completion		
0.	/1" S11 0	/1" S11 40.0 0 40.0	71" S11 40.0 0 40.0 -26.0 42.0 -26.0 42.0		11" S11 0 40.0 40.0 -26.0 42.0 No recovery Note: HSA refusal at 42.0 ft -26.0 -26.0 Bottom of exploration at 42.0 ft Note: Borehole backfilled with drill cuttings upon completion Note: Borehole backfilled with drill cuttings upon completion	

H A	IAL LD	EY& RICI	₹ H			٦	TEST	BORING REPOR	RT	Boring No. HA4	
Pro Clie Cor	ject ent ntracto	We CH or Ger	File No. 37176-000 Sheet No. 1 of 2 Start 21 May 2012								
				Casing	Sam	pler	Barrel	Drilling Equipment and Procedures		Finish 21 May 2012 Driller R. Posa	
Тур	е			HSA	S	5	-	Rig Make & Model: ATV	-mounted Mobile Drill B	53 H&A Rep. S. Brousseau	
Insid	de Dia	meter	(in.)	3 1/4	13	3/8	-	Bit Type: Cutting Head Drill Mud: None		Elevation 15.5 (est.)	
Han	nmer V	Neight	(lb)	-	14	40	-	Casing: -		Location See Plan	
Han	nmer F	Fall (in.	.)	-	3	0	-	PID Make & Model: Nor	ne		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol			VISUAL-MANU (Density/consistend structure, GE	AL IDENTIFICATION AND I cy, color, GROUP NAME, n odor, moisture, optional de: OLOGIC INTERPRETATIC	DESCRIPTION nax. particle size*, scriptions N)	
- 0 - -	22 24 15 11	S1 7	0.0 2.0		SM	Dens	ense brown medium to fine SAND, little silt, trace gravel, with few asphalt fragments, no odor, dry				
-	10 9 7 7	S2 10	2.0 4.0		SM	Simi	lar to S1,	except medium dense			
- 5 -	5 5 S3 5.0 7 18 7.0 8				SM	Med shell	ium dense s, few org	dark brown silty fine SAND, tanics, organic odor, dry	race fine gravel, with few s	silty clay pockets, few fragments of coal and	
-	10 14 15 18	S4 24	7.0 9.0	_	SM	Simi	lar to S3				
- 10 -	7 12 38 44	S5 10	10.0 12.0		SM	Simi	lar to S4,	except very dense, with few co	bble/boulder fragments		
-	18 19 12 11	S6 20	12.0 14.0	1.0	SM 05 SM	Simi	lar to S3,	except dense			
- 15 - -	19 22 25 19	S7 15	15.0 17.0	14.5		Dens	se brown s	ilty medium to fine SAND, tra	ce fine gravel, trace ash, fe	w organics, organic odor, dry	
-	29 58 37 39	S8 18	17.0 19.0		SM	Very of co	dense bro pal, no odo	own silty medium to fine SANI or, dry	D, trace gravel, with few sil	ty clay pockets and organics, few fragments	
- 20				-4.0 19.5					-FILL-		
- 20 -		Wa	ater Le	evel Data	a			Sample ID	Well Diagram	Summary	
D	ate	Time	Elap Time	osed e (hr.) ^{Bo}	Dept ottom Casing	Bottom	to: Water	O - Open End Rod T - Thin Wall Tube	Riser Pipe	Overburden (ft) 27.0 Rock Cored (ft) -	
5/2	1/12	0945	0	.0 2	0.0	22.0	20.0 ±	U - Undisturbed Sample S - Split Spoon Sample	Cuttings Grout Concrete	Samples 10S Boring No. HA4	
Field	d Tests	 ;:		Dilatano	cy : R-	Rapid	S - Slow	N - None Plastic	ity: N - Nonplastic L - Low	M - Medium H - High	
*No	Toughness: L - Low M - Medium H - High Dry Strength: None L - Low M - Medium H - High Very High *Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size. Note: Sa practiced by Haley & Aldrich Aldrich Inc.										

H&A-TEST BORING-07-1 HA-LIB07-1.GLB HA-TB+CORE+WELL-07-1.GDT VHAR/COMMON/37176_GNHWPCA ELEC INFRASTRUCTURE000/DATABASES/2012-0524 37176-000TB GINT 8.GPJ 31 Aug 12

HALEY& ALDRICH						TEST BORING REPORT	Boring No. File No. 37176-00	HA4
ft)	SMO .	оў (;		(tt)	lodr	VISUAL-MANUAL IDENTIFICATION AND DESCR	Sheet No. 2 of	2
Depth (1	Sampler Bl per 6 in	Sample N & Rec. (i	Sample Depth (1	Stratum Change Elev/Depth	USCS Sym	(Density/consistency, color, GROUP NAME, max. pa structure, odor, moisture, optional description GEOLOGIC INTERPRETATION)	rticle size*, ns	
- 20 -	5 7	S9 14	20.0 22.0		SP	Medium dense brown to gray-brown medium to fine SAND, trace silt, no odor,	wet	
-	10 12							
-								
_								
- 25 -								
-	4 8 13	\$10 22	25.0 27.0		SM	Medium dense brown medium to fine SAND, little silt, no odor, wet		
_	43			-11.5		-GLACIODELTAIC DEPOSITS-		
				27.0		Bottom of exploration at 27.0 ft		
						Note: Borehole backfilled with drill cuttings upon completion		
	NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. HA4							

31 Aug 12 H&A-TEST BORING-07-1 HA-LIB07-1.GLB HA-TB+CORE+WELL-07-1.GDT \HARCOMMON(37176_GNHWPCA ELEC INFRASTRUCTURE000DDTABASES/2012-0524 37176-000TB GINT 8.GPJ

H A	HAL LD	EY& RICI	Boring No. HA5-OW							
Pro Clie Cor	ject ent ntracto	We CH or Gen	t Wea 2M H neral l	ther (IILL Boring	Capacity gs, Inc.	y Impro	ovements	- Ph.I GNHWPCA ESW	PAF, New Haven, CT	File No. 37176-000 Sheet No. 1 of 2 Start 18 May 2012
Casing						npler	Barrel	Drilling Equipment	and Procedures	Finish 18 May 2012 Driller T. McGovern
Тур	е			HSA		S	-	Rig Make & Model: Truc	k mounted Mobile Drill	B53 H&A Rep. S. Brousseau
Insid	de Dia	meter	(in.)	3 1/4	1	3/8	-	Bit Type: Cutting Head Drill Mud: None		Elevation 12.1 (est.)
Han	nmer V	Veight	(lb)	-	1	40	-	Casing: -	Safaty Hammar	Location See Plan
Han	nmer F	all (in	.)	-	3	30	-	PID Make & Model: Non	le	
(H	slows 1.	n.)).	e (#	Jram	hen h	Indm		VISUAL-MAN	NUAL IDENTIFICATION AN	ND DESCRIPTION
Depth	Depth (ampler B per 6 ir Sample I Samol		Samp Depth	Depth (Nell Diag Stratur Chang		uscs sy		(Density/consistency, color, GROUP NAME, max structure, odor, moisture, optional descri GEOLOGIC INTERPRETATION		E, max. particle size*, descriptions TION)
- 0 -	0,				11.6				-BITUMINOUS CONCRE	ETE-
-	8 S1 1.0 16 18 3.0			2 40- 10 - 10	0.5	SM	Medium odor, dry	dense dark brown silty medium	to fine SAND, trace fine	gravel, with few slag fragments, organic
-	7 7 4 5	S2 12	3.0 5.0	9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		SM	Similar to	o S1, except loose		
- 5 -	58 31 18 10	S3 18	5.0 7.0		a - o - o 1////////////////////////////////////	SM	Dense br asphalt la	own to dark brown silty mediu yer at 5.2 ft, organic odor, dry	m to fine SAND, trace gra	vel, with few brick fragments and 3 in.
-	38	S4	7.0			SM	Very den	se brown silty medium to fine	SAND, trace gravel, with	few brick fragments, no odor, dry
-	6 3 0	10 S5 6	7.9 8.0 10.0			SM	Medium	dense brown silty medium to fi	ine SAND, with few organ	ics, organic odor, moist
	20				21				-FILL-	
- 10 -	10 14	S6 14	10.0	11	10.0	SP	Medium	dense red-brown medium to fir	ne SAND, trace silt, no ode	or, wet
- - - 15 - -	15 19 3 7 12 11	S7 16	15.0 17.0			SP	Medium	dense red-brown SAND, trace	silt, trace fine gravel, no o GLACIODELTAIC DEPC	dor, wet ISITS-
-					19.0		Note: Dr	ill action indicates change at 19	<u>0.0 ft</u>	
- 20 -		Wa	ater Le	evel D	ata	1	1	Sample ID	Well Diagram	Summary
D	ate	Time	Elap Time	osed e (hr.)	Dep Bottom of Casing	oth (ft) Bottor of Hol	to: ⁿ Water	O - Open End Rod T - Thin Wall Tube	Riser Pipe Ov Screen Ov Filter Sand Rc	Overburden (ft) 24.0 Rock Cored (ft) -
5/1	.8/12 8/12	0945 1645	$\begin{vmatrix} 0\\7 \end{vmatrix}$.0 .0 we	8.0 11 at 20 0	12.0 ft	10.0 ± 10.05	S - Split Spoon Sample	Grout	Samples 8S
5/2	21/12	1030	7	0	20	20	14.8		Bentonite Seal	Boring No.
Field	d Tests	:		Dilat Toug	ancy: R hness:	- Rapid L - Low	S - Slow M - Mediu	N - None Plastic m H - High Dry Str	ity: N - Nonplastic L - Low rength: N - None L - Low	v M - Medium H - High M - Medium H - High V - Very High
*No	<u>*Note: Maximum particle size (mps) is determined by direct observation within the limitations of sampler size.</u> Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich. Inc.									

H	IAL	EY&	х Ц			•	TEST BORING REPORT	Boring No. HA5-OW File No. 37176-000					
1	S N	d C		E	(j	ō							
Depth (ft)	ampler Blo per 6 in.	Sample N & Rec. (in	Sample Depth (ft)	Vell Diagra	Stratum Change Elev/Depth (JSCS Symb	(Density/consistency, color, GROUP NAME, max. structure, odor, moisture, optional descrip GEOLOGIC INTERPRETATION)	particle size*, tions					
- 20 - - -	8 16 18 14	S8 12	20.0 22.0	>		SM	Dense red-brown silty medium to fine SAND, trace gravel (probable weat odor, wet	hered sandstone in spoon tip), no					
_					-11.9 24.0		-GLACIODELTAIC DEPOSITS- Note: HSA refusal at 24.0 ft	/					
							Bottom of exploration at 24.0 ft						
							Note: Groundwater observation well installed in completed borchole. See Report "HA5-OW"" for details	"Observation Well Installation					
	NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. HA5-OW												
H A	IAL LD	EY& RICI	ж Н			TE	ST	BORING REPOR	RT.		Boring I	No.	HA6
--------------------	----------------------------	----------------------------	--------------------------	--------------------------------------	---------------------	-----------	-------------------	---	--	-------------------------------	-------------------------------------	---------------------------	--------------------
Pro Clie Cor	ject ent ntracto	We CH or Ge	et Wea I2M H neral	ather Caj HLL Borings,	pacity Inc.	Improver	ments	- Ph.I GNHWPCA ESWF	PAF, New Haven, CT	1	File No. 37 Sheet No. 1 Start	7176-00 of 2 21 May	00 2012 2012
				Casing	Sam	pler Ba	arrel	Drilling Equipment	and Procedures		Finish -	Posa	2012
Тур	е			HSA	s		-	Rig Make & Model: ATV	-mounted Mobile Drill I	B53	H&A Rep.	S. Br	ousseau
Insid	de Dia	meter	(in.)	3 1/4	1 3	/8	-	Bit Type: Cutting Head Drill Mud: None			Elevation	6.0 (NAV	est.) D88
Han	nmer \	Neight	(lb)	-	14	-0	-	Casing: -	Safety Hammer	-	Location S	ee Plar	1
Han	nmer I	Fall (in	.)	-	30)	-	PID Make & Model: Non	e				
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol			VISUAL-MANUA (Density/consistenc structure, c GEC	AL IDENTIFICATION AND xy, color, GROUP NAME, odor, moisture, optional d DLOGIC INTERPRETATI	max. par escriptior ON)	IPTION rticle size*, ns		
- 0 -	2 2	S1 20	0.0										
-	3 4		2.0	4.5					-TOPSOIL-		_		
-	4	S2	2.0	1.5	SM SM	Loose bi	rown si rown m	Ity medium to fine SAND, trac redium to fine SAND, little silt	ce gravel, with few roots,	no odor, dor, dry	dry		
-	4 4	18	4.0						-				
L	5												
				1.0					-POSSIBLE FILL-				
- 5 -	4	S3	5.0	5.0	SM	Medium	dense	gray-brown fine SAND, little s	silt, no odor, wet				
-	7 7 7	14	7.0										
-	5	54	7.0	-	SD	Medium	dense	brown medium to fine SAND	trace silt no odor wet				
	5 6 8	54 18	7.0 9.0		51	Wiedium	i uciisc	brown medium to fine SAND,	trace sint, no odor, wet				
	8												
-				1									
- 10 -	3	S5	10.0	-	SP	Similar	to S4, e	except loose					
-	4	20	12.0										
_	5												
-													
-													
- 15 -	2	06	15.0	_	SM	Similar	to S / 4	except with trace gravel					
	5 16	56 16	15.0 17.0		3101	Siiiiiai	10 54, 0	except with trace graver					
	35												
F				1				~		UT C			
-				-12.0 18.0		Note: D	rill acti	-GL. on indicates change at 18.0 ft	ACIODELTAIC DEPOSI	115-			
-													
- 20 -													
		Wa	ater L	evel Dat	a			Sample ID	Well Diagram		Summa	iry	
D	ate	Time	Ela Time	osed e (hr.) ^{Bo}	Dept	Bottom	Nater	O - Open End Rod T - Thin Wall Tube	Riser Pipe Screen	Overb	ourden (ft)	21.8	3
5/2	1/12	1630	0	<u>) fof C</u>	5.0	of Hole 7	4.5 +	U - Undisturbed Sample	Filter Sand	ROCK Samp	corea (π) les 7	- S	
				- ·		,	·~ ±	S - Split Spoon Sample	Grout Grout	Borir	na No.	۔ ۲	A6
Field	1 Toeto			Dilatan	cv: R -	Rapid S -	Slow	N - None Plastici	Bentonite Seal	w M - M	edium H - Hial	<u></u> า	
_*No	te: Ma	iximum	particl	Toughn e size (m	iess: L ps) is c	- Low M -	Mediur	m H - High Dry Stre ect observation within the lim	ength: N - None L - Low	M - Med	lium H - High	V - Very	' High
		No	ote: S	Soil iden	tificati	on based	l on vi	sual-manual methods of the	e USCS as practiced b	by Haley	& Aldrich, Ir	IC.	

H A	IAL LD	EY& RIC	Ĥ			TEST BORING REPORT	Boring No. File No. 37176-00 Sheet No. 2 of	HA6
ft)	lows I.	No.	e ft)	(ff)	lodn	VISUAL-MANUAL IDENTIFICATION AND DESCR	IPTION	
Bepth (Sampler B per 6 in	Sample & Rec. ()	Sampl Depth (Stratun Change Elev/Depth	USCS Syr	(Density/consistency, color, GROUP NAME, max. pa structure, odor, moisture, optional description GEOLOGIC INTERPRETATION)	rticle size*, ns	
- 20 -	54 23	S7 12	20.0 21.9			Weathered sandstone		
-	34 50/4"		21.9			Note: Sampler refusal at 21.9 ft		
				-15.9 21.9		-WEATHERED BEDROCK- Bottom of exploration at 21.9 ft		
						Note: Borehole backfilled with drill cuttings upon completion		
								,
	NOTE:	Soil id	lentifica	tion base	d on vi	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No.	HA6

31 Aug 12

H A	IAL LD	EY& RICI	₹ H			TEST	BORING REPOR	RT	Boring No. HA7							
Pro Clie Cor	ject ent ntracto	We CH or Gen	et Wea 12M H neral 1	ather Caj IILL Borings,	pacity Inc.	Improvements	- Ph.I GNHWPCA ESWI	PAF, New Haven, CT	File No. 37176-000 Sheet No. 1 of 2 Start 21 May 2012							
				Casing	Sam	pler Barrel	Drilling Equipment	and Procedures	Finish 21 May 2012 Driller R Posa							
Тур	е			HSA	s	-	Rig Make & Model: ATV	-mounted Mobile Drill I	H&A Rep. S. Brousseau							
Insid	de Dia	meter	(in.)	3 1/4	13	/8 -	Bit Type: Cutting Head Drill Mud: None		Elevation 7.0 (est.) Datum NAVD88							
Han	nmer \	Veight	(lb)	-	14	0 -	Casing: - Hoist/Hammer: Cat-Head	Safety Hammer	Location See Plan							
Han	nmer I	all (in	.)	-	30) -	PID Make & Model: Non	le								
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol		VISUAL-MANU/ (Density/consistenc structure, GEC	AL IDENTIFICATION AND sy, color, GROUP NAME, odor, moisture, optional de DLOGIC INTERPRETATION	DESCRIPTION max. particle size*, escriptions ON)							
- 0 -	10 2 2	S1 20	0.0 2.0					-TOPSOIL-								
-	4			1.5	SM	Loose brown n	nedium to fine SAND, little silt	, with few organics, no or	dor, dry							
-	5 8 10 11	S2 18	2.0 4.0		SM	Similar to S1 (below 1.5 ft)									
F				2.0				-POSSIBLE FILL-								
- 5 -	5 6 6 8	S3 18	5.0 7.0	5.0	SP	Medium dense	gray-brown medium to fine SA	AND, trace silt, no odor, v	vet							
-	6 6 8 9	S4 20	7.0 9.0	_	SP	Similar to S3										
- - 10 - -	2 4 5 5	\$5 20	10.0 12.0	-	SP	SP Similar to S4, except loose										
- - 15 - -	2 5 4 6	S6 16	15.0 17.0	_	SP	Similar to S5										
-				-11.0		Note: Drill act	-GL	ACIODELTAIC DEPOSI	TS-							
_				18.0			ion mulcales change in stratum	ai 10 Il								
- 20 -		Wa	ater Le	evel Dat	a	•	Sample ID	Well Diagram	Summary							
D	ate	Time	Elap	osed e (hr.)_ ^{Bo}	Dept	h (ft) to: Bottom Water	O - Open End Rod T - Thin Wall Tube	Image: Riser Pipe Image: Riser Pip	Overburden (ft) 21.8							
5/2	1/12	1530	0	.0 0	asing 5.0	7.0 4.5 ±	U - Undisturbed Sample	Filter Sand	Samples 7S							
5/2	1/12	1700	1	.5 ope	n hole	3.4	S - Split Spoon Sample	Grout Concrete	Boring No. HA7							
Field	d Tests	:		Dilatan	cy:R-	Rapid S - Slow	N - None Plastic	ity: N - Nonplastic L - Low	w M - Medium H - High M - Medium H - High V - Very High							
*No	te: Ma	ximum No	particle	e size (m Soil iden	ps) is c tificati	etermined by diversion on based on vi	rect observation within the lim	itations of sampler size. • USCS as practiced b	vy Haley & Aldrich, Inc.							

H&A-TEST BORING-07-1 HA-LIB07-1.GLB HA-TB+CORE+WELL-07-1.GDT VHAR/COMMON/37176_GNHWPCA ELEC INFRASTRUCTURE000/DATABASES/2012-0524 37176-000TB GINT 8.GPJ 31 Aug 12

H A	IAL LD	EY& RIC	H			TEST BORING REPORT	Boring No. File No. 37176-000 Sheet No. 2 of	HA7
ft)	lows 1.	No.)	e ft)	n e n (ft)	lodn	VISUAL-MANUAL IDENTIFICATION AND DESCR	IPTION	
Depth (Sampler B per 6 ir	Sample & Rec. (Sampl Depth (Stratur Chang Elev/Deptl	USCS Syr	(Density/consistency, color, GROUP NAME, max. pa structure, odor, moisture, optional description GEOLOGIC INTERPRETATION)	rticle size*, ∩s	
- 20 -	11 41	S7 14	20.0		SM	Very dense red-brown silty medium to fine SAND, trace gravel (probable weath	ered bedrock), no odor,	moist
-	11 50		21.7					
				$^{-15.0}_{-22.0}$		Bottom of exploration at 22 ft		
						Note: Borehole backfilled with drill cuttings upon completion		
	NOTE:	Soil id	lentifica	tion base	d on vi	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No.	HA7

ŀ	HAL ALD	EY& RIC	æ H			Т	EST	BORING REPOR	RT	Boring No. HA9							
Pro Clie Coi	oject ent ntracto	We CH or Ge	et Wea I2M H neral I	ither Caj IILL Borings,	pacity Inc.	Improv	vements	- Ph.I GNHWPCA ESW	PAF, New Haven, CT	File No. 37176-000 Sheet No. 1 of 2 Start 18 May 2012							
				Casing	Sam	pler	Barrel	Drilling Equipment	and Procedures	Finish 18 May 2012 Driller R. Posa							
Тур	е			HSA	s		_	Rig Make & Model: ATV	-mounted Mobile Drill B5	H&A Rep. S. Brousseau							
Insi	de Dia	meter	(in.)	3 1/4	13	/8	-	Bit Type: Cutting Head		Elevation 13.4 (est.)							
Han	nmer \	Veight	(lb)	-	14	0	-	Casing: -		Location See Plan							
Har	nmer I	-all (in	.)	-	30)	-	PID Make & Model: Nor	le Safety Hammer								
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol			VISUAL-MANU (Density/consistend structure, GE	AL IDENTIFICATION AND D cy, color, GROUP NAME, m odor, moisture, optional des DLOGIC INTERPRETATIO	DESCRIPTION lax. particle size*, criptions N)							
- 0 -	1	S1	0.0	12.8					-TOPSOIL-								
-	35	16	2.0	0.6	SM	Loose	e brown s	ilty medium to fine SAND, tra	ce gravel, no odor, dry								
-	9 8 10 12 15	S2 18	2.0 4.0	11.4 2.0	-SM	Media	um dense ote odor,	dark brown silty medium to fi dry	ne SAND, trace gravel, with	n few slag and brick fragments, slight — — —							
- 5 -	7 10 10 13 12	\$3 18 \$4	5.0 7.0 7.0	-	SM SM	Medi	um dense ar to S3	dark brown silty medium to fi	ne SAND, trace gravel, with	n few slag fragments, organic odor, dry							
-	13 12	15	9.0	5.4 8.0	SM	Medi	um dense	brown medium to fine SAND,	little silt, no odor, dry								
- - 10 - -	10 12 13 13	\$5 15	10.0 12.0	-	SM	M Medium dense brown medium to fine SAND, little silt, no odor, dry M Medium brown to red-brown silty medium to fine SAND, trace gravel, no odor, moist											
-	9 8 11 13	S6 20	12.0 14.0	-1.1	SM	Medi	um dense	brown medium to fine SAND,	little silt, trace gravel, orga -FILL-	unic odor, wet							
- 15 -	14	57	15.0	14.5	SP	Medi	um dense	gray-brown medium to fine SA	AND, trace silt, no odor. dry	y							
-	16 19 21	24	17.0	-													
F																	
- 20 -		14/						-GL	ACIODELTAIC DEPOSIT	S-							
	-	Wa	Elar	evel Data	a <u>De</u> pt	<u>h (ft</u>) t	0:	O - Open End Rod	VVell Diagram	Overburden (ft) 27.5							
	ate	IIme	Time	e (hr.) ^{Bo} of C	ottom asing	Bottom of Hole	Water	T - Thin Wall Tube	Screen	Rock Cored (ft) -							
5/1 5/1	8/12 8/12	0930 1030	0	.0 1 .0 2	0.0	14.0 27.5	$\begin{vmatrix} 12.0 \pm \\ 14.8 \end{vmatrix}$	S - Split Spoon Sample	Grout	Samples 9S							
-	J T - 1			Dilatar		Danid	Q Clow	N Nono Plastia	ity: N - Nopplastic L Low								
*Nc	u lests	ximum	particl	Toughn	-y. ҡ - <u>ess: L</u> ns) is d	- Low	M - Mediu M - Mediu	IM H - High Dry Sti rect observation within the lim	ength: N - None L - Low M Nitations of sampler size	A - Medium H - High V - Very High							
[No	ote: S	oil iden	tificati	on bas	ed on vi	isual-manual methods of th	e USCS as practiced by	Halev & Aldrich, Inc.							

31 Aug 12

H	IAL	EY& RIC) E H			TEST BORING REPORT	Boring No. File No. 37176-00	HA9
£	SWO .	ġ;		(#)	lodi	VISUAL-MANUAL IDENTIFICATION AND DESCR	Sheet No. 2 of	2
Depth (f	Sampler Bl per 6 in	Sample N & Rec. (ii	Sample Depth (f	Stratum Change Elev/Depth	USCS Sym	(Density/consistency, color, GROUP NAME, max. pa structure, odor, moisture, optional descriptio GEOLOGIC INTERPRETATION)	rticle size*, ns	
- 20 -	18 19	S8 18	20.0 22.0		SP	Similar to S7, except dense, red-brown		
-	22 24			21.0	SM	Dense red-brown silty medium to fine SAND, trace fine gravel, no odor, wet		
- 25 -	24	S 9	25.0		SM	Dense red-brown silty medium to fine SAND, trace gravel, no odor, wet		
-	100/5"	8	_25.9			Note: HSA refusal at 27.5 ft		
-				-14.1 27.5		-GLACIODELTAIC DEPOSITS- Bottom of exploration at 27.5 ft		
				27.5		Bottom of exploration at 27.5 ft Note: Borehole backfilled with drill cuttings upon completion		
	NOTE:	Soil id	lentifica	tion base	d on vi	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No.	HA9

1

APPENDIX A (Part 2 of 2)

Previous Boring and Test Pit Logs

	.Cam	D. D	re	sse:	r Sa	McK	lee In	÷.		Ger	neral	Bori	ings, I	ININ DET	
IEN	1:00000				_		_	P	. 0. 1	BOX	/135	PROS	PECT, CC	NUN. 007	LINE
ONT	RACTO	٦						P	ROJEC	Shor	ME WA	ter Po	llution		
		HI I FE	2	-	-			L	OCAT	ION	Abat	ement	Project		STATION N163610
REN	MAN-Dr	ILLE	I.I).	C.F			N	ew H	laver	La Co	nn.			OFFSET
SPE	CTOR	Mal	+ c												E558345
-	OLIND	WATE	RC	BSER	TAVE	IONS		T	1.1.		CAS	SING SA	MPLER	CORE BAR	DATE START
11	5.9FT.	AFT	ER_	0	_		HOURS		TYPE	NO	M. 2	1	3/8		SURFACE ELEV. 14.0
	FT	AFT	ER		_		HOURS	5	HAMM	IER WT	. =		40 1bs.	BIT	GROUND WATER ELEV1.0
AI			_			E	_	+	BLOV	IER FA	LL 16"	CORING	DENSITY	STRATA	FIELD IDENTIFICATION OF SOIL
H	BLOWS	G	Т	5	AMP		DEPTH	(F	ON S	AMPL ON T	ER UBE)	TIME PER FT.	CONSIST.	DEPTH	REMARKS INCL. COLOR, LOSS OF WASH WATER, SEAMS IN ROCK, ETC.
DEP	FOOT	N	D. 1	TYPE	PEN	REG	@ BOT	-)-6	6-12	12-18	(MIN.)	MOIST	ELEV.	
		-	+	-	-	-	-	+	-		-	1			
	-	+	1					T	-						
		1	-		18	115	6.5'	+	2	4	10		moist		1) Brown fine-coarse send,
5 -	-	+	-	55	10	-	-	1	1				medium		trace sand. trace shell.
		1	_		-	-	-	+	-		-		t		
	-	+	-		-	1		1					line		2) Dark gray clay and silt
10		T	2	55	18	114	11.5	4	1	3	2		loose	11.0	red-brown fine-coarse sand,
	-	-	-	-	+	1	L					1	1 1		little silt in tip of split
	t	1			-	-	-	-	_		-		4		spoon.
1	F	-	2	80	118	11	16.5	1	1	2	3			-	3) Brown fine-medium sand,
15	+		2	100		T	1		_		-		+		trace coarse sand, little SI
	F	-	_	+	+	+	+	-		-					
	+	+	-	T	t	T				10	111	-	wet	1	4) S me as $#3$ with red-brown
20	F		4	S	s 18	3 1	21.	2	1	12	111	1	medium	n =	fine-medium sand, trace coar
Γ	-	-	-	1	+	1					-			22.5	sand, little silt in tip of
					T	-	-	_	-	-	-			1	Date where
	-	-	5	SS	D	3 1	3'26.	51	16	16	22		wet		5) Red-brown very fine sand,
25	-			T		1	-	-		-	-	-	dense		Grace STLC.
	F	-	-	+	+	+	1	1				1	-		
	t			T	T	0.00	11 23	51	10	20	25				6) Red-brown silt.
3	30 F	_	E	3 8	IS 1	0 110	131.	2	12	20	1			1	
T	+				1		1	-		1	-	-			
	E			-	-	-		-		-	-	1			ne ne
	F	-		7		7	13 31	51	11	11	. 30				7) Same as $\%6$.
1	35 1		F	-	-	+	-	-	-	-	-	-	-		
	-		+	+	1	1					1]		8) Red-brown silt. little ver
1	E		T	1		18.1	6 47	51	5	17	12	-	mediu	m	fine sand.
1	- [05.0	ANAP	O FS.	88	τομ	0 141		-	11					TOTAL FOOTAGE
	D-DE	NY NY	W=	WAS	HED	C=	CORED		A=AU	GER	UP=l	UNDISTU	NOED PISTO	14	EARTH BORING FT

LIENT.		-				P. (). BO	X 7135	PRO	SPECT, C	ONN. 0	6712 HOLE NO
ONTRACT	OR					PRO	JECT I	NAME ore W	ater P	ollutio	n	LINE
REMAN-	RILLER				77	LOC	ATION	Aba	tement	Projec	t	STATION
NSPECTOF				U.	E.	New	nav	en, t	onn.			N163610 OFFSET
	On	Meh	nta			Ļ	-				-	E558345
GROUN AT. <u>15.9</u>	I. AFTE	R OBSI R R	0	TIONS		TYPE SIZE HAN HAN	E I.D. ^N MMER V MMER F	OM	HA 21.11 21.11 1	AMPLER <u>SS</u> <u>3/8</u> <u>140</u> 1bs 30	• BIT	AR. DATE START DATE FIN. <u>1/19 - 1/19/72</u> SURFACE ELEV. <u>14.0</u> GROUND WATER ELEV. <u>-1.0</u>
	G		SAMP	LE		BLO	OWS PE	R 6"	CORING	DENSITY	STRATA	FIELD IDENTIFICATION OF SOU
PER FOOT	NO.	TYPE	PEN	REG.	DEPTH @ BOT.	(FORC	6-12	TUBE)	PER FT. (MIN.)	CONSIST. MOIST	ELEV.	REMARKS INCL. COLOR, LOSS OF WASH WATER, SEAMS IN ROCK, ETC.
E										1	1.0. 01	
;	9	SS	18"	12"	46.5'	12	15	28		vet	44.0	(9) Red-brown fine-coarse sand
-	-									dense	2.11	trace fine-medium gravel, littl
										1		5110.
"	10	SS	18.	13"	51.5'	25	37	76		wet		10) Red-brown fine-redium cond
-	-	-	-			-			ve	y dense		trace coarse sand, trace fine
											1 - 1	Siever, little silt.
5	11	-4	8"	6'	55.67	75	100	2		u.		11) Sume as 610
-	-		-	-							55.67	Refusal on split spoon at 55 (a
	1								1.1		TOP	source of spirit spoon at 55.07
-	+-	-		-	1 <u>0</u>	-	-			101		END OF BO ING 55 671 Cold
F	-									26.6	1	
			1							5 1		
-	-		-			-	-					
									_	1	Ť	
	1											
	-											
T											+	
-	+	$\left \right $		-								
	1			_						[-1]		
-											-	S
-	-	1				-			-			
-							_					
YPE OF	AMPLES						-			1		

AT	CTOR N-DRILL TOR Ileht JND W/ FT. A FT. A SING LOWS PER OOT 2	ER ATER FTER	L.C.	, R	.D.	HOURS	Eas LOCA Net	st Shation W Have	ore W Aba en, C	ter P tement onn.	Project	5	STATION N163410
REMAN	N-DRILL OR Ileht FT. A FT. A SING LOWS PER OOT	ER ATER FTER	L.C.	, R	.D.	HOURS	LOCA Net	ation J Hav	Aba en, C	onn.	Project	5	N163410
AT	TOR Ilehta JND WA FT. A FT. A ASING LOWS PER OOT 2	ATER FTER	L.C.	, R	.D.	HOURS	Net	w Hav	en, C	onn.			INTO 3 ITO
AT	JND W/ FT. A FT. A FT. A LOWS PER OOT	ATER FTER	OBSEF	ITAV	ONS	HOURS	THE						OFFSET
Om GROL AT AT AT FC G FC	Inento JND W/ FT. A FT. A SING LOWS PER OOT 2	ATER FTER	OBSEF	ITAV	ONS	HOURS	TUDE			-			E558375
AT	FT. A FT. A SING LOWS PER OOT	FTER.	S			HOURS	TUDE		CAS	ING SA	MPLER C	ORE BAR.	DATE START
AT	FT. A ASING LOWS PER OOT	FTER	S				ITPE	200	WI 2		3/8 -		DATE FIN. 2720 - 2720/12
AT	ASING LOWS PER OOT	FTER NO.	S			HOURS	SIZE	I.D. W	Die <u>C</u>		140 1bs.	BIT	GROUND WATER ELEV.
FILd30	ASING LOWS PER OOT	NO.	S			noono	HAN	MER FA	LL		30"		
BL F	LOWS PER OOT	NO.	1	AMPL	E		BLO	SAMPL	1 6" ER	CORING	OR	CHANGE	FIELD IDENTIFICATION OF SOIL REMARKS INCL. COLOR, LOSS OF
a F(00T	NU.	TYPE	PEN	REC.	DEPTH @ BOT.	(FORC	E ON T	UBE)	PER FT. (MIN.)	MOIST	ELEV.	WASH WATER, SEAMS IN ROCK, ETC.
E	2		TTO	oh"	24	2.01	Pre	0-14 85	12-10		satura	ed	1) Black silt - Fine sand at
-	14	4	0.0	<u>6.</u> T	her								bottom of US sample.
1	9			-	-		-						
F	4	-	-				1	L				+	0) mor silt ID Comple
5-	3	2	-	24"	12	8.01	Pre	33					c) and sire, or subje
E	9		-	-	-		+	1			1		
F	9	-	-				1	T		-			1) Ben O' brown encode ed?
In F	11	11	55	15	18	11.5'	3	3	3		loose		Bottom 9 - brown fine sand.
	13	-	-	-	+	-	+	+	-	-		i	trace silt.
	29	12	SS	18	14	14.5"	16	6	6	-	wet		2) Brown fine sand, trace silt
! +	36	1		L	F		-	-	-	-	meanum	ľ	-, oroni rane sound or out bard
15	36	-	-	-	+	+	1	1	1		1		
	<u>52</u>	+	+	1	T		L		-	-			
1 +	54			-	F	-	-	-	-	-	-		
1 1	60	-	+-	+	11	21.5	15	6	7	1	vet		3) Grey-brown fine-medium sand
20 -	65	-	+	T	T	T	T	-		-	_ medium		Grace SILU.
	68		1	F	F	-	+	+	+-	1-			
	70		+	+	+	+	1	1	1		1		1) Dod more at the second for
5	00	14	1	1	12	126.5	5	6	10		medium		fine sand.
25 -	50		T	-	F	-	-		+	+	-		
	62	2	+	+	+	+	1	1	1		1		
	1	5	-	1	T	1	T		110	-	moist		5) Same as #4.
20	8	8 5		+	13	31.5	10	- 9	110	+	mediur		
30=	5	2	+	+	+	+	-	1	1				
	7	9	+	T			-		-		_		
1	10	0	1			136 6	1 7	5	11		moist		6) Red-brown silt, some very
35	0	5	0	+	+	0000	T		1		mediu	ณ	fine sand.
		10			1		1	-	-	-	-		7) Red-brown silt, some very
	0	6	-	-		-	+		+-	-	-	1	fine sand changing to red-brow
1	-	24	7	-	18	- 41.	51 6	5 9	12		noist	med	fine-medium silty some, trace

	-			_	_		P. U.	BUX	/130 MF	FRUS	FECT, CO	1414, 007	LINE		
ONTE	RACTOR	I ER	-	_			East	Sho	ore W Aba	ater Po tement	Project	1	STATION N163910		
HLIV		L	.C.				New 1	laver	, Co	nn.			OFFSET		
ISPE O	CTOR m Meht	:8										CODE BAR	E558695		
GR T	OUND W	ATER	OBSE	RVAT O		HOURS HOURS	TYPE SIZE HAM	I.D. NO			<u>SS</u> <u>2,3"</u> <u>40 1</u> bs.	BIT	DATE START DATE FIN. <u>1/26 ~ 1/26/72</u> SURFACE ELEV. <u>22.2</u> GROUND WATER ELEV. <u>7.2</u>		
- 10	CASING		S	AMPL	E		BLO	WS PER	6'' ER	CORING	DENSITY	STRATA	FIELD IDENTIFICATION OF SOIL		
neri	BLOWS PER FOOT	NO.	TYPE	PEN	REG.	DEPTH @ BOT.	(FORC	E ON T 6-12	UBE) 12-18	PER FT. (MIN.)	CONSIST. MOIST	DEPTH ELEV.	WASH WATER, SEAMS IN ROCK, ETC.		
-															
5		1	55	18"	141	6.5'	1	5	7		wet medium	-) Brown fine-medium sand, some silt, trace shells.		
		2	:t	:1	14"	11.5'	1	1	3		wet		2) Gray fine-medium soud, some		
0 _											loose		silt, little seashells.		
5 -		3	(1	10	18"	16.5	3	7	5		moist medium	-	3) Brown fine sand, some silt, little black fine silty sand, trace of vegetation.		
20 -		4	-	-	18"	21.5	4	13	12		moist medium		4) Brown fine-medium sand, som silt.		
25 .		5			1.8'	26.5	6	12	13		wet	-	5) Same as above.		
20		6	, ,		18	31.5	116	18	33		wet	21 0	6) Brown fine-medium sand		
30	F	+	+	-	F		E			Ver		51.0	and fine-medium gravel.		
35	E	-	-	+1	16	"36.5"	13	17	27		wet dense	36.0	7) Red-brown fine-coarse sand and fine-medium gravel changin to red-brown very fine sandy		
		+	s	s C)" O	39.0	50	/p''		ve:	dense	39.0'	silt. Refusal on split spoon at 39.0 END OF BORING 39.0' Soil		

							P. C	. BO)	7135	PRC	SPECT, C	ONN. 0	6712 HOLE NO
CON	TRACTOR	n -					PRO. Eas	it Sh	ore v	ater 1	Pollutio	กา	LINE
DRE	MAN-DRI	LLER					LOC	ATION	Abc	tement	t Projec	t	STATION
INSP	ECTOR	L.C.					INCH	1101	city c	on			OFFSET
		Qu	n Mel	nta									E558750
G	ROUND V	VATER	OBSE	O	rions	HOURS	TYPE		CA I	sing s IA	SS	CORE BA	DATE START
A1=	<u>-</u> FI.	AFIER		0.000		noons	SIZE	1.D	ai _2		1 3/8"		SURFACE ELEV. 22.5
AT_	FT.	AFTE				HOURS	HAN	MER W	ALL		30'	BIT	GROUND WATER ELEV. 9.5
F	CASING BLOWS	-		SAMP	LE	OCRTH	BLO	SAMP	R 6"	CORING	OR OR	CHANGE	FIELD IDENTIFICATION OF SOIL
DEP	PER FOOT	NO.	TYPE	PEN	REG.	@ BOT.	0-6	6-12	12-18	PER FT. (MIN.)	MOIST	ELEV.	WASH WATER, SEAMS IN ROCK, ETC.
											-		
							-	-			-		
5 _		1	55	18	16"	6.5'	1	3	4		wet		1) Gray fine-modium sand and
		1			-		-				loose		silt, shells.
	-					1.000				100 million (* 1990)	1		
0		2	u.		18.1	11.5'	1	1	1		moist		2) Gravelana silt chonsing
0 -	-									ve	ry soft	11.0'	to black fine silty sand.
-9		2		- 31	18:	16.51	6	10	12		Tet		2) Proven Stine and Stine
5 =					10	20.07		10			medium	-	silt, trace coarse gravel.
	-	-	-	-	-		-		-		1.0		
			- 11		10"	01 51	8	7.16	10		1t		
0 -		4			10	21.02		14	LE		medium	-	silt, trac fine-medium growel.
		_					_						
					-			-					
.5 -		5	- 11		16	23.5'	35	40	34		vet hard	-	5) Red-brown silt, trace very
								1.21	1		and deaths		gravel.
													verv
30 -		6	11	13	18"	31.5'	5	6	12	Ver	vet stiff	-	6) Red-brown silt, trace fine
										TCT Y	50111		ound, orace measure gravel.
		-	-		-								
35 -		7	•1	215	12"	36.5'	4	5	100		wet	1	() Red-brown silt, trace very
				-							nard	36.5"	of spoon. Refusal on spoon at 26 51
						_						LOB	END OF BORING 36.5' Soil
	-	1							1			1	

_			-		-		PROJE	CT NA	ME				LINE
ONTI	RACTOR				-		East	Shor	e Wa	ter Po	11ution		STATION
TREN	AN-DRIL	LER	TE				LOCA New I	laver	ADAC	nn.	rrojeco		N163895
NCDE	U CTOR	. Д.	с. <u>н</u>						-				OFFSET
NOFE	Om	Meh	ta	_			-	_	CAS	SING SA	MPLER	CORE BAI	
GF	ROUND W	ATER	OBSE	RVAT O	IONS	HOURS	TYPE		H	IA S	S	MXA	DATE FIN. 1/25 - 1/26/72
AT	5.0 FT. 4	AFTER			-	HOURS	SIZE I	.DNO	12	1 1	3/8" _	1 1/8 BIT	SURFACE ELEV. 23.0
AT_	FT. /	AFTER				HOURS	HAM	IER WI	ii –		Q"	Carbid	e
II	CASING		5	SAMPL	E		BLO ON S	NS PER	ER	CORING	OR	CHANGE	FIELD IDENTIFICATION OF SOIL REMARKS INCL. COLOR, LOSS OF
EPI	PER	NO.	TYPE	PEN	REG.	@ BOT.	0-6	6-12	12-18	PER FT. (MIN.)	MOIST	ELEV.	WASH WATER, SEAMS IN ROCK, ETC.
-	1001												
ţ		-	-	-	-					1.30	1	1 1	1.1
						7 = 1		_	2		modet		1) Brown fine-coarse sand, so
5-		1	SS	18"	6.	6.5'	2	3	3		loose		silt, trace fine gravel.
									192	-	1		
13		-	-	-	-								
10		2	-61	44	12	11.5'	14	16	15		tet		2) Brown fine-medium sand, tr
10 4		-	-	-	-	-				-	dense	(1-1)	little silt.
	-									-	1.	13.0'	
	-	12	13	-	18	16.5'	over 1/1	2	e 1		wet		3) Crey sendy silt.
15 •	-	1		1							loose		
		-	-	+	+	-						1.1	
	-			L	1			-			+	19.0)) Proven fine_medium sand
20	-	4	11	1	18	21.5	9	1	19		medium	-	trace silt.
	-	1	t					-	-		-		
1	-	-	-	+	+	-	-	-	-				Contract And State
65	-	5	1		18	26.5'	8	10	13		57		5) Some as #4.
125		1	T	-	+	-		-	-		-		
	-	+	+	T	T						-		
1-	1	-	-	+	112	1 31.5	9	8	17		9 0		6) Red-brown fine-coarse sand
30		-		T	T						7		trace fine gravel, little sil
	-	+	-	+	-	-	-	-			-		Contraction of the Carlot of the
	-	1		T		-		-	09	-	-	34.0	1 7) Red-brown sendu silt
35	;—		4	-	1 6	36.5	31	120	20	ve	denso		I) neu-orovin sandy size.
	-		1	1	-				1		1		8) Red moun fine-coarse sand
		-	-	-	+	-	-	-	-	-	-		trace Tine gravel, little si
	1		5	1		3" +0.54	14	50/	1				
	TYPE OF	SAMP	LES:			Sec.							TOTAL FOOTAGE

	TRA OTOR	-					PRO.	IECT N	AME					LINE
CON	TRACION						East Shore Water Pollution							
DREMAN-DRILLER						LOC	ATION	Ab	atemen	t Proje	ect	1	STATION	
-	J.D. C.E.					Ne	w Ha	ven,	Conn.		_	-	N163895	
INSP	ECTOR	012	Meht	ta										E559705
-	DOLIND N	NATER	OBSE	DVAT	IONS				CA	SING SA	MPLER	CORE BA	R.	1358755
1	8.0t	ACTER)	10110	HOURS	TYPE		I	IA	SS	AX M		DATE SIARI
41-	F1. /	AFIER					SIZE	I.DNC	M2	<u>2</u> 1	3/8	1 1/8		SURFACE ELEV. 23.0
AT_	FT.	AFTER	1			HOURS	HAN	MER W	T		4 1 1bs,	BIT	Ì	GROUND WATER ELEV. 5.0
-	CASING	r	9	AMPL	E	_	BLC	WER PE	R 6"	CORING	DENSITY	ISTRATA		
HTH	BLOWS	1.15			1	DEPTH	ON (FORC	SAMPL E ON	ER TUBE)	TIME	OR CONSIST.	DEPTH	I	REMARKS INCL. COLOR, LOSS OF
D	FOOT	NO.	TYPE	PEN	REG.	@ BOT.	0-6	6-12	12-18	(MIN.)	MOIST	ELEV.	1 4	VASH WATER, SEAMS IN ROCK, ETC.
		1	C	60	6'	45.54			-	1		40.54'	Refu	sal on spoon.
	-	-	-	(*************************************	-				-	1		Run; 1	Day	"I grand he she he she
		-								2			Re	covered 6 white-red
5								-		2			L sa	ndstone.
						1.2.3				-		45.54		
		1		-	-	-	-	-				LOB		END OF BORING 45.54
		-						1.1.2		-				40.54' Soil
0							<u>6</u>							
		1			1.2							1 1	_	
		-		-	-	-								
		-		-	-		-			-				
27	-	-			h	1.00				1	100	1.1	0	
5 =		1						5				1 7	-	
				-			-							
		-	-	-			-							
~		-	-	-	-		-							
- 0		1		1					1			1 7		
					122	1000						1 1		
		-					-	_						
-		-	-	-	-	-		1						
5 =	1											1 1	-	
	-													
	-	-	-		-			_						
		-	-	-	-									
30 -		1	1											
								1211		1.0				
														×
	-	-	-	-	-		-							
35 =	-	1										+	•	
								1.200	1	1				
	-	-			-			-	1.01					
, T	PE OF SA	MPIE	5.			1		-	-			l		TOTAL FOOTO
n	=DRY	W=W	ASHED	c	=COR	ED /	A=AUG	ER	UP=UN	DISTURBE	D PISTON			APTH POPING
0			1100 110	10101	TI IDDE	D DALL C	NOTION		V/T-1/	ANE TECT				

			_	-		-	PRO IS	CT NA	ME				LINE	
ONTR	ACTOR						East Shore Water Pollution							
OREM	AN-DRIL	LER		_			LOCATION Abatement Project						N163755	
1112.11		_	L.	с.	-		New Haven, com.						OFFSET	
NSPEC	Om	Meh	ta									CODE DAE	E558605	
GB	OUND W	ATER	OBSE	RVAT	ONS		TYPE		CAS	SING SA	MPLER G	DATE START		
13	0'FT. A	FTER.	0			HOURS	SIZE	I.D. No	m 2	<u>i</u> " 1	3/8	-	SURFACE ELEV. 20.0	
AT	FT. A	FTER			_	HOURS	HAM	MER WI	<u>. </u>	- 1	40 1bs.	BIT	GROUND WATER ELEV. 0.5	
-10	ACING	-		AMPL	E		BLO	WS PER	16"	CORING	DENSITY	STRATA	FIELD IDENTIFICATION OF SOIL	
E	BLOWS				DEC	DEPTH	(FORC	E ON T	UBE)	PER FT.	CONSIST.	DEPTH	WASH WATER, SEAMS IN ROCK, ETC.	
B	FOOT	NO.	TYPE	PEN	HEG.	@ 601.	0-6	6-12	12-18	(MIN.)	MOIST	ELEV.		
H				-		(1.1		Fi at Atternt - No Recovery	
t			1.0	-	-				1				TTT De House - He Houvery	
- +		-	CS	18	0"	6.5'	6	5	22				-	
5-		-		19:	120	8 01	25	26	12	-	moist .	6.5'	1) Brown fine-medium sand and	
		1	58	10	24	0.0					dense .	7.75	gravel, bric-a-brac fill chan	
			L	-	7 01	71 61	1	2	3		moist	1012	some silt changing to gray	
10 _		12	-	-	10	-	7				medium		silty clay.	
						-	-	-	-	-			2) Gray clayey silt changing	
		-	+	-	1	1					1			
15		3			18	16.5	1	1	2		soft	-	3) Gray clayey silt.	
15 -		+	+	1	1	1					1			
10		L	T	-				-	-	-		18.0		
		Th	+-	18	118	21.5	3	7	9		wet		4) Brown fine-medium sand.	
20 -	-	4	T	T		-		-	-		medium			
	-	T	-	+	+	-	-							
	-	-	T	T				1 12	100	1	tret		5) Brown fine-coarse sand.	
25	-	5	-	-	118	20.5	4	113	20	1	dense		trace of fine-medium gravel.	
1	-	+		1	1			-	-	-		28 0		
	-	-	-	+	+	+	+	+	1		-	2000		
-	-	E	5	1	18	31.5	10	18	22		wet	-	[6) Red-brown very fine silty	
30	T	T	+	-	+	1	-	-	+	-	_ dense		Barre	
	-	+	-	1	T		1				7			
		-		-	170	1 26 5	1 5	8	13	1	wet		7) Same as above.	
35	+-		4	+		1.0002	r	Ť			mediu	-		
		1	-	-	-	-	+	-	-	-	-			
	-	-	-	-	-					1000	wet		8) Red-brown very fine silty	
- 01	-	1	8		"11	8" 41.5	• 4	7	19		mediu	αq	TOTAL FOOTACE	

HALEY & ALDRICH, I	TEST PIT REPORT	TEST PIT NO. TP1
PROJECT: EAST SI	HORE SEWER TREATMENT PLANT, New Haven	FILE NO LOCATION: N164425 E558800
LIENT: CAMP, DE		ELEVATION: 6±
CONTRACTOR:GEN	EXPLORATION DATE: 24 Feb 72	
EQUIPMENT USED: _3	INSPECTOR: D. Andrews	
IN CHANGE NUMBER DA	DESCRIPTION OF MATERIALS	REMARKS
FEET	Red and black silty fine SAND, little ash, tra- roots, coarse sand and glass (FILL)	ce Strong sewage odor
1.0	Dark brown SILT, trace fine sand (slightly org (FILL)	anic)
- 2 -	Olive brown fine sandy SILT (F	ILL)
- 4 - 3.5	Light brown fine SAND, little silt	Excessive caving at 4
- 6 -	gravel.	
7.0	Bottom of Exploration at 7.0 ft. due to exces caving	sive
- 10 -	- E	Υ
- 12 -		
GROUNDWA	TER PIT DIMENSIONS	SUMMARY
ALE TIME	DEPTH FT. 8 . 4 . 7 22	4_ C. FI. DEPTH 7
2-24-72 0	U.5	JAR SAMPLES
Note: Ide on su	Mace BOULDERS	CV. FL. GROUNDALLER 0.5 ft.
8		CU. FI. TEST PIT NO. TPI

HALEY &	ALDRIC	H, INC.	TEST PIT REPORT	TEST PIT NO. TP10
PROJECT:_ CLIENT:_(EAST	FILE NO LOCATION:See Plan N163975 E558715 ELEVATION:14.7		
CONT RACT	OR:	3/8.0	EXPLORATION DATE: 24 Feb. 72 INSPECTOR: D. Andrews	
SCALE STRAT	SAMPLE	SAMPLE DEPTH RANGE	DESCRIPTION OF MATERIALS	REMARKS
0.1			Black SLUDGE (FIL	L)
- 2 -			Light brown coarse to fine SAND (FIL	
2.5			Red brown fine SAND little silt, trace coa to medium sand and gravel (FIL	rse L) Water seeping in at
- 4 -	°		Mottled gray organic silty coarse to fine S with shells in layers and pockets of reeds (FIL	AND 3.5 ft.
_ 6 _ 6.	0		Dark gray to black ORGANIC SILT, trace fine sand in lenses, trace shells and pocket of reeds (FIL	little ts _L)
- 8 -				
- 10 - 1 (0.0		Bottom of Exploration at 10.0 ft.	
- 12 -			5	
	GROUN	DWATER	PIT DIMENSIONS	SUMMARY
N PATE 2-24- 2-25-	72 - 72]	.5	DEPTH FT. 10 3 10 30 3.5 (L) (W) (D) 30 3.5 (L) (W) (D) 30	Q_ CU. FI. DEPTHIO.O JAR SAMPLES RAG SAMPLES
8			8" to 18" DIAM: No Vol	Cu. FI. GROUNDWATER 2.5 Cu. FI. TEST PIT NO. TP10

HA	LEY &	SOIL EN	H. INC.	TEST	PITNO. TP12		
PROJI	ECT: NT: ACTO PMENT	EAST AMP, DR: USED:	FILE NULLOCAT NI ELEVA EXPLO	E NO. 2849 CATION: See Plan N163740 E558730 EVATION: 19± PLORATION DATE: 24 Feb 72 SPECTOR: D. Andrews			
CALE	S TRATA CHANGE	SAMPLE	SAMPLE DEPTH RANGE	DESCRIPTION OF MATERIALS		REMARKS	
- 2 -	-			Brown mottled silty fine SAND, little reinfo concrete blocks, trace curbstones, wood tie plastic, pipe, brick and reeds. Trace grav few cobbles and boulders (FIL	orced es, /el, .L)	One piece of concret 6' x 2' x 3' Rubble materials=25	
- 4 -	-						
- 6	- 6.0			Light gray brown medium to fine SAND, tra shells and coarse sand, pockets and balls organic silt (FIL	ace of _L)		
- 10	9.0			Dark gray organic silty coarse to fine SAN many shells (FIL Bottom of Exploration at 10.0 ft.	ID, _L)	-	
- 12	-				,		
F	21.15	GROUND	DWATER	PIT DIMENSIONS		SUMMARY	
12 NAR. 71	24-72			9.0 (L) (W) (D) BOULDERS 8" to 18" DIAM No. 4 Vol. 2 Over 18" DIAM No. 3 Vol. 40	- Cu. Ft. - Cu. Ft. - Cu. Ft.	DEPTH <u>10.0</u> JAR SAMPLES <u></u> BAG SAMPLES <u></u> GROUNDWATER <u>9.0</u> TEST PIT NO TP12	

HAL	EY&A	LDRIC	H, INC.	TEST PIT REPORT	TEST PIT NO. TP14
ROJE	CT: _E	EAST	SHORI	E SEWER TREATMENT PLANT, New Haven Ct. Ct. AL BORINGS	FILE NO. 2849 LOCATION: See Plan N163605 E558510 ELEVATION: 14+ EXPLORATION DATE: 25 Feb 72
QUIP	MENT	USED:	<u>3/8 c</u>	u.yd.DYNAHOE	INSPECTOR: D. Andrews
CALE	STRATA CHANGE	SAMPLE	SAMPLE DEPTH RANGE	DESCRIPTION OF MATERIALS	REMARKS
- 2 -				Mottled brown fine SAND, little gravel, tra silt and coarse to medium sand; few cobble trace brick, tile and concrete (slightly orga (FIL	ace es, anic) _L)
	3.0	-		Black ORGANIC SILT, trace reeds and sh	ells
- 4 -				Light gray fine SAND, little organic silt (pockets) with reeds and shells (FIL	_L)
- 6 -	5.5			Gray medium to fine SAND, little organic trace reeds, shells and gravel (organic sil in pockets)	silt, t also LL)
- 8	-			÷	
	9.0			Black to gray ORGANIC SILT, trace reed fine sand (FI	s and LL)
- 10	_110,	0			
- 12	2 -			*	
		GROUN	DWATER	PIT DIMENSIONS	SUMMARY
NAR. 71 -	-25-7	T Z	IME'	<u>рертнет.</u> <u>10</u> · <u>3.5</u> · <u>10</u> <u>350</u> (L) (W) (D) BOULDERS	D. CU. Fr. DEPTH JAR SAMPLES BAG SAMPLES
88		1	-	8" to 18" DIAM No Vol	_ Cu. FI. GROUNDWATER8_0 _ Cu. FI. TEST PIT NO TP14

HAI	LEYEA	LDRIC	H, INC.	TEST PIT REPORT	TEST P	IT NO. TP16		
ROJE	ECT:_E	EAST AMP, R:C USED:	FILE NO LOCATION NIE ELEVAT EXPLOR	o. <u>2849</u> TION: <u>See Plan</u> <u>63565 E558400</u> TION: <u>13.5+</u> ORATION DATE: <u>25 Feb 7</u> CTOR: <u>D.</u> Andrews				
CALE	STRATA	SAMPLE	SAMPLE	DESCRIPTION OF MATERIALS		REMARKS		
EET	1.0		RANGE	Brown silty fine SAND, trace brick, glass, crete and slag (FIL	con- L)			
2				Gray mottled ORGANIC SILT, little coarse fine sand; trace brick, concrete and gravel (FIL	to L)			
- 4 -	3.5			Black and gray fine sandy ORGANIC SILT, trace reeds and shells, trace fine sand in lenses (FIL	.L)			
- 8	_8.0	-		Dark gray and black ORGANIC SILT, trace and shell fragments intermixed with fine sa (FIL	e reeds ind .L?)	May be natural		
- 10	2 - 10.0			Bottom of Exploration at 10.0 ft.				
	DATE	GROUN	DWATER	PIT DIMENSIONS DEPTH ET. 10 3 10 300	— Cu. F1.	SUMMARY		
8 A MAR. 71				(L) (W) (D)" BOULDERS B" to 18" DIAM: No Vol Over 18" DIAM. No Vol	_ Cu. Fi. _ Cu. Fi.	JAR SAMPLES BAG SAMPLES GROUNDWATER TEST PIT NO. TP16		

APPENDIX B

Ground Water Observation Well Installation Report and Data

HALEY& ALDRICH	GROUNDWA [®] INSTA		OBSER TION F	RVATION WELL REPORT	Well No. HA5-OW Boring No. HA5-OW
Project Wet Weather Ca	apacity Improvements	- Ph.I	GNHWPC	CA ESWPAF Well Diagram	File No. 37176-000
Location New Haven, CT	[Riser Pipe	Date Installed 18 May 2012
Client CH2M HILL				☐ Screen Filter Sand	H&A Rep. S. Brousseau
Contractor General Borings	s, Inc.			Cuttings	
Driller T. McGovern				Grout	Ground El. 12.1 (est.)
Initial Water Level (depth bg	s) $10.0 \pm \text{ft}$	1		Bentonite Seal	Datum NAVD88
SOIL/ROCK	WELL	г	NO		
CONDITIONS HE (; ;;)	DETAILS	DEPTI (ft.)	ELEVAT (ft.)	WELL CONSTRU	JCTION DETAILS
				Type of protective cover	Bolted
-0 PITUMINOUS		0.0	12.1	Depth of Roadway Box below gro	und surface0.0 ft
CONCRETE / 0.5		1.0	11.1	Depth of top of riser below ground	d surface0.37 ft
00		e e		Type of protective casing	Roadway Box
2 - 5 - 8		9		Length	0.7 ft
<u>ะ</u> 5 - 2		4 4		Inside diameter	<u>6.0 in.</u>
FILL	تَنْمَنَمَ عَلَيْهِ مَنْمَنَمَ عَلَيْهِ مَنْمَنَمَ عَلَيْهِ مَنْمَ عَلَيْهِ مَنْمَ عَلَيْهِ مَنْهَ مَنْهُ عَلَي ماري ماري ماري ماري ماري ماري ماري ماري	6.0	6.1	Depth of bottom of Roadway	/ Box 0.7 ft
				Type of riser pipe	Schedule 40 PVC
		8.0	4.1	Inside diameter of riser pipe	2.0 in
				Depth of bottom of riser pipe	e10.0 ft
۳ -10 10.0		10.0	2.1	Tupe of Scale Top of	Scal (ft) Thickness (ft)
				Concrete 0.0	1100000000000000000000000000000000000
		•		Bentonite 6.0	$\frac{1}{\text{ft}} = \frac{1.0 \text{ ft}}{2.0 \text{ ft}}$
				Diameter of borehole	8 in
z - 15 e' z -				Type of screen	Machine slotted Sch 40 PVC
				Screen gauge or size of ope	nings0.010 in
				Diameter of screen	2.0 in
± 20 =−20		20.0	-7.9	Depth to top of well screen	10.0 ft
				Depth to bottom of well scre	en20.0 ft
GLACIODELTAIC GLACIODELTAIC DEPOSITS				Bottom of silt trap	n/a
				Depth of bottom of borehole	24.0 ft
24.0	4		ı I		

HALEY ALDRIG	œ CH	GROUNDWATER MONITORING								
PROJECT LOCATION CLIENT CONTRACT	East S New I CH2N OR Gener	hore Water Pol Haven, Connect 1 HILL al Borings, Inc.	R. lution Abatement Facility Uj icut	pgrades	H&A FILE NO. PROJECT MGR. FIELD REP. DATE	Page 37176-000 T. Nolan S. Brousseau 18 May 2012	1 of 1			
ELEVATION DESCRIPTIO	I OF REFER DN OF REFE	ENCE POINT ERENCE POIN	$\frac{12.1}{\text{NT}} \boxed{\text{PVC}} \boxed{\text{Ro}}$	oadway / Casing 🛛 🗹 G	Fround Surface	Other:				
Date	Time	Elapsed Time (days)	Depth to Water from Reference Point	Elevation of Water	Remar	ks	Read By			
18-May-12	09:45	0	10.0	2.1			SB			
18-May-12	16:45	0.3	10.1	2.0			SB			
21-May-12	16:30	3	14.8	-2.7			SB			

APPENDIX C

Geotechnical Laboratory Test Results

Project:

Town /City:

Rochester Office 535 Summit Point Drive Henrietta, NY 14467

GNHWPCA Electrical Infrastructure

LABORATORY D.I.P.R.A. TESTS

Project Number: RT-12-040

Date: 06-14-2012

Client: Haley & Aldrich

N/A

Technician: William Gilmore

Summary of Laboratory Analysis Soil

Lab ID:	Location:	Resistivity (Ohm-cm)	Redox (mv)	PH	Sulfides (+,T,-)	% Moisture Content (wet, moist, dry)	TOTAL POINTS	
	ΗΔ-2	1 600	-49	6 72	-	Moist (9.5%)		
12-351	Depth = $4' - 14'$	8	5	0.72	0	1	14	
10.050	HA-5	7,000	2.9	7.45	-	Wet (18.7%)	6	
12-352	Depth = $10' - 17'$	0	4	0	0	2	O	
10.050	HA-9	9,800	-8.4	7.82	-	Moist (8.5%)	6	
12-303	Depth = $2' - 9'$	0	5	0	0	1	υ	

Per the Ductile Iron Pipe Research Association (DIPRA), point totals 10 or greater should be considered for Cathodic Protection.

80 Lupes Drive Stratford, CT 06615

Client:

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Ms. Jen Buchanon Haley & Aldrich 100 Corporate Place, Suite 105 Rocky Hill, CT 06067-1803

Analytical Report

CET # 12060097

Report Date: June 11, 2012 Client Project: GNHWPCA Electrical Infrastructure Client Project #: 37176-000

Connecticut Laboratory Certification PH 0116 Massachusetts Laboratory Certification M-CT903 Rhode Island Certification 199 New York Certification 11982 Florida Laboratory Certification E871064 Project#: 37176-000 CET#: 12060097 Project: GNHWPCA Electrical Infrastructure

SAMPLE SUMMARY:

This report contains analytical data associated with the following samples only:

CETID	Client Sample ID	Matrix	Collection Date	Collection Time	Receipt Date
AF04675	HA-2	Soil	5/18/2012		06/05/2012
AF04676	HA-5	Soil	5/18/2012		06/05/2012
AF04677	HA-9	Soil	5/18/2012		06/05/2012

Sample temperature upon receipt was 1.3 degrees C

ANALYSIS:

Chloride [EPA 300.0] Units: mg/kg

Client ID	HA-2	HA-5	HA-9
CET ID	AF04675	AF04676	AF04677
Date Analyzed	6/7/2012	6/7/2012	6/7/2012
Chloride	8.4	14	ND < 5.0

Sulfate [EPA 300.0] Units: mg/kg

		0' 0	
Client ID	HA-2	HA-5	HA-9
CET ID	AF04675	AF04676	AF04677
Date Analyzed	6/8/2012	6/7/2012	6/8/2012
Sulfate	320	17	110

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

David Ditta

Laboratory Director

Report Comments:

- 1. ND is None Detected at the specified detection limit.
- 2. All analyses were performed in house unless a Reference Laboratory is listed.
- 3. Samples will be disposed of 30 days after the report date.
- 4. Sample Result Flags:
 - E The result is estimated, above the calibration range.
 - H The surrogate recovery is above the control limits.
 - L The surrogate recovery is below the control limits.
 - B The compound was detected in the laboratory blank.
 - P The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
 - D The RPD between the sample and the sample duplicate is high. Sample homogeneity may be a problem.
- 5. All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing, Inc.

HAID & Raley &	Aldrich, Inc.					ľ												oud UBOORA	ne 860-282-9400
ALDNICTI Suite 100 East Har) ford, CT_0	5108-			\frown	H	AI	Z	OF	Q	S	TO	ğ		E	6	RD	Fax	860-282-9500 1 of 1
H&A FILE NO. 3	7176-000					E.	R	R R		9				Naim I ferritrik			DELI	VERY DATE	5/30/12
PROJECT NAME G	NHWPCA E	lectrical Infrastr	ucture			ADD	RESS			30 Lupe	s Drive	, Strati	ord, C	[066]			TURN	AROUND TIME NO	rmal
H&A CONTACT	en Buchanon	jbuchanon@Ha	leyaldrich.co	3		CON	TACI			Fim or I	Dave						PROJ	ECT MANAGER TON	1 Notan
											Analysi	Reque	sted						
			Danth		F	F	Ψ	4	5	<u> </u>		Н	Н	Н	\mathbb{H}	Н	Η	Commen	Š
Sample No.	Date	Time	(feet)	(Soil)	Chloride	Water Sulbic Sulfate in Soil											Number of Containers	(special instructions, precauti numbers, v	ions, additional method :tc.)
HA-2	z] &] S	.	4-14	Soil	×	×							·				-	Please run all samples for the fol	lowing:
HA-5	2)(B)/2	:	10-17	Soil	х	×			_									-	
HA-9	2/18/12	1	2-9	Soil	х	×											F		
	1	ł											4					Chloride (Standard Methods 450	0 / EPA 300.0)
	1	1						*******										Water Soluble Sulfate in Soil (St 300.0)	d Method 4500 / EPA
	1	:											·						
	1	1																	
	1	;																ee de en	
	:	ł																~ *******	
		1													<u> </u>				
Sampled and Relinquished by	Rec	reived by									E	ξ Ω						Sampling Comments	
Sign March	lâts	1 Healt	0							┢		1	┢─		┝		VOA Vial		
rigu Stan Carr	Prir	"Kaddi	WAL-	Nar	1					<u> </u>		1	\uparrow	┢		┢	Amber Glass	Adhere to CT PMC	and RDEC.
irm Haley & Aldrich, Inc.	Fin	19 "		100									1-	\square	┢		Plastic Bottle	Use CTDEP H	(CPs.
Date 5/30/2012 Time	1320 Dat	°6312	Time 🖌	566				T				\uparrow	\uparrow	+-	+-	┢	Preservative		
telinquisbed by	Rec	reived by						Γ			3		F	F	-	_	Volume		
DEPART O	Ching -	1 Vin							1			1			_	-			
The second second	Prin	 															VOA Vial Amber Glass		
ang Try Time 15	St Date	501512	Time [6	X	2 oz	2 oz	2 oz	2 02									Clear Glass		
telinquished by	Rec	eived by			>	>	A	A							-		Preservative	Evidence samples were tampere	d with? YES NO
ign	Sign	5		.												ļ.	Volume	If YES, please explain in section	below.
rint.	Prin	-		.				Ł		PRE	SERV/	TION	KEY						
Îrm	Fin	ł			San	a chi	۱ <u>ه</u>	∖ c	NaOH		E	H ₂ SO		_	G Met	hanol		120	
ate Time	Date	i.	Time		San	ple filte	řed	P	HNO,		-	Ę			H Sod	um Bis	ulfate		

.....

Project#: 37176-000 CET#: 12060097

Project: GNHWPCA Electrical Infrastructure

APPENDIX D

Structure Summary Sheets

GEOTECHNICAL ENGINEERING SUMMARY GREATER NEW HAVEN WATER POLLUTION CONTROL AUTHORITY EAST SHORE WATER POLLUTION ABATEMENT FACILITY NEW HAVEN, CONNECTICUT

<u>STRUCTURE</u>: METHANOL BUILDING

1. Applicable Subsurface Explorations:

Recent Test Boring: HA-1 Previous Test Borings: B1, TP14, TP16

Note the proposed location of the methanol tank was moved after HA-1was drilled, thus the boring is not very close to the proposed structure.

2. Subsurface Conditions:

<u>Stratum</u>	Range in <u>Thickness (ft.)</u>	Average Top of Stratum Elevation (ft.) (NAVD)
Fill	11	12
Organic Deposits		
Glaciodeltaic Deposits	44.7	2.0
Sandstone/Siltstone		-42.8.

Approximate Groundwater Elevation: 5.0 (NAVD)

3. Proposed Structure Design Features:

The methanol building will consist of a one-story brick and block structure located to the east of the existing aeration tanks. The east half of the footprint will have a lowest floor at El. 14.67, which is about 2 ft above existing ground. The west half of the structure will have a lowest floor at El. 10.67, about 1.4 ft below ground and will contain a 10,000 gallon storage tank.

Approximate Structure Loads:	
Building walls:	3,700 lbs per ft.
Building slab:	less than 500 psf
Storage tank pad:	500 to 1,000 psf

- Existing Nearby Structures:
 - The existing aeration tanks are located approximately 70 ft west. The tanks are supported on a 2 ft thick mat bearing at El. -5.
- Existing Nearby Utilities:
 - A utility pole to the northwest and a transformer pad to the southwest as shown on Figure 2.

Page 1 of 2

GEOTECHNICAL ENGINEERING SUMMARY GREATER NEW HAVEN WATER POLLUTION CONTROL AUTHORITY EAST SHORE WATER POLLUTION ABATEMENT FACILITY NEW HAVEN, CONNECTICUT

STRUCTURE: METHANOL BUILDING

1. Foundation Design Recommendations:

• Foundation Type:

Footings bearing on compacted granular fill after overexcavation of unsuitable soil. Timber piles or footings bearing on aggregate piers installed through the fill are also feasible, and may be more economical because piles or aggregate piers are recommended for other structures.

- Allowable Bearing Capacity: 2 tsf (for footings bearing on natural sand or compacted granular fill placed over natural sand or on aggregate piers).
- Estimated timber pile length: 45 ft.
- Seismic Design:

For the design earthquake, seismically-induced settlement of the underlying soils will be less than 1 in.

In accordance with the 2009 Supplement to the State of Connecticut Building Code, the seismic soil design criteria are as follows:

 $S_s = 0.243$ $S_1 = 0.062$ Site Class: D

- 2. <u>Construction Considerations</u>:
 - Underpinning and Temporary Excavation Support: The utility pole to the northwest and the transformer to the southwest will need to be temporarily supported for overexcavation option.
 - Dewatering: We anticipate that dewatering can be accomplished using sumps.

GEOTECHNICAL ENGINEERING SUMMARY GREATER NEW HAVEN WATER POLLUTION CONTROL AUTHORITY EAST SHORE WATER POLLUTION ABATEMENT FACILITY NEW HAVEN, CONNECTICUT

STRUCTURE: ELECTRIC BUILDING

1. <u>Applicable Subsurface Explorations</u>:

Recent Test Boring: HA-2 Previous Test Boring: B-42

2. Subsurface Conditions:

Stratum	Range in Thickness (ft.)	Average Top of Stratum Elevation (ft.) (NAVD)
Fill	8 to 16.9*	14.2
Organic Deposits	0 to 5.0*	6.2
Glaciodeltaic Deposits	29.0	1.6
Sandstone/Siltstone		-38.7

* Difficult to distinguish the fill from the organic deposit in the previous boring.

Approximate Groundwater Elevation: 10 (NAVD)

3. Proposed Structure Design Features:

The electric building will be a one-story brick and block structure with floor El. 14.64. Switchgear pads are planned, two to the north and two to the south of the building.

Approximate Structure Loads:

Building walls:	4,400 lbs per ft.
Building slab:	less than 500 psf
Storage tank pad:	500 to 1,000 psf

- Existing Nearby Utilities:
 - An existing 66-in. dia. RCP pipe with invert at approximately El. 1 will be about 10 ft south of the building as shown on Figure 2.
 - An abandoned 48-in. dia. RCP pipe is located about 15 ft west of the northwest corner of the proposed electric building.
- 4. <u>Foundation Design Recommendations</u>:
 - Foundation Type:

Page 1 of 2
STRUCTURE: ELECTRIC BUILDING

Timber piles or footings bearing on existing fill after improving with aggregate piers. Footings bearing on compacted granular fill after overexcavation of unsuitable soil is also feasible but we believe that will cost more. More information is needed on the switchgear pads, which if settlement tolerable may be able to be supported on a 2 to 3 ft thickness of compacted granular fill over the existing fill.

- Allowable Bearing Capacity: 2 tsf (for footings bearing on aggregate piers or on natural sand or compacted granular fill placed over natural sand).
- Estimated timber pile length: 40 ft.
- Seismic Design:

For the design earthquake, seismically-induced settlement of the underlying soils will be less than 1 in.

In accordance with the 2009 Supplement to the State of Connecticut Building Code, the seismic soil design criteria are as follows:

 $S_s = 0.243$ $S_1 = 0.062$ Site Class: D

5. <u>Construction Considerations</u>:

- Underpinning and Temporary Excavation Support: None for the pile or aggregate pier option.
- Dewatering: None for the pile or aggregate pier option. We anticipate that dewatering can be accomplished using sumps for overexcavation option.
- Special Considerations:
 - Assuming piles and aggregate piers are at least 10 ft away from the 66 in. dia. pipe, we don't believe special construction techniques are warranted.

Page 2 of 2

STRUCTURE: ODOR CONTROL

1. Applicable Subsurface Explorations:

Recent Test Boring: HA-3, HA-4 Previous Test Borings: B39, B40

2. <u>Subsurface Conditions</u>:

Stratum	Range in Thickness (ft.)	Average Top of Stratum Elevation (ft.) (NAVD)
Fill	18 to 19.5	15.5
Organic Deposits	0 to 5	
Glaciodeltaic Deposits	24 to 26	3.0
Sandstone/Siltstone		-15.8

Approximate Groundwater Elevation: 10 (NAVD)

3. Proposed Structure Design Features:

The odor control facility will consist of a slab at El. 14.64 supporting three 12-ft dia., 26-ft tall Biotowers, three 10-ft dia. 15-ft tall carbon polishing vessels, associated utilities, and overhead ducts.

Approximate Structure Loads:

 Building walls:	5,900 lbs per ft.
Slab:	500 to 1,000 psf

- Existing Nearby Structures:
 - Concrete Scrubber Pad about 40 ft to the east
- Existing Nearby Utilities:
 - The 42 in. dia. RCP (IE -4.1) crosses the footprint. This pipe will remain active for several years after the building is complete.

4. Foundation Design Recommendations:

■ Foundation Type:

STRUCTURE: ODOR CONTROL

Piles or footings bearing on existing fill after improving with aggregate piers. Footings bearing on compacted granular fill after overexcavation of unsuitable soil is also feasible but we believe that will cost more. More information is needed on the exterior pads, which if settlement tolerable may be able to be supported on a 2 to 3 ft thickness of compacted granular fill over the existing fill.

- Allowable Bearing Capacity: 2 tsf (for footings bearing on aggregate piers or on natural sand or compacted granular fill placed over natural sand).
- Estimated timber pile length: 30 to 40, average 35 ft.
- Seismic Design:

For the design earthquake, seismically-induced settlement of the underlying soils will be less than 1 in.

In accordance with the 2009 Supplement to the State of Connecticut Building Code, the seismic soil design criteria are as follows:

$$S_s = 0.243$$

 $S_1 = 0.062$
Site Class: D

5. <u>Construction Considerations</u>:

- Underpinning and Temporary Excavation Support: None for pile of aggregate pier option.
- Dewatering: None for aggregate pier option. We anticipate that dewatering can be accomplished using sumps for overexcavation option.
- Special Considerations:
 - Protection of the 42 in. dia. pipe during installation of aggregate piers. Special design for aggregate piers or alternate method of soil improvement local to the pipe may be needed.
 - Protection of the 42 in. dia. pipe during installation of piles. Driven piles should be located at least 5 ft away from existing active pipes (that are in good condition) to reduce risk of damaging the utility during pile driving. If that is not possible or it is concluded that the risk of damage to the pipe is high

Page 2 of 3

STRUCTURE: ODOR CONTROL

because of its condition, drilled piles can be used close to the existing pipes. Assume 6.625 in. dia. drilled piles with a capacity of 40 tons (could go higher if there is a pile load test) with 5 ft long rock socket.

Page 3 of 3

STRUCTURE: GENERATORS

1. Applicable Subsurface Explorations:

Recent Test Boring: HA-2 Previous Test Borings: B38

2. Subsurface Conditions:

	Range in	Average Top of Stratum
Stratum	Thickness (ft.)	Elevation (ft.) (NAVD)
Fill	8.0 to 15.0	15
Organic Deposits	0 to 5	
Glaciodeltaic Deposits	21.0 to 29.0	1.1
Sandstone/Siltstone		-14.5

Approximate Groundwater Elevation: 10 (NAVD)

3. Proposed Structure Design Features:

The standby emergency power generators will be an at-grade structure with a floor at El. 14.64. The generator and a fuel tank will be supported by a steel-frame on a concrete pad.

- Structure Load: Approx. 50,000 lbs. each.
- Existing Nearby Structures:
- Existing Nearby Utilities:
 - The 42 in. dia. RCP (IE -4.1) crosses the footprints of the pads.
 - The abandoned 48 in. RCP crosses the footprints of the pads.

4. <u>Foundation Design Recommendations</u>:

• Foundation Type:

Piles or footings bearing on existing fill after improving with aggregate piers. We recommend considering shifting the generators to the west so that they are not over the 42 in. dia. RCP which is to remain in service.

Page 1 of 3

STRUCTURE: GENERATORS

Footings bearing on compacted granular fill after overexcavation of unsuitable soil are also feasible but we believe that will cost more. More information is needed on the generator pads, which if settlement tolerable may be able to be supported on a 2 to 3 ft thickness of compacted granular fill over the existing fill. This would have some inherent risk because if the 42 in. dia. RCP were to fail, the generator foundation would likely be compromised.

- Allowable Bearing Capacity: 2 tsf (for footings bearing on aggregate piers or on natural sand or compacted granular fill placed over natural sand).
- Estimated timber pile length: 35 ft.
- Seismic Design:

For the design earthquake, seismically-induced settlement of the underlying soils will be less than 1 in.

In accordance with the 2009 Supplement to the State of Connecticut Building Code, the seismic soil design criteria are as follows:

 $S_s = 0.243$ $S_1 = 0.062$ Site Class: D

5. Construction Considerations:

- Underpinning and Temporary Excavation Support: None for pile or aggregate pier option.
- Dewatering: None for aggregate pier option. We anticipate that dewatering can be accomplished using sumps for overexcavation option.
- Special Considerations:

If it is not possible to relocate the generators away from the 42 in. dia. RCP, the following applies:

- Protection of the 42 in. dia. pipe during installation of aggregate piers. Special design for aggregate piers or alternate method of soil improvement local to the pipe may be needed.

Page 2 of 3

STRUCTURE: GENERATORS

- Protection of the 42 in. dia. pipe during installation of piles. Driven piles should be located at least 5 ft away from existing active pipes (that are in good condition) to reduce risk of damaging the utility during pile driving. If that is not possible or it is concluded that the risk of damage to the pipe is high because of its condition, drilled piles can be used close to the existing pipes. Assume 6.625 in. dia. drilled piles with a capacity of 40 tons (could go higher if there is a pile load test) with 5 ft long rock socket.

<u>STRUCTURE</u>: SLUDGE HANDLING FACILITY

1. <u>Applicable Subsurface Explorations</u>:

Recent Test Boring: HA5-OW, HA9 Previous Test Borings: B27, TP1

2. Subsurface Conditions:

Stratum	Range in Thickness (ft.)	Average Top of Stratum Elevation (ft.) (NAVD)	
Fill	6.0 to 14.5	13	
Glaciodeltaic Deposits	13.0 to 19.0	5	
Sandstone/Siltstone		-15.1	

Approximate Groundwater Elevation: 2.0 (NAVD)

3. <u>Proposed Structure Design Features:</u>

The new storage tank is planned at the location of the off-line gravity thickeners, which will be demolished and removed. The proposed structure will abut the north side of the on-line gravity thickener and storage tank. The proposed storage tank will be about 65 ft dia., with the bottom at El. -4.73 at the perimeter (approximately 18 ft below ground surface) and about 6 ft deeper at its conical center. A basement / pump room area with floor El. -4.73 is planned adjacent to the west and south sides of the tank, connecting to the existing pump room of the on-line gravity thickeners, which we understand has a floor at approximately the same elevation.

Once the new storage tank in on line, the existing storage tank will be converted to a gravity thickener. Once this gravity thickener is on line, the existing gravity thickener tank will be converted to a duel use gravity thickener/sludge storage tank. Once this is on line, the new sludge storage tank will be used as a receiving tank for truck imported sludge.

- Structure Design Load: unknown
- Existing Nearby Structures:
 - The proposed Sludge Handling Facility will abut the north side on-line gravity thickener structure, which consists of two tanks with an underground pump room between them. In the original design (1949), the digester tanks and pump room appear to have been supported on a 1 ft thick mat, but in the renovated/converted design (1975), the mat was thickened by about 5 ft at the

Page 1 of 3

<u>STRUCTURE</u>: SLUDGE HANDLING FACILITY

now storage and thickener tanks and by 1 ft at the pump room. The tank mats bear at approximately El. -6.64 (NAVD) around the perimeter and slope down to about El. -18 at the center. A tunnel connects the pump room to the Maintenance Building to the northwest.

- Existing Nearby Utilities:
 - There are at-grade equipment pads to the west of the proposed Sludge Handling Facility
 - There is a 15-in. dia. RCP storm line along the north and east sides of the Sludge Handling Facility
 - Several other utilities are within the footprint as shown on Figure 2.

4. Foundation Design Recommendations:

- Foundation Type:
 - Mat bearing on the natural glaciodeltaic deposits or compacted granular fill over the natural glaciodeltaic deposits.
 - Waterproof design and construction in pump room.
 - Hydrostatic pressure considerations for pump room and empty tanks, including the refurbishing
 - Design for a groundwater level at El. 10 (100-year flood elevation)
- Allowable Bearing Capacity: 2 tsf
- Seismic Design:

For the design earthquake, seismically-induced settlement of the underlying soils will be less than 1 in.

In accordance with the 2009 Supplement to the State of Connecticut Building Code, the seismic soil design criteria are as follows:

 $S_s = 0.243$ $S_1 = 0.062$ Site Class: D

Page 2 of 3

<u>STRUCTURE</u>: SLUDGE HANDLING FACILITY

5. <u>Construction Considerations</u>:

- Underpinning and Temporary Excavation Support: Open cut or temporary steel sheet piles.
 - Temporary excavation support or relocating the 15-in. dia. RCP storm sewer.
 - Temporary excavation support of the concrete pads west of the proposed structure.
- Dewatering: We anticipate that dewatering can be accomplished using deep sumps. Several sumps will be needed to dewater the permeable sand.
- Special Considerations:

STRUCTURE: SITE BUFFERING

1. Applicable Subsurface Explorations:

Recent Test Boring: HA6, HA7

Access to the southern portion of this area was not possible because it could not be accessed from the GNHWPCA property through the woods, brush and wetland, and GNHWPCA did not want us to access through the neighbors property.

2. Subsurface Conditions:

	Range in	Average Top of Stratum
Stratum	Thickness (ft.)	Elevation (ft.) (NAVD)
Fill	5.0	5.0
Glaciodeltaic Deposits	13.0	1.5
Sandstone/Siltstone		-11.5

Approximate Groundwater Elevation: 1.5 to 3.6 (NAVD)

3. Proposed Structure Design Features:

A soil berm, screening wall, or sound barrier is being considered.

- Structure Design Load: unknown
- Existing Nearby Structures:
 - An existing 43 by 68 in. box culvert storm sewer parallels or may lie beneath the planned location of the buffer near the east property line.

4. Foundation Design Recommendations:

- Foundation Type:
 - 1. Soil Berm The berm may be constructed on common fill. This may be a location considered for disposing/reuse of onsite excess excavated soil. Environmental exposure consideration may include some clean cover soil and a liner and infiltrating water collection system below the berm (routed to the sanitary line).
 - 2. Screening Wall or Sound Barrier Typically these structures are supported on concrete piers, which appear feasible at the site. The piers should be embedded within the natural glaciodeltaic sand.

Page 1 of 2

STRUCTURE: SITE BUFFERING

- Allowable Bearing Capacity: 2 tsf
- Seismic Design:

For the design earthquake, seismically-induced settlement of the underlying soils will be less than 1 in.

In accordance with the 2009 Supplement to the State of Connecticut Building Code, the seismic soil design criteria are as follows:

 $S_s = 0.243$ $S_1 = 0.062$ Site Class: D

- 5. <u>Construction Considerations</u>:
 - Temporary Excavation Support: Open cuts appear feasible.
 - Dewatering: We anticipate that dewatering can be accomplished using sumps, and a layer of crushed stone at the bottom of the screening wall piers.
 - Special Considerations:
 - Protection of box culvert.

APPENDIX E

Environmental Laboratory Analytical Data Reports and Chain of Custody Documentation

80 Lupes Drive Stratford, CT 06615 Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client: Ms. Jen Bucha Haley & Aldrid 100 Corporate

Ms. Jen Buchanon Haley & Aldrich 100 Corporate Place, Suite 105 Rocky Hill, CT 06067-1803

Analytical Report

CET # 12050544

Report Date: May 30, 2012 Client Project: GNHWPCA Client Project #: 37176-000

Connecticut Laboratory Certification PH 0116 Massachusetts Laboratory Certification M-CT903 Rhode Island Certification 199 New York Certification 11982 Florida Laboratory Certification E871064 Project#: 37176-000 CET#: 12050544 Project: GNHWPCA

SAMPLE SUMMARY:

This report contains analytical data associated with the following samples only:

CETID	Client Sample ID	Matrix	Collection Date	Collection Time	Receipt Date
AF03598	HA617-S1 0-5ft	Soil	5/21/2012	17:00	05/22/2012

Sample temperature upon receipt was 1.1 degrees C

PREP ANALYSIS:

Acid Digestion [EPA 3050B]

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/24/2012

Accelerated Solvent Ext. SVOC [EPA 3545A]

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/24/2012

Accelerated Solvent Ext.- PCBs [EPA 3545A]

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/24/2012

Ultrasonic Extraction-ETPH [EPA 3550C]

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/24/2012

ANALYSIS:

Total Mercury [EPA 7471B] Units: mg/kg (Dry Wt)

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/24/2012
Total Mercury	ND < 0.30

Flash Point (Ignitability) [EPA 1010] Units: Degrees F

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/24/2012
Flash Point (Ignitability)	>200

pH [EPA 9045C] Units: S.U.

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/23/2012
pН	5.42

Reactivity (Cyanide) [SW 846 CH.7] Units: mg/kg

	/ L
Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/30/2012
Reactivity (Cyanide)	ND < 5.0

Reactivity (Sulfide) [SW 846 CH.7] Units: mg/kg

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/30/2012
Reactivity (Sulfide)	ND < 20

Total Solids [EPA 160.3 mo] Units: percent

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/30/2012
Total Solids	88

Total Metals [EPA 6010C] Units: mg/kg (Dry Wt)

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/24/2012
Dilution	1.0
Lead	14
Selenium	ND < 1.5
Cadmium	ND < 1.0
Chromium	10
Arsenic	1.6
Barium	34
Silver	ND < 2.5

Project#: 37176-000 CET#: 12050544 Project: GNHWPCA

EPA 8082 PCBs [EPA 8082A] Units: mg/kg (Dry Wt)

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/25/2012
Dilution	1.0
PCB-1016	ND < 0.29
PCB-1221	ND < 0.29
PCB-1232	ND < 0.29
PCB-1242	ND < 0.29
PCB-1248	ND < 0.29
PCB-1254	ND < 0.29
PCB-1260	ND < 0.29
PCB-1268	ND < 0.29
TCMX (Surr 1) 50-150	71
DCB (Surr 2) 50-150	64

Semi-Volatile Organics [EPA 8270D] Units: ug/kg (Dry Wt)

Client ID	HA617-S1 0-5ft	
CET ID	AF03598	
Date Analyzed	5/26/2012	
Dilution	1.0	
Pyridine	ND < 114	
n-Nitroso-dimethylamine	ND < 341	
bis(2-Chloroethyl)ether	ND < 341	
Phenol	ND < 341	
Aniline	ND < 341	
2-Chlorophenol	ND < 341	
1,3-Dichlorobenzene	ND < 341	
1,4-Dichlorobenzene	ND < 341	
Benzyl Alcohol	ND < 341	
1,2-Dichlorobenzene	ND < 341	
bis(2-chloroisopropyl)ether	ND < 341	
Hexachloroethane	ND < 341	
N-Nitroso-di-n-propylamine	ND < 341	
2-Methyl Phenol	ND < 341	
3+4 Methyl Phenol	ND < 341	
Nitrobenzene	ND < 341	
Isophorone	ND < 341	
2-Nitrophenol	ND < 341	
2,4-Dimethylphenol	ND < 341	
bis(2-Chloroethoxy)methane	ND < 341	
Benzoic Acid	ND < 341	
2,4-Dichlorophenol	ND < 341	
1,2,4-Trichlorobenzene	ND < 341	
Naphthalene	ND < 341	
2,6-Dichlorophenol	ND < 341	
4-Chloroaniline	ND < 341	
1,2,4,5 Tetrachlorobenzene	ND < 341	
Hexachlorobutadiene	ND < 341	
4-Chloro-3-methylphenol	ND < 341	
2-Methyl Naphthalene	ND < 341	
Hexachlorocyclopentadiene	ND < 341	

Semi-Volatile Organics [EPA 8270D] Units: ug/kg (Dry Wt)

Client ID	HA617-S1 0-5ft
2,4,6-Trichlorophenol	ND < 341
2,4,5-Trichlorophenol	ND < 341
2-Chloronaphthalene	ND < 341
2-Nitroaniline	ND < 341
Acenaphthylene	ND < 341
Dimethylphthalate	ND < 341
2,6-Dinitrotoluene	ND < 341
4-Nitroaniline	ND < 341
Acenaphthene	ND < 341
2,4-Dinitrophenol	ND < 341
2,4-Dinitrotoluene	ND < 341
4-Nitrophenol	ND < 341
Dibenzofuran	ND < 341
2,3,4,6-Tetrachlorophenol	ND < 341
Fluorene	ND < 341
4-Chlorophenyl-phenylether	ND < 341
Diethylphthalate	ND < 341
3-Nitroaniline	ND < 341
4,6-Dinitro-2-methylphenol	ND < 341
n-Nitrosodiphenylamine	ND < 341
1,2-Diphenylhydrazine	ND < 341
4-Bromophenyl-phenylether	ND < 341
Hexachlorobenzene	ND < 341
Pentachlorophenol	ND < 341
Phenanthrene	ND < 341
Anthracene	ND < 341
Carbazole	ND < 341
Di-n-butylphthalate	ND < 341
Pentachloronitrobenzene	ND < 341
Fluoranthene	ND < 341
Pyrene	ND < 341
Butylbenzylphthalate	ND < 341
3,3-Dichlorobenzidine	ND < 341
Benzo[a]anthracene	ND < 341
Chrysene	ND < 341
bis(2-Ethylhexyl)phthalate	ND < 341
Di-n-octylphthalate	ND < 341
Benzo[b]fluoranthene	ND < 341
Benzo[k]fluoranthene	ND < 341
Benzo[a]pyrene	ND < 341
Indeno[1,2,3-cd]pyrene	ND < 341
Dibenz[a,h]anthracene	ND < 341
Benzo[g,h,i]perylene	ND < 341
2-Fluorophenol (Surr) 30-130	57.1
Phenol-d6(Surr) 30-130	65.5
Nitrobenzene-d5(Surr) 30-130	55.8
2-Fluorobiphenyl (Surr) 30-130	68.4
2,4,6-Tribromophenol (Surr) 30-130	84.2
Terphenyl-d14 (Surr) 30-130	74.6

Conn. Extractable TPH [CT DEP] Units: mg/kg (Dry Wt)

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/25/2012
Dilution	1.0
ETPH	ND < 57
Octacosane (surr) 50-150	106

Volatile Organics [EPA 8260C] Units: ug/kg (Dry Wt)

Client ID	HA617-S1 0-5ft
CET ID	AF03598
Date Analyzed	5/27/2012
Dilution	1.3
Dichlorodifluoromethane	ND < 11
Chloromethane	ND < 8.0
Vinyl Chloride	ND < 4.0
Bromomethane	ND < 8.0
Chloroethane	ND < 8.0
Acetone	ND < 110
Acrylonitrile	ND < 6.0
Trichlorofluoromethane	ND < 30
Trichlorotrifluoroethane	ND < 30
1,1-Dichloroethene	ND < 4.0
Methylene Chloride	ND < 37
Carbon Disulfide	ND < 8.0
Methyl-t-Butyl Ether (MTBE)	ND < 4.0
trans-1,2-Dichloroethene	ND < 4.0
1,1-Dichloroethane	ND < 4.0
2-Butanone (MEK)	ND < 19
2,2-Dichloropropane	ND < 4.0
cis-1,2-Dichloroethene	ND < 4.0
Chloroform	ND < 4.0
Tetrahydrofuran	ND < 19
1,1,1-Trichloroethane	ND < 4.0
Carbon Tetrachloride	ND < 4.0
1,1-Dichloropropene	ND < 4.0
Benzene	ND < 4.0
1,2-Dichloroethane	ND < 4.0
Methyl Isobutyl Ketone	ND < 19
Trichloroethene	ND < 4.0
1,2-Dichloropropane	ND < 4.0
Dibromomethane	ND < 4.0
Bromodichloromethane	ND < 4.0
2-Hexanone	ND < 19
cis-1,3-Dichloropropene	ND < 4.0
Toluene	ND < 4.0
trans-1,3-Dichloropropene	ND < 4.0
1,1,2-Trichloroethane	ND < 4.0
Tetrachloroethene	ND < 4.0
1,3-Dichloropropane	ND < 4.0
Dibromochloromethane	ND < 4.0
1,2-Dibromoethane	ND < 4.0

Volatile Organics [EPA 8260C] Units: ug/kg (Dry Wt)

Client ID	HA617-S1 0-5ft
trans-1,4-Dichloro-2-Butene	ND < 19
Chlorobenzene	ND < 4.0
1,1,1,2-Tetrachloroethane	ND < 4.0
Ethylbenzene	ND < 4.0
m+p Xylenes	ND < 4.0
o-Xylene	ND < 4.0
Styrene	ND < 4.0
Bromoform	ND < 4.0
Isopropylbenzene	ND < 4.0
1,1,2,2-Tetrachloroethane	ND < 4.0
Bromobenzene	ND < 4.0
1,2,3-Trichloropropane	ND < 4.0
n-Propylbenzene	ND < 4.0
2-Chlorotoluene	ND < 4.0
4-Chlorotoluene	ND < 4.0
1,3,5-Trimethylbenzene	ND < 4.0
tert-Butylbenzene	ND < 4.0
1,2,4-Trimethylbenzene	ND < 4.0
sec-Butylbenzene	ND < 4.0
1,3-Dichlorobenzene	ND < 4.0
4-Isopropyltoluene	ND < 4.0
1,4-Dichlorobenzene	ND < 4.0
1,2-Dichlorobenzene	ND < 4.0
n-Butylbenzene	ND < 4.0
1,2-Dibromo-3-Chloropropane	ND < 4.0
1,2,4-Trichlorobenzene	ND < 4.0
Hexachlorobutadiene	ND < 4.0
Naphthalene	ND < 4.0
1,2,3-Trichlorobenzene	ND < 4.0
1,2 Dichloroethane-d4 (SURR) 70-130	126
toluene-d8 (SURR) 70-130	100
4-bromofluorobenzene (SURR) 70-130	96.4

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

David Ditta

Laboratory Director

Project#: 37176-000 CET#: 12050544 Project: GNHWPCA

Report Comments:

- 1. ND is None Detected at the specified detection limit.
- 2. All analyses were performed in house unless a Reference Laboratory is listed.
- 3. Samples will be disposed of 30 days after the report date.
- 4. Sample Result Flags:
 - E The result is estimated, above the calibration range.
 - H The surrogate recovery is above the control limits.
 - L The surrogate recovery is below the control limits.
 - B The compound was detected in the laboratory blank.
 - P The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
 - D The RPD between the sample and the sample duplicate is high. Sample homogeneity may be a problem.
- 5. All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

The EPA has removed reactivity as a method. Therefore, we cannot certify Reactivity results.

Page 9 of 9

Project#: 37176-000 CET#: 12050544 Project: GNHWPCA

Farm #7204

Complete Environmental Testing, Inc.

May 30, 2012

80 Lupes Drive Stratford, CT 06615

Client:

Ms. Jen Buchanon Haley & Aldrich 100 Corporate Place, Suite 105 Rocky Hill, CT 06067-1803

Analytical Report

CET # 12050553

Report Date: May 30, 2012 Client Project: GNHWPCA Client Project #: 37176-000

Connecticut Laboratory Certification PH 0116 Massachusetts Laboratory Certification M-CT903 Rhode Island Certification 199

New York Certification 11982 Florida Laboratory Certification E871064

1 of 22

239 of 270

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com -----

Г

ODD

SAMPLE SUMMARY:

This report contains analytical data associated with the following samples only:

CEND	Client Sample ID	Matrix	Collection Det		
AF03615	HA1-S1 0-5ft	C.il	Conection Date	Collection Time	Receipt Date
AE03616		501	5/21/2012	11:00	05/22/2012
1103010	HA1-52 5-19ft	Soil	5/21/2012	11:30	05/22/2012
AF0361/	HA2-S1 0-5ft	Soil	5/18/2012	11.20	03/22/2012
AF03618	HA2-S2 5-14ft	Soil	5/18/2012	11.50	05/22/2012
AF03619	HA3-S1 0-5ft	Sail	5/10/2012	12:30	05/22/2012
AE03620		301	5/18/2012	11:45	05/22/2012
111 05020	HA3-52 5-12ft	Soil	5/18/2012	12:45	05/22/2012
AF03621	HA4-S1 0-19ft	Soil	5/21/2012	0.00	03/22/2012
AF03622	HA5-S1 0-5ft	Soil	5/18/2012	9.00	05/22/2012
AF03623	HA5-S2 5-10ft	Soil	5/10/2012	9:00	05/22/2012
		301	5/18/2012	9:30	05/22/2012

Sample temperature upon receipt was 1.1 degrees C

PREP ANALYSIS:

Acid Digestion [EPA 3050B]

Client ID	HA1-S1 0-5ft	HA1-S2 5-19ft	HA2 \$1 0 56	
CET ID Date Analyzed	AF03615 5/24/2012	AF03616 5/24/2012	AF03617 5/24/2012	HA2-S2 5-14ft AF03618 5/24/2012

Acid Digestion [EPA 3050B]

Client ID	HA3-S1 0-5ft	HA3-S2 5-12ft	HA4 \$1.0.10G	TINE OF OF
CET ID	AF03619	AF03620	AF03621	HA5-S1 0-5ft
Date Analyzed	5/24/2012	5/24/2012	5/24/2012	5/24/2012
				5/24/2012

Acid Digestion [EPA 3050B]

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/24/2012

Accelerated Solvent Ext. SVOC [EPA 3545A]

I Client ID	HALSTOFE	LILL COLLES	1	
CETTID	1111-51 0-5It	HA1-S2 5-19ft	HA2-S1 0-5ft	HA2-S2 5 14ft
CELID	AF03615	AE03616	102(17	1112-02 J-1411
Date Analyzed	5/24/2012		AF0301/	AF03618
uermaryzeu	3/24/2012	5/24/2012	5/24/2012	5/24/2012
			-/-/2012	J/24/2012

Accelerated Solvent Ext. SVOC [EPA 3545A]

	HA3-S1 0-5ft	HA3-S2 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft
Date Analyzed	AF03619 5/24/2012	AF03620	AF03621	AF03622
	-/-//2012	5/24/2012	5/24/2012	5/24/2012

Accelerated Solvent Ext. SVOC [EPA 3545A]

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/24/2012

Accelerated Solvent Ext.- PCBs [EPA 3545A]

CET ID AF03615 AF03616 AF03617 AF03618 Date Analyzed 5/24/2012 5/24/2012 5/24/2012 5/24/2012	Client ID	HA1-S1 0-5ft	HA1-S2 5-19ft	442 51 0 50	TTLO CO T
	CET ID Date Analyzed	AF03615 5/24/2012	AF03616 5/24/2012	AF03617 5/24/2012	HA2-S2 5-14ft AF03618 5/24/2012

Accelerated Solvent Ext.- PCBs [EPA 3545A]

Client ID	HA3-S1 0-5ft	HA3-S2 5-12ft	HA4-S1 0 106	TILECLOSE
CET ID	AF03619	AF03620	AF03621	AF03622
Date Analyzed	5/24/2012	5/24/2012	5/24/2012	5/24/2012

Accelerated Solvent Ext.- PCBs [EPA 3545A]

HA5-S2 5-10ft
AF03623
5/24/2012

Ultrasonic Extraction-ETPH [EPA 3550C]

Client ID	HA1-S1 0-5ft	HA1-S2 5-19ft	HA2 \$1.0 56	TING CO F 446
CET ID	AF03615	AF03616	AF03617	HAZ-S2 5-14tt
Date Analyzed	5/24/2012	5/24/2012	5/24/2012	5/24/2012

Ultrasonic Extraction-ETPH [EPA 3550C]

Client ID	HA3-S1 0-5ft	H12 82 5 106	LILLA CLOSE	
CETID	1 E02(10	11/13-52 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft
	AF03019	AF03620	AF03621	AE03622
Date Analyzed	5/24/2012	5/24/2012	5/24/2012	5/04/0015
		-/-//2012	3/24/2012	5/24/2012

Ultrasonic Extraction-ETPH [EPA 3550C]

Client ID	HA5-S2 5-10ft	Ľ
CET ID	AF03623	
Date Analyzed	5/24/2012	

ANALYSIS:

Mercury Dup Result [EPA 7471B] Units: mg/kg (Dry Wt)

Client ID	HA1-S1 0-5ft
CET ID	AF03615
Date Analyzed	5/25/2012
Mercury Dup Result	0.43
/ - p recount	0.45

Total Mercury [EPA 7471B] Units: mg/kg (Dry Wt)

Client ID	TTAL CLOFE	818	(Diy Wi)	
CETID	FIAT-ST 0-5ft	HA1-S2 5-19ft	HA2-S1 0-5ft	HA2-S2 5 146
Date Analyzed	AF03615	AF03616	AF03617	AF03618
Total Mercury	0 55	5/25/2012	5/25/2012	5/25/2012
	0.00	ND < 0.30	ND < 0.30	0.86

Total Mercury [EPA 7471B] Units: mg/kg (Dry Wt)

Client ID	HA3 SI OFC	UT10.00 01 8	==	
CETID	11/13-31 0-3ft	HA3-S2 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft
Date Analyzed Total Mercury	AF03619 5/25/2012 ND < 0.30	AF03620 5/25/2012	AF03621 5/25/2012	AF03622 5/25/2012
	110 (0.50	0.94	ND < 0.30	ND < 0.30

Total Mercury [EPA 7471B] Units: mg/kg (Dry Wt)

HA5-S2 5-10ft
AF03623
5/25/2012
ND < 0.30

Flash Point (Ignitability) [EPA 1010] Units: Degrees F

Chent ID CET ID	HA1-S1 0-5ft	HA1-S2 5-19ft	HA2-S1 0-5ft	HA2-S2 5-14ft
Date Analyzed Flash Point (Ignitability)	5/24/2012 >200	AF03616 5/24/2012 >200	AF03617 5/24/2012 >200	AF03618 5/24/2012 >200

Flash Point (Ignitability) [EPA 1010] Units: Degrees F

Client ID	HA3-S1 0-5ft	HA3-S2 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft
CET ID	AF03619	AF03620	AF03621	AF03622
Date Analyzed	5/24/2012	5/24/2012	5/24/2012	5/24/2012
Flash Point (Ignitability)	>200	>200	>200	>200
			200	>200

Project#: 37176-000 CET#: 12050553 Project: GNHWPCA

Flash Point (Ignitability) [EPA 1010] Units: Degrees F

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/24/2012
Flash Point (Ignitability)	>200

pH [EPA 9045C] Units: S.U.

Client ID	HA1-S1 0-5ft	HA1 \$2 5 106	TING OF O FR	
CETID	102/15	1111-32 3-19ft	HA2-S1 0-5ft	HA2-S2 5-14ft
	AF03615	AF03616	AF03617	AF03618
Date Analyzed	5/23/2012	5/23/2012	5/23/2012	F /02 /0010
pН	7.28	7.06	0.07	5/23/2012
		7.00	8.3/	8.07

pH [EPA 9045C] Units: S.U.

Client ID	HA3-S1 0-5ft	HA3 \$2 5 120	TTA OLO 100	
CET ID Data Analyza I	AF03619	AF03620	HA4-S1 0-19ft AF03621	HA5-S1 0-5ft AF03622
pH	5/23/2012 7.69	5/23/2012 8.08	5/23/2012	5/23/2012
			0.12	0.50

pH [EPA 9045C] Units: S.U.

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/23/2012
pН	8.23

Reactivity (Cyanide) [SW 846 CH.7] Units: mg/kg

Client ID	LIAI CLOFC	8		
Ghent ID	HAI-51 0-5ft	HA1-S2 5-19ft	HA2-S1 0-5ft	HA2 \$25 146
CET ID	AE03615	1 E02616	LEGG (JE	11112-32 J-14ft
Date Applyzad	5/20/20/2	AI-03010	AF03617	AF03618
Date Milalyzed	5/30/2012	5/30/2012	5/30/2012	E /20 /0010
Reactivity (Cvanide)	ND < 50	ND < 50	5/50/2012	5/30/2012
) (=) =====(=)	11B < 5.0	$ND \le 5.0$	ND < 5.0	ND < 50

Reactivity (Cyanide) [SW 846 CH.7] Units: mg/kg

Client ID	HA3-S1 0-5ft	HA3-S2 5-12ft	HA4 \$1.0.10G	
CET ID	AF03619	AF03620	VE02(01	HA5-SI 0-5ft
Date Analyzed	5/30/2012	5/30/2012	AF03621	AF03622
Reactivity (Cyanide)	ND < 5.0	3/30/2012	5/30/2012	5/30/2012
()()(ind(c))	110 < 5.0	$ND \le 5.0$	ND < 5.0	ND < 5.0

Reactivity (Cyanide) [SW 846 CH.7] Units: mg/kg

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/30/2012
Reactivity (Cyanide)	ND < 5.0
	1 million and the second secon

	<u></u>		**5	
Client ID	HA1-S1 0-5ft	HA1-S2 5-19ft	HA2-S1 0 5ft	U12 52 5 146
CET ID	AE03615	102(1(1112-31 0-31	пл2-52-5-14ft
Data Analyzed	5/20/2015	AF03010	AF03617	AF03618
Date Analyzed	5/30/2012	5/30/2012	5/30/2012	5/30/2012
Reactivity (Sulfide)	ND < 20	ND < 20	ND < 20	3/30/2012
		142 4 20	$ND \leq 20$	ND < 20

Reactivity (Sulfide) [SW 846 CH.7] Units: mg/kg

01				
Client ID	HA3-S1 0-5ft	HA3-S2 5-12ft	HA4-S1 0-19ft	HAS STOFF
CET ID	AF03619	AE03620	102(21	11A3-31 0-5ft
Date Analyzed	5/30/2012	F /20 /2010	AF03021	AF03622
Popptinity (S-16.1.)	J/ J0/ 2012	5/30/2012	5/30/2012	5/30/2012
Reactivity (Suinde)	ND < 20	ND < 20	ND < 20	ND < 20
			L	

Reactivity (Sulfide) [SW 846 CH.7] Units: mg/kg

HA5-S2 5-10ft
AF03623
5/30/2012
ND < 20

Total Solids [EPA 160.3 mo] Units: percent

Client ID	HA1-S1 0-5ft	HA1-S2 5-19ft	HA2-S1 0-5ft	HA2 82 5 140
CET ID Date Analyzed Total Solida	AF03615 5/30/2012	AF03616 5/30/2012	AF03617 5/30/2012	AF03618 5/30/2012
	04	88	92	66

Total Solids [EPA 160.3 mo] Units: percent

Client ID	HA3-S1 0-5ft	HA3 \$2.5 12Ft	LIA4 61 0 106	TTUTOLOGI
CET ID	1E02(10	1113-52 3-1211	HA4-51 0-19ft	HA5-S1 0-5ft
	AF05019	AF03620	AF03621	AF03622
Date Analyzed	5/30/2012	5/30/2012	5/30/2012	5/30/2012
Total Solids	85	69	90	01
			20	91

Total Solids [EPA 160.3 mo] Units: percent

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/30/2012
Total Solids	89

May 30, 2012

Project#: 37176-000 CET#: 12050553 Project: GNHWPCA

Total Metals [EPA 6010C] Units: mg/kg (Dry Wt)

Client ID	HA1-S1 0.5ft	T HA1 62 5 105	T. T	
CETID		<u> nai-82 5-19tt</u>	HA2-S1 0-5ft	HA2-S2 5-14ft
	AF03615	AF03616	AF03617	AF03618
Date Analyzed	5/24/2012	5/24/2012	5/24/2012	5/24/2012
Dilution	1.0	1.0	10	5/24/2012
Lead	2.00	0.7	1.0	1.0
Selenium	ND < 15		8.6	57
Cadmium		ND < 1.5	ND < 1.5	ND < 2.0
	ND < 1.0	ND < 1.0	ND < 1.0	ND < 10
Chromium	21	11	1 12	110 - 1.0
Arsenic	4.7	ND < 15		40
Barium	1 55	110	2.4	8.1
Silver	ND - 25	10	24	58
	$ND \leq 2.5$	ND < 2.5	ND < 2.5	ND < 3.5

Total Metals [EPA 6010C] Units: mg/kg (Dry Wt)

Client ID	HA3-S105ft	LIAZ CO F 10C		
CETID	1213 01 0-511	HA3-52 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft
Data la 1	AF03619	AF03620	AF03621	AF03622
Date Analyzed	5/24/2012	5/24/2012	5/24/2012	5/24/2010
Dilution	1.0	10	10	5/24/2012
Lead	94	60	1.0	1.0
Selenium	ND < 15	00	21	30
Codmin	ND < 1.5	ND < 1.5	ND < 1.5	ND < 15
Cadmium	ND < 1.0	ND < 1.0	ND < 10	ND < 1.0
Chromium	50	42	15	ND < 1.0
Arsenic	2.8	8.4	15	12
Barium	11	0.4	2.5	2.7
Silmon	++	60	46	32
Suver	ND < 2.5	ND < 3.0	ND < 25	ND < 25
		and a second	2.2	1ND > 2.5

Total Metals [EPA 6010C] Units: mg/kg (Dry Wt)

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/24/2012
Dilution	1.0
Lead	31
Selenium	ND < 1.5
Cadmium	ND < 1.0
Chromium	19
Arsenic	2.9
Barium	43
Silver	ND < 2.5
	the second s

Project#: 37176-000 CET#: 12050553 Project: GNHWPCA

H

Client ID	ITAL CLOFC	TTLL OF TIME	T	
CETID	TAI-51 0-5ft	HA1-S2 5-19ft	HA2-S1 0-5ft	HA2-S2 5-14ft
CETID	AF03615	AF03616	AF03617	AF03618
Date Analyzed	5/25/2012	5/25/2012	5/25/2012	5/25/2012
Dilution	1.0	10	1 0	3/25/2012
PCB-1016	ND < 0.30		1.0	1.0
PCB 1221	ND < 0.50	ND < 0.29	ND < 0.28	ND < 0.38
1 CD-1221	ND < 0.30	ND < 0.29	ND < 0.28	ND < 0.38
PCB-1232	ND < 0.30	ND < 0.29	ND < 0.28	$ND \le 0.38$
PCB-1242	ND < 0.30	ND < 0.29	ND < 0.28	ND < 0.20
PCB-1248	ND < 0.30	ND < 0.29	ND < 0.20	ND < 0.38
PCB-1254	ND < 0.30	ND < 0.29	ND < 0.28	ND < 0.38
PCB 1260	ND < 0.30	ND < 0.29	ND < 0.28	ND < 0.38
DCD 1200	ND < 0.30	ND < 0.29	ND < 0.28	ND < 0.38
PCB-1268	ND < 0.30	ND < 0.29	ND < 0.28	ND < 0.38
TCMX (Surr 1) 50-150	73	76	70	02
DCB (Surr 2) 50-150	60	67	(0	60
· · · · · · · · · · · · · · · · · · ·		07	00	68

EPA 8082 PCBs [EPA 8082A] Units: mg/kg (Dry Wt)

EPA 8082 PCBs [EPA 8082A] Units: mg/kg (Dry Wt)

Client ID	LIAZ STOFC			
CETID	11/13-51 0-5ft	HA3-82 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft
CETID	AF03619	AF03620	AF03621	AF03622
Date Analyzed	5/25/2012	5/26/2012	5/26/2012	5/26/2012
Dilution	1.0	10	10	3/20/2012
PCB-1016	ND < 0.30	ND < 0.27	1.0	1.0
PCB-1221	ND < 0.30	ND < 0.57	ND < 0.28	ND < 0.28
DCB 1221	ND < 0.30	ND < 0.37	ND < 0.28	ND < 0.28
PCD-1232	ND < 0.30	ND < 0.37	ND < 0.28	ND < 0.28
PCB-1242	ND < 0.30	ND < 0.37	ND < 0.28	ND < 0.28
PCB-1248	ND < 0.30	ND < 0.37	ND < 0.28	ND < 0.20
PCB-1254	ND < 0.30	ND < 0.37	ND < 0.20	ND < 0.28
PCB-1260	ND < 0.30	ND < 0.37	ND < 0.28	ND < 0.28
PCB 1268	ND < 0.30	ND < 0.37	ND < 0.28	ND < 0.28
TCMC = 1200	ND < 0.30	ND < 0.37	ND < 0.28	ND < 0.28
1 CMX (Surr 1) 50-150	79	81	83	71
DCB (Surr 2) 50-150	60	65	67	80
	· ····	-	07	00

EPA 8082 PCBs [EPA 8082A] Units: mg/kg (Dry Wt)

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/26/2012
Dilution	1.0
PCB-1016	ND < 0.29
PCB-1221	ND < 0.29
PCB-1232	ND < 0.29
PCB-1242	ND < 0.29
PCB-1248	ND < 0.29
PCB-1254	ND < 0.29
PCB-1260	ND < 0.29
PCB-1268	ND < 0.29
TCMX (Surr 1) 50-150	77
DCB (Surr 2) 50-150	69

Ξ

Semi-Volatile Organics [EPA 8270D] Units: ug/kg (Dry Wt)

	Client ID	HA1-S1 0-5f	HA1-S2 5-10	+ HA2 STOF			
	CET ID	AF03615	A E03616	1 HAZ-SI U-SI	t HA2-S2 5-1	4ft	
	Date Analyzed	5/26/2012	5/26/2012	AF0361/	AF03618		
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Dilution	1.0	10	5/29/2012	5/25/2012		
n-Nitroso-dimethylemine ND Sige ND	Pyridine	ND < 120	ND < 114	1.0 ND < 100	1.0		
bis bis (2-ChloroethyljetherND NDND 	n-Nitroso-dimethylamine	ND < 358	ND < 114	ND < 109	ND < 152		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	bis(2-Chloroethyl)ether	ND < 358	ND < 341	ND < 32/	ND < 455		
AmineND < 336ND < 341ND < 327ND < 4552-ChlorophenolND < 358	Phenol	ND < 358	ND < 341	ND < 32/	ND < 455		
	Aniline	ND < 358	ND < 341	ND < 32/	ND < 455		
1.3-DichlorobenzeneND < 335ND < 341ND < 327ND < 4551.4-DichlorobenzeneND < 358	2-Chlorophenol	ND < 358	ND < 341	ND < 327	ND < 455		
1.4-DichlorobenzeneND330NDND 331 ND 3327 ND 4355 Benzyl AlcohoND 358 ND 341 ND 3277 ND 4555 1.2.DichlorobenzeneND 358 ND 341 ND 3277 ND 4555 big2-chloroisopropyletherND 358 ND 341 ND 3277 ND 4555 1.2.DichlorobertaneND 358 ND 341 ND 3277 ND 4555 2.Methyl PhenolND 358 ND 341 ND 3277 ND 4555 3.14Methyl PhenolND 358 ND 341 ND 3277 ND 4555 3.14Methyl PhenolND 358 ND 341 ND 3277 ND 4555 3.14Nethyl PhenolND 358 ND 341 ND 3277 ND 4555 2.4-DinethylphenolND 358 ND 341 ND 3277 ND 4555 2.4-DichlorophenolND 358 ND 341 ND 3277 ND 4555 2.4-DichlorophenolND 358 ND 341 ND 3277 ND 455 2.4-DichlorophenolND 358 ND 341 ND 3277 ND 455 2.4-DichlorophenolND 358 ND 341 ND 3277 ND 455 3.4-DichorophenolND 358 ND 34	1,3-Dichlorobenzene	ND < 358	ND < 341	ND < 32/	ND < 455		
Benzyl AlcoholND < 358ND < 341ND < 327ND < 4551,2-DichlorobenzeneND < 358	1,4-Dichlorobenzene	ND < 358	ND < 341	ND < 327	ND < 455		
1.2-DichlorobenzeneND < 358ND < 341ND < 327ND < 455bis(2-chloroisoproyl]etherND < 358	Benzyl Alcohol	ND < 358	ND < 341	ND < 327	ND < 455		
bis(2-chloroisopropyl)etherND < 358ND < 341ND < 327ND < 455HexachloroethaneND < 358	1,2-Dichlorobenzene	ND < 358	ND < 341	ND < 327	ND < 455		
HexachloroethaneND < 358ND < 341ND < 327ND < 455N-Nitroso-di-n-propylamineND < 358	bis(2-chloroisopropyl)ether	ND < 358	ND < 341	ND < 327	ND < 455		
N-Nitroso-di-n-propylamine ND < 358 ND < 341 ND < 327 ND < 455 2-Methyl Phenol ND < 358	Hexachloroethane	ND < 358	ND < 341	ND < 327	ND < 455		
2-Methyl PhenolND < 358ND < 341ND < 327ND < 455 $3+4$ Methyl PhenolND < 358	N-Nitroso-di-n-propylamine	ND < 358	ND < 341	ND < 327	ND < 455		
3+4 Methyl PhenolND < 358ND < 341ND < 327ND < 455NitrobenzeneND < 358	2-Methyl Phenol	ND < 358	ND < 341	ND < 327	ND < 455	- 1	
NitrobenzeneND < 358ND < 341ND < 327ND < 455IsophoroneND < 358	3+4 Methyl Phenol	ND < 358	ND < 341	ND < 327	ND < 455		
IsophoroneIND < 358ND < 341ND < 327ND < 4552.NitrophenolND < 358	Nitrobenzene	ND < 358	ND < 341	ND < 327	ND < 455	- 1	
2-NitrophenolND < 338 ND < 358ND < 341 ND < 327ND < 455 ND < 4552,4-DimethylphenolND < 358 ND < 358	Isophorone	ND < 350	ND < 341	ND < 327	ND < 455		
2.4-DimethylphenolND < 338ND < 341ND < 327ND < 455bis(2-Chloroethoxy)methaneND < 358	2-Nitrophenol	ND < 350	ND < 341	ND < 327	ND < 455	- 1	
bis(2-Chloroethoxy)methaneND < 378ND < 341ND < 327ND < 455Benzoic AcidND < 358	2,4-Dimethylphenol	ND < 350	ND < 341	ND < 327	ND < 455		
Benzoic AcidND < 358ND < 341ND < 327ND < 4552,4-DichlorophenolND < 358	bis(2-Chloroethoxy)methane	ND < 358	ND < 341	ND < 327	ND < 455		
2,4-DichlorophenolND < 336ND < 341ND < 327ND < 4551,2,4-TrichlorobenzeneND < 358	Benzoic Acid	ND < 350	ND < 341	ND < 327	ND < 455		
1,2,4-TrichlorobenzeneND < 338ND < 341ND < 327ND < 455NaphthaleneND < 358	2,4-Dichlorophenol	ND < 350	ND < 341	ND < 327	ND < 455		
NaphthaleneND < 338ND < 341ND < 327ND < 4552,6-DichlorophenolND < 358	1,2,4-Trichlorobenzene	ND < 350	ND < 341	ND < 327	ND < 455		
2,6-DichlorophenolND < 358ND < 341ND < 32722004-ChloroanilineND < 358	Naphthalene	ND < 350	ND < 341	ND < 327	ND < 455		
4-ChloroanilineND < 335ND < 341ND < 327ND < 4551,2,4,5 TetrachlorobenzeneND < 358	2,6-Dichlorophenol	ND < 350	ND < 341	ND < 327	2200		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4-Chloroaniline	ND < 350	ND < 341	ND < 327	ND < 455		
HexachlorobutationeND < 358ND < 341ND < 327ND < 4554-Chloro-3-methylphenolND < 358	1,2,4,5 Tetrachlorobenzene	ND < 350	ND < 341	ND < 327	ND < 455		
4-Chloro-3-methylphenol $ND < 336$ $ND < 341$ $ND < 327$ $ND < 455$ 2-Methyl Naphthalene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2-Methyl Naphthalene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Hexachlorocyclopentadiene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4,6-Trichlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4,5-Trichlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4.5-Trichlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2-Chloronaphthalene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthylene430 $ND < 341$ $ND < 327$ $ND < 455$ 2,6-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrophenol	Hexachlorobutadiene	ND < 350	ND < 341	ND < 327	ND < 455		
2-Methyl NaphthaleneND 336 ND 3341 ND 327 ND 455 HexachlorocyclopentadieneND< <td>358ND341ND327ND$455$2,4,6-TrichlorophenolND358ND341ND327ND$455$2,4,5-TrichlorophenolND358ND341ND327ND$455$2.AttronaphthaleneND358ND341ND327ND$455$2.NitroanilineND358ND341ND327ND455Acenaphthylene430ND341ND327ND455JoinethylphthalateND358ND341ND327ND$455$2,6-DinitrotolueneND358ND341ND327ND455AcenaphtheneND358ND341ND327ND$455$2,4-DinitrotolueneND358ND341ND327ND$455$2,4-DinitrotolueneND358ND341ND327ND$455$2,4-DinitrotolueneND358ND341ND327ND$455$2,4-DinitrotolueneND358ND341ND327ND$455$2,4-DinitrotolueneND358ND341ND327ND$455$2,4-</td> <td>4-Chloro-3-methylphenol</td> <td>ND < 358</td> <td>ND < 341</td> <td>ND < 327</td> <td>ND < 455</td> <td></td>	358 ND 341 ND 327 ND 455 2,4,6-TrichlorophenolND 358 ND 341 ND 327 ND 455 2,4,5-TrichlorophenolND 358 ND 341 ND 327 ND 455 2.AttronaphthaleneND 358 ND 341 ND 327 ND 455 2.NitroanilineND 358 ND 341 ND 327 ND 455 Acenaphthylene430ND 341 ND 327 ND 455 JoinethylphthalateND 358 ND 341 ND 327 ND 455 2,6-DinitrotolueneND 358 ND 341 ND 327 ND 455 AcenaphtheneND 358 ND 341 ND 327 ND 455 2,4-DinitrotolueneND 358 ND 341 ND 327 ND 455 2,4-	4-Chloro-3-methylphenol	ND < 358	ND < 341	ND < 327	ND < 455	
HexachlorocyclopentadieneND < 358ND < 341ND < 327ND < 4552,4,6-TrichlorophenolND < 358	2-Methyl Naphthalene	ND < 350	ND < 341	ND < 327	ND < 455		
2,4,6-Trichlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4,5-Trichlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2-Chloronaphthalene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthylene 430 $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthylene 430 $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,6-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0ibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0ibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 1-Chorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0-chtylphthalate <td< td=""><td>Hexachlorocyclopentadiene</td><td>ND < 350</td><td> ND < 341 </td><td>ND < 327</td><td>ND < 455</td><td></td></td<>	Hexachlorocyclopentadiene	ND < 350	ND < 341	ND < 327	ND < 455		
2,4,5-Trichlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2-Chloronaphthalene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthylene 430 $ND < 341$ $ND < 327$ $ND < 455$ Dimethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,6-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Dibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$ <td>2,4,6-Trichlorophenol</td> <td>ND < 350</td> <td>ND < 341</td> <td>ND < 327</td> <td>ND < 455</td> <td></td>	2,4,6-Trichlorophenol	ND < 350	ND < 341	ND < 327	ND < 455		
2-ChloronaphthaleneND < 358ND < 341ND < 327ND < 4552-NitroanilineND < 358	2,4,5-Trichlorophenol	ND < 359	ND < 341	ND < 327	ND < 455		
2-Nitroaniline $ND < 336$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthylene 430 $ND < 341$ $ND < 327$ $ND < 455$ Dimethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,6-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,3,4,6-Tetrachlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$	2-Chloronaphthalene	ND < 350	ND < 341	ND < 327	ND < 455		
Acenaphthylene $ND < 338$ $ND < 341$ $ND < 327$ $ND < 455$ Dimethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ 560 2,6-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0ibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0ibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 1-Uorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 1-Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 3-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 3-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 3-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 3-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$	2-Nitroaniline	ND < 350	ND < 341	ND < 327	ND < 455		
Dimethylphthalate 150 $1ND < 341$ $ND < 327$ 560 2,6-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0ibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0ibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$	Acenaphthylene	430	ND < 341	ND < 327	ND < 455		
2,6-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0ibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,3,4,6-Tetrachlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Oiehylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Oiehylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ A-Chlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Oiehylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ A-Chlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ A-Chlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ A-Chlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ A-Chlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ A-Chlorophenol $ND < 358$ $ND < 341$ $ND < 327$ <	Dimethylphthalate	ND < 359	ND < 341	ND < 327	560		
4-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Acenaphthene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0ibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 0ibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,3,4,6-Tetrachlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ -A-Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	2,6-Dinitrotoluene	ND < 350	ND < 341	ND < 327	ND < 455		
Acenaphthene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,4-Dinitrophenol $ND < 358$ $ND < 341$ $ND < 327$ 1700 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Dibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Dibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,3,4,6-Tetrachlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 6-Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	4-Nitroaniline	ND < 359	ND < 341	ND < 327	ND < 455		
2,4-Dinitrophenol $ND < 358$ $ND < 341$ $ND < 327$ 1700 2,4-Dinitrotoluene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Dibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,3,4,6-Tetrachlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 6-Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	Acenaphthene	ND < 350	ND < 341	ND < 327	ND < 455		
2,4-Dinitrotoluene $ND < 338$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Nitrophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Dibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,3,4,6-Tetrachlorophenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 6-Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	2,4-Dinitrophenol	ND < 350	ND < 341	ND < 327	1700		
4-Nitrophenol $ND < 336$ $ND < 341$ $ND < 327$ $ND < 455$ Dibenzofuran $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2,3,4,6-Tetrachlorophenol $ND < 358$ $ND < 341$ $ND < 327$ 1400 Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ 2300 Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 6-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4,6-Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	2,4-Dinitrotoluene	ND < 350	ND < 341	ND < 327	ND < 455		
Dibenzofuran $ND < 338$ $ND < 341$ $ND < 327$ $ND < 455$ $2,3,4,6$ -Tetrachlorophenol $ND < 358$ $ND < 341$ $ND < 327$ 1400 $Fluorene$ $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ 2300 2 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 2 -Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ $4,6$ -Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	4-Nitrophenol	ND < 350	ND < 341	ND < 327	ND < 455		
2,3,4,6-Tetrachlorophenol $ND < 336$ $ND < 341$ $ND < 327$ 1400 $Pluorene$ $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ 2300 14 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 14 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 14 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 14 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 14 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 14 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 14 -Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	Dibenzofuran	ND < 350 ND < 350	ND < 341	ND < 327	ND < 455		
Fluorene $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4-Chlorophenyl-phenylether $ND < 358$ $ND < 341$ $ND < 327$ 2300 Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 9-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4,6-Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	2,3,4,6-Tetrachlorophenol	ND < 358	ND < 341	ND < 327	1400		
4-Chlorophenyl-phenylether $ND < 338$ $ND < 341$ $ND < 327$ 2300 Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ S-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ 4,6-Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	Fluorene	ND < 350	ND < 341	ND < 327	ND < 455		
Diethylphthalate $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ B-Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ b,6-Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	4-Chlorophenyl-phenylether	ND < 350	ND < 341	ND < 327	2300		
Nitroaniline $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ A,6-Dinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	Diethylphthalate	ND < 358	ND < 341	ND < 327	ND < 455		
A.GDinitro-2-methylphenol $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$ $ND < 358$ $ND < 341$ $ND < 327$ $ND < 455$	3-Nitroaniline	ND < 358	ND < 341	ND < 327	ND < 455		
12.2×350 $ ND \times 341$ $ ND < 327$ $ ND < 455$	4,6-Dinitro-2-methylphenol	ND < 358	$\frac{1}{10} > 341$	ND < 327	ND < 455		
			110 \ 341	IND < 327	ND < 455		

Semi-Volatile Organics [EPA 8270D] Units: ug/kg (Dry Wt)

Client ID	HA1-S1 0-5ft	HA1 \$2.5 10ft	LIND STOFF	TTIO CO
n-Nitrosodiphenylamine	ND < 358	1111-32 - 1911	HA2-51 0-5ft	HA2-S2 5-14ft
1,2-Diphenylhydrazine	ND < 358	ND < 341	ND < 327	ND < 455
4-Bromophenyl-phenylether	ND < 350	ND < 341	ND < 327	ND < 455
Hexachlorobenzene	ND < 350	ND < 341	ND < 327	ND < 455
Pentachlorophenol	ND < 350	ND < 341	ND < 327	ND < 455
Phenanthrene	ND < 558	ND < 341	ND < 327	ND < 455
Anthracene	270	ND < 341	ND < 327	6700
Carbazole	370 ND < 250	ND < 341	ND < 327	2200
Di-n-butylphthalate	ND < 358	ND < 341	ND < 327	840
Pentachloropitrobenzono	ND < 358	ND < 341	ND < 327	ND < 455
Fluoranthene	ND < 358	ND < 341	ND < 327	ND < 455
Pyrene	2000	ND < 341	ND < 327	5400
Butylbenzylphthelate	1/00	ND < 341	ND < 327	3800
3.3 Dichlorohonziding	ND < 358	ND < 341	ND < 327	ND < 455
Benzolalentheres	ND < 358	ND < 341	ND < 327	ND < 455
Chrusene	1100	ND < 341	ND < 327	2700
bis(2 Ethelle and bit 1 at a	1300	ND < 341	ND < 327	2400
Dis(2-Ethymexyl)phthalate	ND < 358	ND < 341	ND < 327	ND < 455
Bonna thig	ND < 358	ND < 341	ND < 327	ND < 455
Benzo [D] fluoranthene	1400	ND < 341	ND < 327	2800
Benzo[k]fluoranthene	650	ND < 341	ND < 327	1200
Denzo[a]pyrene	1300	ND < 341	ND < 327	2300
Indeno[1,2,3-cd]pyrene	510	ND < 341	ND < 327	1500
Dibenz[a,h]anthracene	ND < 358	ND < 341	ND < 327	470
Benzo[g,h,1]perylene	500	ND < 341	ND < 327	1700
2-Fluorophenol (Surr) 30-130	50.7	59.8	51.5	54.6
Phenol-d6(Surr) 30-130	66.9	63.8	65.8	62.1
Nitrobenzene-d5(Surr) 30-130	59.9	56.4	58.7	56.2
2-Fluorobiphenyl (Surr) 30-130	71.7	65.8	71.0	50.2
2,4,6-Tribromophenol (Surr) 30-130	81.7	77.4	80.5	00
Terphenyl-d14 (Surr) 30-130	68.9	69.9	72.6	00.0 70.2
		0,1,7	/2.0	/9.5

Semi-Volatile Organics [EPA 8270D] Units: ug/kg (Dry Wt)

Client ID	HA3-S1 0-5ft	HA3-S2 5-12ft	HA4 S1 0 10ft	LIAF CLOFE
CET ID	AF03619	A F03620	121-01 0-1911	ПЛЭ-51 0-5ft
Date Analyzed	5/25/2012	5/25/2012	AF03621	AF03622
Dilution	1.0	5/25/2012	5/25/2012	5/25/2012
Pyridine	1.0	1.0	1.0	1.0
p Nitro - di dala	ND < 118	ND < 145	ND < 112	ND < 110
11-INitroso-dimethylamine	ND < 353	ND < 435	ND < 334	ND < 330
Dis(2-Chloroethyl)ether	ND < 353	ND < 435	ND < 334	ND < 330
Phenol	ND < 353	ND < 435	ND < 224	ND < 350
Aniline	ND < 353	ND < 435	ND < 334	ND < 330
2-Chlorophenol	ND < 353	ND < 435	ND < 334	ND < 330
1.3-Dichlorobenzene	ND < 353	ND < 435	ND < 334	ND < 330
1 4-Dichlorobenzeno	ND < 355	ND < 435	ND < 334	ND < 330
Bongyl Alashal	ND < 353	ND < 435	ND < 334	ND < 330
	ND < 353	ND < 435	ND < 334	ND < 330
1,2-Dichlorobenzene	ND < 353	ND < 435	ND < 334	ND < 330
bis(2-chloroisopropyl)ether	ND < 353	ND < 435	ND < 324	ND < 330
Hexachloroethane	ND < 353	ND < 135	ND < 334	ND < 330
N-Nitroso-di-n-propylamine	ND < 353	100 < 405	ND < 334	ND < 330
2-Methyl Phenol	ND < 252	ND < 435	ND < 334	ND < 330
	ND < 353	ND < 435	ND < 334	ND < 330

Semi-Volatile Organics [EPA 8270D] Units: ug/kg (Dry Wt)

Client ID	HA3-S1 0	5ft HA3-S2 5 1	264 J TTA 4 01 0	100
3+4 Methyl Phenol	ND < 353	$\frac{1113-32}{ND} < 435$	211 HA4-S1 0-	19ft HA5-S1 0-5ft
Nitrobenzene	ND < 353	ND < 435	ND < 334	ND < 330
Isophorone	ND < 353	ND < 435	ND < 334	ND < 330
2-Nitrophenol	ND < 353	ND < 435	ND < 334	ND < 330
2,4-Dimethylphenol	ND < 353	ND < 435	ND < 334	ND < 330
bis(2-Chloroethoxy)methane	ND < 353	ND < 435	ND < 334	ND < 330
Benzoic Acid	ND < 353	ND < 435	ND < 334	ND < 330
2,4-Dichlorophenol	ND < 353	ND < 435	ND < 334	ND < 330
1,2,4-Trichlorobenzene	ND < 353	ND < 435	ND < 334	ND < 330
Naphthalene	ND < 353	ND < 435	ND < 334	ND < 330
2,6-Dichlorophenol	ND < 353	ND < 435	ND < 334	780
4-Chloroaniline	ND < 353	ND < 435	ND < 334	ND < 330
1,2,4,5 Tetrachlorobenzene	ND < 355	ND < 435	ND < 334	ND < 330
Hexachlorobutadiene	ND < 353	ND < 435	ND < 334	ND < 330
4-Chloro-3-methylphenol	ND < 353	ND < 435	ND < 334	ND < 330
2-Methyl Naphthalene	ND < 353	ND < 435	ND < 334	ND < 330
Hexachlorocyclopentadiene	ND < 353	ND < 435	ND < 334	ND < 330
2,4,6-Trichlorophenol	ND < 353	ND < 435	ND < 334	ND < 330
2,4,5-Trichlorophenol	ND < 353	ND < 435	ND < 334	ND < 330
2-Chloronaphthalene	ND < 353	ND < 435	ND < 334	ND < 330
2-Nitroaniline	ND < 353	ND < 435	ND < 334	ND < 320
Acenaphthylene	ND < 353	ND < 435	ND < 334	ND < 330
Dimethylphthalata	ND < 353	ND < 435	ND < 334	RD < 330
2 6-Dipitrotolyone	ND < 353	ND < 435	ND < 334	ND < 220
4-Nitroaniling	ND < 353	ND < 435	ND < 334	ND < 330
A copophethana	ND < 353	ND < 435	ND < 334	ND < 330
2 4 Dinitra 1	ND < 353	ND < 435	ND < 334	ND < 330
2,4-Dinitrophenol	ND < 353	ND < 435	ND < 324	ND < 330
2,4-Dinitrotoluene	ND < 353	ND < 435	ND < 334	ND < 330
4-Nitrophenol	ND < 353	ND < 435	ND < 334	ND < 330
Dibenzofuran	ND < 353	ND < 435	ND < 334	ND < 330
2,3,4,6-Tetrachlorophenol	ND < 353	ND < 435	ND < 334	480
Fluorene	ND < 353	ND < 435	ND < 334	ND < 330
4-Chlorophenyl-phenylether	ND < 353	ND < 435	ND < 334	680
Diethylphthalate	ND < 353	ND < 435	ND < 334	ND < 330
3-Nitroaniline	ND < 353	ND < 435	ND < 334	ND < 330
4,6-Dinitro-2-methylphenol	ND < 353	1ND < 435	ND < 334	ND < 330
n-Nitrosodiphenylamine	ND < 353	ND < 435	ND < 334	ND < 330
1,2-Diphenylhydrazine	ND < 353	ND < 435	ND < 334	ND < 330
4-Bromophenyl-phenylether	ND < 353	ND < 435	ND < 334	ND < 330
Hexachlorobenzene	ND < 353	ND < 435	ND < 334	ND < 330
Pentachlorophenol	ND < 352	ND < 435	ND < 334	ND < 330
Phenanthrene	120 < 555	ND < 435	ND < 334	ND < 330
Anthracene	MD < 252	ND < 435	500	3600
Carbazole	ND < 353	ND < 435	ND < 334	1100
Di-n-butylphthalate	ND < 353	ND < 435	ND < 334	340
Pentachloronitrobenzene	ND < 353	ND < 435	ND < 334	ND < 330
Fluoranthene	ND < 353	ND < 435	ND < 334	ND < 330
Pyrene	590	560	1000	5200
Butylbenzylphthalate	510	530	750	4400
3.3-Dichlorobenziding	ND < 353	ND < 435	ND < 334	ND < 330
Benzolalanthracene	ND < 353	ND < 435	ND < 334	ND < 330
Chrysene	380	ND < 435	470	3100
bis(2-Ethylbeyyl)phthalate	ND < 353	ND < 435	410	2300
	ND < 353	ND < 435	ND < 334	ND < 330
				1 10 < 330

Semi-Volatile Organics [EPA 8270D] Units: ug/kg (Dry Wt)

Client ID	HA3 \$1 0 56	1 1142 62 5 426	1	
Di-n-octylphthalate	1113-31 0-31	HA3-52 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft
Benzolblausenth	ND < 353	ND < 435	ND < 334	ND < 330
Denzolojituorantnene	480	500	500	4300
Benzo[k]fluoranthene	ND < 353	ND < 435	ND < 331	1500
Benzo[a]pyrene	ND < 353	ND < 135	200	1500
Indeno[1,2,3-cd]pyrene	ND < 353	ND < 435	390	2600
Dibenz[a,h]anthracene	ND < 252	ND < 435	ND < 334	850
Benzola hilperuleno	ND < 353	ND < 435	ND < 334	ND < 330
2 Element 1/0 20 400	380	ND < 435	ND < 334	860
2-Fluorophenol (Surr) 30-130	60.4	66.5	57.2	66.0
Phenol-d6(Surr) 30-130	66.9	75.9	63.7	71.4
Nitrobenzene-d5(Surr) 30-130	714	70.4	03.7	/1.4
2-Fluorobiphenyl (Surr) 30-130	76.8	70.4	03.8	75.1
246-Tribromonhenol (Surr) 30 120	70.8	/9.3	72.1	79.7
Terphonyl d14 (Suc) 20 420	80.1	99.5	75.2	81.1
reipnenyi-014 (Surr) 30-130	77.2	93.8	75.1	72.5
				14.5

Semi-Volatile Organics [EPA 8270D] Units: ug/kg (Dry Wt)

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/25/2012
Dilution	1.0
Pyridine	ND < 113
n-Nitroso-dimethylamine	ND < 338
bis(2-Chloroethyl)ether	ND < 338
Phenol	ND < 338
Aniline	ND < 338
2-Chlorophenol	ND < 338
1,3-Dichlorobenzene	ND < 338
1,4-Dichlorobenzene	ND < 338
Benzyl Alcohol	ND < 338
1,2-Dichlorobenzene	ND < 338
bis(2-chloroisopropyl)ether	ND < 338
Hexachloroethane	ND < 338
N-Nitroso-di-n-propylamine	ND < 338
2-Methyl Phenol	ND < 338
3+4 Methyl Phenol	ND < 338
Nitrobenzene	ND < 338
Isophorone	ND < 338
2-Nitrophenol	ND < 338
2,4-Dimethylphenol	ND < 338
bis(2-Chloroethoxy)methane	ND < 338
Benzoic Acid	ND < 338
2,4-Dichlorophenol	ND < 338
1,2,4-Trichlorobenzene	ND < 338
Naphthalene	360
2,6-Dichlorophenol	ND < 338
4-Chloroaniline	ND < 338
1,2,4,5 Tetrachlorobenzene	ND < 338
Hexachlorobutadiene	ND < 338
4-Chloro-3-methylphenol	ND < 338
2-Methyl Naphthalene	ND < 338
Hexachlorocyclopentadiene	ND < 338

Semi-Volatile Organics [EPA 8270D] Units: ug/kg (Dry Wt)

2,4,6-TrichlorophenolND < 338		Client ID		HA5-S2 5-	10ft											
2,4,5-TrichlorophenolND < 338 2 -ChloronaphthaleneND < 338		2,4,6-Trichlorophenol		ND < 338												
2-ChloronaphthaleneND < 3382-NitroanilineND < 338		2,4,5-Trichlorophenol		ND < 338												
2-NitroanilineND < 338Acenaphthylene420DimethylphthalateND < 338		2-Chloronaphthalene		ND < 338												
Acenaphtylene420DimethylphthalateND < 338		2-Nitroaniline		ND < 338												
DimethylphthalateND < 3382,6-DinitrotolueneND < 338		Acenaphthylene		420												
2,6-DinitrotolueneND < 3384-NitroanilineND < 338		Dimethylphthalate		ND < 338												
4-NitroanilineND < 338AcenaphteneND < 338		2,6-Dinitrotoluene		ND < 330												
Acenaphthene $ND < 338$ 2,4-Dinitrophenol $ND < 338$ 2,4-Dinitrotoluene $ND < 338$ 2,4-Dinitrotoluene $ND < 338$ 2,4-Dinitrotoluene $ND < 338$ 2,3,4,6-Tetrachlorophenol $ND < 338$ Dibenzofuran $ND < 338$ 2,3,4,6-Tetrachlorophenol $ND < 338$ Fluorene 770 4-Chlorophenyl-phenylether $ND < 338$ Diethylphthalate $ND < 338$ 3-Nitroaniline $ND < 338$ 1,2-Diphenylhydrazine $ND < 338$ 1,2-Diphenyl-phenylether $ND < 338$ 1,2-Diphenylhydrazine $ND < 338$ 4-Bromophenyl-phenylether $ND < 338$ Pentachlorophenol $ND < 338$ Pentachlorophenol $ND < 338$ Pentachlorophenol $ND < 338$ Pentachlorophenol $ND < 338$ Di-n-butylphthalate $ND < 338$ Di-n-butylphthalate $ND < 338$ Pentachloronitrobenzene $ND < 338$ Pentachlorobenzidine $ND < 338$ Benzo[a]anthracene 1200 bis(2-Ethylhexyl)phthalate $ND < 338$ Benzo[b]fluoranthene 1200 bis(2-Ethylhexyl)phthalate $ND < 338$ Benzo[b]fluoranthene 620 Benzo[b]fluoranthene 63.8 <t< td=""><td></td><td>4-Nitroaniline</td><td></td><td>ND < 330</td><td></td></t<>		4-Nitroaniline		ND < 330												
2,4-Dinitrophenol $ND < 338$ 2,4-Dinitrotoluene $ND < 338$ 2,4-Dinitrotoluene $ND < 338$ 2,4-Dinitrotoluene $ND < 338$ 4-Nitrophenol $ND < 338$ Dibenzofuran $ND < 338$ 2,3,4,6-Tetrachlorophenol $ND < 338$ Fluorene 770 4-Chlorophenyl-phenylether $ND < 338$ Diethylphthalate $ND < 338$ 3-Nitroaniline $ND < 338$ 4,6-Dinitro-2-methylphenol $ND < 338$ 1,2-Diphenylhydrazine $ND < 338$ 1,2-Diphenyl-phenylether $ND < 338$ 1,2-Diphenylhydrazine $ND < 338$ Hexachlorobenzene $ND < 338$ Pentachlorophenol $ND < 338$ Phenanthrene 3400 Anthracene 840 Carbazole $ND < 338$ Di-n-butylphthalate $ND < 338$ Fluoranthene 2900 Pyrene 2900 Pyrene 2900 Pyrene 2000 Benzo[a]anthracene 1500 Chrysene 1200 bis(2-Ethylhexyl)phthalate $ND < 338$ Di-n-octylphthalate $ND < 338$ Benzo[a]apyrene 1200 Indeno[1,2,3-cd]pyrene 350 2-Fluorophenol (Surr) 30-130 68.3 Nitrobenzene-d5(Surr) 30-130 72.3		Acenaphthene		ND < 330												
2,4-Dinitrotoluene $ND < 338$ 4 -Nitrophenol $ND < 338$ 4 -Nitrophenol $ND < 338$ $Dibenzofuran$ $ND < 338$ $2,3,4,6$ -Tetrachlorophenol $ND < 338$ $Pluorene$ 770 4 -Chlorophenyl-phenylether $ND < 338$ $Diethylphthalate$ $ND < 338$ 3 -Nitroaniline $ND < 338$ $4,6$ -Dinitro-2-methylphenol $ND < 338$ $1,2$ -Diphenylhydrazine $ND < 338$ $1,2$ -Diphenylhydrazine $ND < 338$ 4 -Bromophenyl-phenylether $ND < 338$ $+$ Exachlorobenzene $ND < 338$ Pentachlorophenol $ND < 338$ Phenanthrene 3400 Anthracene 840 Carbazole $ND < 338$ Di-n-butylphthalate $ND < 338$ Pentachloronitrobenzene $ND < 338$ Fluoranthene 2900 Pyrene 2800 Butylbenzylphthalate $ND < 338$ $3,3$ -Dichlorobenzidine $ND < 338$ $3,3$ -Dichlorobenzidine $ND < 338$ $3,3$ -Dichlorobenzidine $ND < 338$ Benzo[a]anthracene 1200 bis(2-Ethylhexyl)phthalate $ND < 338$ Benzo[bfluoranthene 620 Benzo[k]fluoranthene 620 Benzo[k]niperylene 350 2 -Fluorophenol (Surr) 30-130 68.3 Nitrobenzene-d5(Surr) 30-130 68.3 Nitrobenzene-d5(Surr) 30-130 72.3		2,4-Dinitrophenol		ND < 338												
4-Nitrophenol $ND < 338$ Dibenzofuran $ND < 338$ Dibenzofuran $ND < 338$ 2,3,4,6-Tetrachlorophenol $ND < 338$ Fluorene 770 4-Chlorophenyl-phenylether $ND < 338$ Diethylphthalate $ND < 338$ 3-Nitroaniline $ND < 338$ 4,6-Dinitro-2-methylphenol $ND < 338$ n-Nitrosodiphenylamine $ND < 338$ 1,2-Diphenylhydrazine $ND < 338$ 4-Bromophenyl-phenylether $ND < 338$ Hexachlorobenzene $ND < 338$ Pentachlorophenol $ND < 338$ Phenanthrene 3400 Anthracene 840 Carbazole $ND < 338$ Pinoronitrobenzene $ND < 338$ Pinoranthene 2900 Pyrene 2800 Butylbenzylphthalate $ND < 338$ Salenzo[a]anthracene 1500 Chrysene 1200 bis(2-Ethylhexyl)phthalate $ND < 338$ Di-n-octylphthalate $ND < 338$ Benzo[a]apyrene 1200 bis(2-Ethylhexyl)phthalate $ND < 338$ Di-n-octylphthalate $ND < 338$ Benzo[bfluoranthene 620 Benzo[ch,i]perylene 350 2-Fluorophenol (Surr) 30-130 63.8 Phenol-d6(Surr) 30-130 78.2 2-Fluorobiphenyl (Surr) 30-130 72.3		2,4-Dinitrotoluene		ND < 338												
Dibenzofuran $ND < 338$ $2,3,4,6$ -Tetrachlorophenol $ND < 338$ $Pluorene$ 770 4 -Chlorophenyl-phenylether $ND < 338$ $Diethylphthalate$ $ND < 338$ $Diethylphthalate$ $ND < 338$ 3 -Nitroaniline $ND < 338$ $1,2$ -Diphenylhylmenol $ND < 338$ $1,2$ -Diphenylhydrazine $ND < 338$ 4 -Bromophenyl-phenylether $ND < 338$ 4 -Bromophenyl-phenylether $ND < 338$ Pentachlorophenol $ND < 338$ Phenanthrene 3400 Anthracene 840 Carbazole $ND < 338$ Pinornitrobenzene $ND < 338$ Pinornitrobenzene $ND < 338$ Pinornitrobenzene $ND < 338$ Pinoranthene 2900 Pyrene 2800 Butylbenzylphthalate $ND < 338$ Benzo[a]anthracene 1500 Chrysene 1200 bis(2-Ethylhexyl)phthalate $ND < 338$ Di-n-octylphthalate $ND < 338$ Benzo[b]fluoranthene 620 Benzo[b]fluoranthene 620 Benzo[a]aptrene 1200 Indeno[1,2,3-cd]pyrene 340 Dibenz[a,h]anthracene $ND < 338$ Benzo[b],i]perylene 50 2-Fluorophenol (Surr) $30-130$ 68.3 Nitrobenzene-d5(Surr) $30-130$ 68.3 Nitrobenzene-d5(Surr) $30-130$ 78.2 Z-Huorobiphenyl (Surr) $30-130$ 72.3		4-Nitrophenol		ND < 338												
2,3,4,6-Tetrachlorophenol $ND < 338$ Fluorene 770 4-Chlorophenyl-phenylether $ND < 338$ Diethylphthalate $ND < 338$ 3-Nitroaniline $ND < 338$ $4,6$ -Dinitro-2-methylphenol $ND < 338$ n -Nitrosodiphenylamine $ND < 338$ $1,2$ -Diphenylhydrazine $ND < 338$ $4,6$ -Dinitro-2-methylphenol $ND < 338$ $1,2$ -Diphenylhydrazine $ND < 338$ $1,2$ -Diphenylhydrazine $ND < 338$ 4 -Bromophenyl-phenylether $ND < 338$ Pentachlorobenzene $ND < 338$ Phenanthrene 3400 Anthracene 840 Carbazole $ND < 338$ Di-n-butylphthalate $ND < 338$ Pentachloronitrobenzene $ND < 338$ Fluoranthene 2900 Pyrene 2800 Butylbenzylphthalate $ND < 338$ Benzo[a]anthracene 1500 Chrysene 1200 bis(2-Ethylhexyl)phthalate $ND < 338$ Benzo[b]fluoranthene 620 Benzo[b]fluoranthene 620 Benzo[b]fluoranthene 620 Benzo[b]fluoranthene 620 Benzo[a]apyrene 1200 Indeno[1,2,3-cd]pyrene 340 Dibenz[a,h]aptrylene 350 2-Fluorophenol (Surr) $30-130$ 68.3 Nitrobenzene-d5(Surr) $30-130$ 68.3 Nitrobenzene-d5(Surr) $30-130$ 72.3		Dibenzofuran		ND < 338												
Fluorene 700 4-Chlorophenyl-phenyletherND < 338		2,3,4,6-Tetrachlorophenol		ND < 338												
4-Chlorophenyl-phenylether 770 biethylphthalateND < 338		Fluorene		ND < 338												
DiethylphthalateND < 338DiethylphthalateND < 338		4-Chlorophenyl-phenylether		//0												
ND 338 3-NitroanilineND < 338		Diethylphthalate		ND < 338												
ND < 338 4,6-Dinitro-2-methylphenolND< <td>< 338n-NitrosodiphenylamineND<<td>$< 338$1,2-DiphenylhydrazineND<<td>$< 338$4-Bromophenyl-phenyletherND<<td>< 338HexachlorobenzeneND<<td>< 338PentachlorophenolND<<td>< 338Phenanthrene3400Anthracene840CarbazoleND<<td>< 338Di-n-butylphthalateND<<td>< 338Fluoranthene2900Pyrene2800ButylbenzylphthalateND<<td>< 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND<<td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td></td></td></td></td></td></td></td></td></td>	< 338 n-NitrosodiphenylamineND< <td>$< 338$1,2-DiphenylhydrazineND<<td>$< 338$4-Bromophenyl-phenyletherND<<td>< 338HexachlorobenzeneND<<td>< 338PentachlorophenolND<<td>< 338Phenanthrene3400Anthracene840CarbazoleND<<td>< 338Di-n-butylphthalateND<<td>< 338Fluoranthene2900Pyrene2800ButylbenzylphthalateND<<td>< 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND<<td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td></td></td></td></td></td></td></td></td>	< 338 1,2-DiphenylhydrazineND< <td>$< 338$4-Bromophenyl-phenyletherND<<td>< 338HexachlorobenzeneND<<td>< 338PentachlorophenolND<<td>< 338Phenanthrene3400Anthracene840CarbazoleND<<td>< 338Di-n-butylphthalateND<<td>< 338Fluoranthene2900Pyrene2800ButylbenzylphthalateND<<td>< 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND<<td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td></td></td></td></td></td></td></td>	< 338 4-Bromophenyl-phenyletherND< <td>< 338HexachlorobenzeneND<<td>< 338PentachlorophenolND<<td>< 338Phenanthrene3400Anthracene840CarbazoleND<<td>< 338Di-n-butylphthalateND<<td>< 338Fluoranthene2900Pyrene2800ButylbenzylphthalateND<<td>< 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND<<td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td></td></td></td></td></td></td>	< 338 HexachlorobenzeneND< <td>< 338PentachlorophenolND<<td>< 338Phenanthrene3400Anthracene840CarbazoleND<<td>< 338Di-n-butylphthalateND<<td>< 338Fluoranthene2900Pyrene2800ButylbenzylphthalateND<<td>< 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND<<td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td></td></td></td></td></td>	< 338 PentachlorophenolND< <td>< 338Phenanthrene3400Anthracene840CarbazoleND<<td>< 338Di-n-butylphthalateND<<td>< 338Fluoranthene2900Pyrene2800ButylbenzylphthalateND<<td>< 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND<<td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td></td></td></td></td>	< 338 Phenanthrene 3400 Anthracene 840 CarbazoleND< <td>< 338Di-n-butylphthalateND<<td>< 338Fluoranthene2900Pyrene2800ButylbenzylphthalateND<<td>< 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND<<td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td></td></td></td>	< 338 Di-n-butylphthalateND< <td>< 338Fluoranthene2900Pyrene2800ButylbenzylphthalateND<<td>< 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND<<td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td></td></td>	< 338 Fluoranthene 2900 Pyrene 2800 ButylbenzylphthalateND< <td>< 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND<<td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td></td>	< 338 Benzo[a]anthracene 1500 Chrysene 1200 bis(2-Ethylhexyl)phthalateND< <td>< 338Di-n-octylphthalateND<<td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td><td></td><td>3-Nitroaniline</td><td></td><td>ND < 338</td><td></td></td>	< 338 Di-n-octylphthalateND< <td>< 338Benzo[a]apyrene1200Burzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]fluoranthene620Benzo[k]h]anthracene$ND < 338$Benzo[k]h]anthracene$ND < 338$</td> <td></td> <td>3-Nitroaniline</td> <td></td> <td>ND < 338</td> <td></td>	< 338 Benzo[a]apyrene 1200 Burzo[k]fluoranthene 620 Benzo[k]fluoranthene 620 Benzo[k]h]anthracene $ND < 338$		3-Nitroaniline		ND < 338	
n-NitrosodiphenylamineND < 338n-NitrosodiphenylamineND < 338		4.6-Dipitro-2-methylphonal		ND < 338												
In Full SoduplicityND < 3381,2-DiphenylhydrazineND < 338		n-Nitrosodiphenylamin-		ND < 338												
1,2DescriptionND < 3384-Bromophenyl-phenyletherND < 338		1 2-Diphenylhydroxia		ND < 338												
Homophenyl-phenyletherND < 338HexachlorobenzeneND < 338		4-Bromophenyl phanelad		ND < 338												
ND < 338PentachlorophenolND < 338		Heyachlorobonzan-		ND < 338												
ND < 338Phenanthrene 3400 Anthracene 840 CarbazoleND < 338		Pentachlorophonal		ND < 338												
Anthracene 3400 Anthracene 840 CarbazoleND < 338		Phenanthrana		ND < 338												
Humacelle 840 CarbazoleND < 338		Anthracene	3	5400												
CalibatoleND < 338Di-n-butylphthalateND < 338		Carbazolo	8	340												
Diam-bilityND < 338PentachloronitrobenzeneND < 338		Din buttlabet -1-4	1	ND < 338												
r ChrachholomhrobenzeneND < 338Fluoranthene2900Pyrene2800ButylbenzylphthalateND < 338		Pentachloropitral		ND < 338	- 1											
Pyrene2900Pyrene2800ButylbenzylphthalateND < 338		Fluoranthana		ND < 338												
Tytelle 2800 ButylbenzylphthalateND < 338		Pyrepo	2	900												
DutymenzylphthalateND < 338 $3,3$ -DichlorobenzidineND < 338		Butylboogenlehth	2	800												
J,J-DichlorobenzidineND < 338Benzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND < 338		3.3 Dichland	N	ID < 338												
Denzo[a]anthracene1500Chrysene1200bis(2-Ethylhexyl)phthalateND < 338		Bappalalaut	N	D < 338												
Chrysene1200bis(2-Ethylhexyl)phthalateND < 338	I	Chrese	1	500	I											
Dis(2-Ethylnexyl)phthalate $ND < 338$ $Di-n-octylphthalate$ $ND < 338$ $Benzo[b]$ fluoranthene 1600 $Benzo[k]$ fluoranthene 620 $Benzo[a]$ pyrene 1200 $Indeno[1,2,3-cd]$ pyrene 340 $Dibenz[a,h]$ anthracene $ND < 338$ $Benzo[g,h,i]$ perylene 350 2 -Fluorophenol (Surr) $30-130$ 68.3 $Nitrobenzene-d5(Surr) 30-130$ 69.6 2 -Fluorobiphenyl (Surr) $30-130$ 78 $2,4,6$ -Tribromophenol (Surr) $30-130$ 72.3		Chrysene	12	200												
Di-n-octylphthalateND < 338Benzo[b]fluoranthene1600Benzo[k]fluoranthene620Benzo[a]pyrene1200Indeno[1,2,3-cd]pyrene340Dibenz[a,h]anthraceneND < 338		Dis(2-Ethylnexyl)phthalate	N	D < 338												
Benzo[b]fluoranthene 1600 Benzo[k]fluoranthene 620 Benzo[a]pyrene 1200 Indeno[1,2,3-cd]pyrene 340 Dibenz[a,h]anthraceneND < 338 Benzo[g,h,i]perylene 350 2-Fluorophenol (Surr) $30-130$ 63.8 Phenol-d6(Surr) $30-130$ 68.3 Nitrobenzene-d5(Surr) $30-130$ 69.6 2-Fluorobiphenyl (Surr) $30-130$ 78 2,4,6-Tribromophenol (Surr) $30-130$ 78.2 Terphenyl-d14 (Surr) $30-130$ 72.3		Di-n-octylphthalate	N	D < 338												
Benzo[k]fluoranthene 620 Benzo[a]pyrene 1200 Indeno[1,2,3-cd]pyrene 340 Dibenz[a,h]anthraceneND < 338	Ľ	Denzo[D]fluoranthene	16	500												
Benzo[a]pyrene1200Indeno[1,2,3-cd]pyrene 340 Dibenz[a,h]anthraceneND < 338		Denzo[k]fluoranthene	62	20												
Indeno[1,2,3-cd]pyrene 340 Dibenz[a,h]anthracene ND < 338	1,	Denzolajpyrene	12	00												
Dibenz[a,h]anthraceneND < 338 Benzo[g,h,i]perylene 350 2-Fluorophenol (Surr) $30-130$ 63.8 Phenol-d6(Surr) $30-130$ 68.3 Nitrobenzene-d5(Surr) $30-130$ 69.6 2-Fluorobiphenyl (Surr) $30-130$ 78 2,4,6-Tribromophenol (Surr) $30-130$ 78.2 Terphenyl-d14 (Surr) $30-130$ 72.3		ndeno[1,2,3-cd]pyrene	34	0												
Benzolg,h,l]perylene 350 2-Fluorophenol (Surr) 30-130 63.8 Phenol-d6(Surr) 30-130 68.3 Nitrobenzene-d5(Surr) 30-130 69.6 2-Fluorobiphenyl (Surr) 30-130 78 2,4,6-Tribromophenol (Surr) 30-130 78.2 Terphenyl-d14 (Surr) 30-130 72.3		Dibenz[a,h]anthracene	NI	D < 338												
2-Fluorophenol (Surr) 30-130 63.8 Phenol-d6(Surr) 30-130 68.3 Nitrobenzene-d5(Surr) 30-130 69.6 2-Fluorobiphenyl (Surr) 30-130 78 2,4,6-Tribromophenol (Surr) 30-130 78.2 Terphenyl-d14 (Surr) 30-130 72.3	1	Senzolg,h,1]perylene	35	0												
Phenol-d6(Surr) 30-130 68.3 Nitrobenzene-d5(Surr) 30-130 69.6 2-Fluorobiphenyl (Surr) 30-130 78 2,4,6-Tribromophenol (Surr) 30-130 78.2 Terphenyl-d14 (Surr) 30-130 72.3		-Fluorophenol (Surr) 30-130	63	.8												
Nitrobenzene-d5(Surr) 30-130 69.6 2-Fluorobiphenyl (Surr) 30-130 78 2,4,6-Tribromophenol (Surr) 30-130 78.2 Terphenyl-d14 (Surr) 30-130 72.3		nenol-d6(Surr) 30-130	68.	3												
2-Fluorobiphenyl (Surr) 30-130 78 2,4,6-Tribromophenol (Surr) 30-130 78.2 Terphenyl-d14 (Surr) 30-130 72.3	1	Nitrobenzene-d5(Surr) 30-130	69.	6												
2,4,6-1Therefore78.2Terphenyl-d14 (Surr) 30-13072.3	2	-Fluorobiphenyl (Surr) 30-130	78													
1 erphenyl-d14 (Surr) 30-130 72.3	2	,4,0-1 ribromophenol (Surr) 30-130	78.	2												
	1	erpnenyl-d14 (Surr) 30-130	72.	3												

 \equiv

Semi-Vol. Dup Result [EPA 8270D] Units: ug/kg

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/25/2012
Dilution	1.0
Pyridine	ND < 113
n-Nitroso-dimethylamine	ND < 338
bis(2-Chloroethyl)ether	ND < 338
Phenol	ND < 338
Aniline	ND < 338
2-Chlorophenol	ND < 338
1,3-Dichlorobenzene	ND < 338
1,4-Dichlorobenzene	ND < 338
Benzyl Alcohol	ND < 338
1,2-Dichlorobenzene	ND < 338
b1s(2-chloroisopropyl)ether	ND < 338
Hexachloroethane	ND < 338
N-Nitroso-di-n-propylamine	ND < 338
2-Methyl Phenol	ND < 338
3+4 Methyl Phenol	ND < 338
Nitrobenzene	ND < 338
Isophorone	ND < 338
2-Nitrophenol	ND < 338
2,4-Dimethylphenol	ND < 338
Dis(2-Chloroethoxy)methane	ND < 338
Denzoic Acid	ND < 338
2,4-Dichlorophenol	ND < 338
1,2,4-1 fichlorobenzene	ND < 338
26 Dichlorent	610
4 Chloroanilin	ND < 338
1245 Tetrachlanchan	ND < 338
Heyachlorobutadian	ND < 338
4-Chloro 3 methylphonal	ND < 338
2-Methyl Naphthelene	ND < 338
Hexachlorocyclopentadiona	ND < 338
2.4.6-Trichlorophenol	ND < 338
2.4.5-Trichlorophenol	ND < 338
2-Chloronaphthalene	ND < 338
2-Nitroaniline	ND < 338 ND < 328
Acenaphthylene	ND < 558
Dimethylphthalate	ND < 320
2,6-Dinitrotoluene	ND < 330 ND < 320
4-Nitroaniline	ND < 338
Acenaphthene	ND < 338
2,4-Dinitrophenol	ND < 338
2,4-Dinitrotoluene	ND < 338
4-Nitrophenol	ND < 338
Dibenzofuran	400
2,3,4,6-Tetrachlorophenol	ND < 338
Fluorene	1000
4-Chlorophenyl-phenylether	ND < 338
Diethylphthalate	ND < 338
3-Nitroaniline	ND < 338
4,0-Dinitro-2-methylphenol	ND < 338
Semi-Vol. Dup Result [EPA 8270D] Units: ug/kg

Client ID	
n-Nitrosodiphenylamine	HA5-82 5-10ft
1.2-Diphenylhydrazina	ND < 338
4-Bromophenyl phonylather	ND < 338
Hexachlorobenzona	ND < 338
Pentachlorophonal	ND < 338
Phenanthrone	ND < 338
A pthrases	4600
Corboal	1000
	ND < 338
Di-n-DutyIphthalate	ND < 338
Fentachloronitrobenzene	ND < 338
Fluoranthene	3500
Pyrene	3500
Butylbenzylphthalate	ND < 338
3,3-Dichlorobenzidine	ND < 338
Benzo[a]anthracene	2000
Chrysene	1600
bis(2-Ethylhexyl)phthalate	ND < 338
Di-n-octylphthalate	ND < 338
Benzo[b]fluoranthene	2100
Benzo[k]fluoranthene	840
Benzo[a]pyrene	1600
Indeno[1,2,3-cd]pyrene	350
Dibenz[a,h]anthracene	ND < 338
Benzo[g,h,i]perylene	380
2-Fluorophenol (Surr) 30-130	57.4
Phenol-d6(Surr) 30-130	64
Nitrobenzene-d5(Surr) 30-130	63.6
2-Fluorobiphenyl (Surr) 30-130	73.2
2,4,6-Tribromophenol (Surr) 30 130	75.4
Terphenyl-d14 (Surr) 30-130	71
, (/1

Conn. Extractable TPH [CT DEP] Units: mg/kg (Dry Wt)

Client ID	LIAI CLOFC	TTLLO		
Cheffel 11		HA1-S2 5-19ft	HA2-S1 0-5ft	HA2 \$2 5 14G
CETID	AF03615	1 E02(1(1 El OI O DI	11112-32 3-14ft
Date Applying d	5 / 05 / 05 01 5	AF03016	AF03617	AF03618
Date Maryzed	5/25/2012	5/25/2012	5/25/2012	5 /05 /00 / 0
Dilution	110	1.0	5/25/2012	5/25/2012
DTDLI	1.0	1.0	1.0	10
LIPH	ND < 60	ND < 57		1.0
Octacosane (surr) 50 150	100		$ND \le 55$	ND < 76
<u>s etheosaile (3u11) 50-150</u>	109	104	106	112
				112

Conn. Extractable TPH [CT DEP] Units: mg/kg (Dry Wt)

(lient ID)	TTV2 CLOFC			
CET ID	HA3-51 0-5ft	HA3-S2 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft
	AF03619	AF03620	AF03621	1 E02(22
Date Analyzed	5/25/2012	5/25/2012	5/25/2010	AF03022
Dilution	1.0	10	5/25/2012	5/25/2012
ЕТРН	200*	1.0	1.0	1.0
Octacocana (mm) 50 150	200	ND < 73	ND < 56	890*
Octacosane (suff) 50-150	108	102	111	103
*C10 - Car Mor bo DNIA wel	1/16 01			105

 $C_{18} - C_{36}$ May be PNA related/Motor Oil range

Conn. Extractable TPH [CT DEP] Units: mg/kg (Dry Wt)

Client ID	HA5-S2 5-10ft
CET ID	AF03623
Date Analyzed	5/25/2012
Dilution	10
ЕТРН	240*
Octacosane (surr) 50-150	104
0 0 15 1	

*C₁₈ – C₃₆ May be PNA related/Motor Oil range

Volatile Organics [EPA 8260C] Units: ug/kg (Dry Wt)

Client ID	HA1-S1 0-56	HA1 \$2 5 10G	I II. 10 01 0 70	
CET ID	AF03615	A E03616	HA2-S1 0-5f	t HA2-S2 5-14ft
Date Analyzed	5/27/2012	5/27/2012	AF03617	AF03618
Dilution	14	12	5/27/2012	5/27/2012
Dichlorodifluoromethane	ND < 13	1.2	1.3	1.4
Chloromethane	ND < 90	ND < T	ND < 11	ND < 17
Vinyl Chloride	ND < 50	ND < 7.0	ND < 8.0	ND < 11
Bromomethane	ND < 9.0	ND < 4.0	ND < 4.0	ND < 6.0
Chloroethane	ND < 9.0	ND < 7.0	ND < 8.0	ND < 11
Acetone	ND < 130	ND < 7.0	ND < 8.0	ND < 11
Acrylonitrile	ND < 70	ND < 100	ND < 110	ND < 160
Trichlorofluoromethane	ND < 34	ND < 6.0	ND < 6.0	ND < 9.0
Trichlorotrifluoroethane	ND < 34	ND < 28	ND < 29	ND < 44
1,1-Dichloroethene	ND < 50	ND < 28	ND < 29	ND < 44
Methylene Chloride	ND < 3.0	ND < 4.0	ND < 4.0	ND < 6.0
Carbon Disulfide	ND < 0.0	ND < 35	ND < 36	ND < 54
Methyl-t-Butyl Ether (MTBE)	ND < 5.0	ND < 7.0	ND < 8.0	ND < 11
trans-1,2-Dichloroethene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
1,1-Dichloroethane	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
2-Butanone (MEK)	ND < 22	ND < 4.0	ND < 4.0	ND < 6.0
2,2-Dichloropropane	ND < 50	ND < 18	ND < 18	ND < 27
cis-1,2-Dichloroethene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
Chloroform	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
Tetrahydrofuran	ND < 3.0	ND < 4.0	ND < 4.0	ND < 6.0
1,1,1-Trichloroethane	ND < 50	ND < 18	ND < 18	ND < 27
Carbon Tetrachloride	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
1,1-Dichloropropene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
Benzene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
1,2-Dichloroethane	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
Methyl Isobutyl Ketone	ND < 22	ND < 4.0	ND < 4.0	ND < 6.0
Trichloroethene	ND < 50	ND < 18	ND < 18	ND < 27
1,2-Dichloropropane	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
Dibromomethane	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
Bromodichloromethane	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
2-Hexanone	ND < 22	ND < 4.0	ND < 4.0	ND < 6.0
cis-1,3-Dichloropropene	ND < 50	ND < 18	ND < 18	ND < 27
Toluene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
trans-1,3-Dichloropropene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
1,1,2-Trichloroethane	ND < 50	IND < 4.0	ND < 4.0	ND < 6.0
Tetrachloroethene	ND < 50	IND < 4.0	ND < 4.0	ND < 6.0
1,3-Dichloropropane	ND < 50	ND < 4.0	ND < 4.0	ND < 6.0
Dibromochloromethane	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
		IND < 4.0	ND < 4.0	ND < 6.0

Volatile Organics [EPA 8260C] Units: ug/kg (Dry Wt) Client ID HA1-S1 0-5ft HA1-S2

Client ID	HA1-S1 0 56	LIN1 00 5 405		
1,2-Dibromoethane	ND < 50	HAI-52 5-19ft	HA2-S1 0-5ft	HA2-S2 5-14ft
trans-1,4-Dichloro-2-Butene	ND < 3.0	ND < 4.0	ND < 4.0	ND < 6.0
Chlorobenzene	ND < 50	ND < 18	ND < 18	ND < 27
1,1,1,2-Tetrachloroethane	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
Ethylbenzene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
m+p Xylenes	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
o-Xylene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 60
Styrene	ND < 5.0	ND < 4.0	ND < 4.0	$ND \leq 60$
Bromoform	ND < 5.0	ND < 4.0	ND < 4.0	$ND \leq 6.0$
Isopropylbenzene	ND < 5.0	ND < 4.0	ND < 4.0	$ND \leq 6.0$
1,1,2,2-Tetrachloroethane	ND < 5.0	ND < 4.0	ND < 4.0	$ND \leq 6.0$
Bromobenzene	ND < 5.0	ND < 4.0	ND < 4.0	$ND \leq 60$
1,2,3-Trichloropropage	ND < 5.0	ND < 4.0	ND < 4.0	ND < 60
n-Propylbenzene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
2-Chlorotoluene	ND < 5.0	ND < 4.0	ND < 4.0	$ND \le 6.0$
4-Chlorotoluene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
1,3,5-Trimethylbenzene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 60
tert-Butylbenzene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
1.2.4-Trimethylbenzene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
sec-Butylbenzene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 0.0
1.3-Dichlorobenzene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
4-Isopropyltolueno	ND < 5.0	ND < 4.0	ND < 4.0	ND < 0.0
1.4-Dichlorobenzeno	ND < 5.0	ND < 4.0	ND < 4.0	ND < 0.0
1 2-Dichlorobenzene	ND < 5.0	ND < 4.0	ND < 40	ND < 0.0
n-Butylbenzene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 0.0
1.2-Dibromo 3 Chlorester	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
1.2.4-Trichlorobonne	ND < 5.0	ND < 4.0	ND < 40	ND < 0.0
Hexachlorobutadiana	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
Naphthalene	ND < 5.0	ND < 4.0	ND < 4.0	ND < 6.0
1 2 3-Trichlorohana	ND < 5.0	ND < 4.0	ND < 4.0	ND < 0.0
1.2 Dichloroothan 14 (UIDD) -	ND < 5.0	ND < 4.0	ND < 4.0	150 ND 1 (0
toluene de (SURR) 70-130	129	132 H	132 H	100 < 6.0
4-bromoflyoration (SURK) /U-130	100	101	100	129
Performation (SURR) 70-130	85.3	93.9	87 7	99.8
			01.1	94./

Volatile Organics [EPA 8260C] Units: ug/kg (Dry Wt)

1 FLA 5-ST 0.5FF	LIN2 COF 10C		
AE03610	1773-52 5-12ft	HA4-S1 0-19ft	HA5-S1 0-5ft
5/27/2010	AF03620	AF03621	AF03622
5/2//2012	5/27/2012	5/27/2012	5/27/2012
1.4	1.2	1.5	1 4
ND < 13	ND < 14	ND < 13	ND < 12
ND < 9.0	ND < 9.0	ND < 90	ND < 12
ND < 5.0	ND < 5.0	ND < 50	ND < 8.0
ND < 9.0	ND < 9.0	ND < 9.0	ND < 4.0
ND < 9.0	ND < 9.0	ND < 0.0	ND < 8.0
ND < 130	ND < 130	ND < 9.0	ND < 8.0
ND < 7.0	ND < 70	ND < 120	ND < 120
ND < 34	ND < 35	ND < 7.0	ND < 7.0
ND < 34	ND < 35	ND < 33	ND < 31
ND < 50	ND < 55	ND < 33	ND < 31
ND < 42	ND < 5.0	ND < 5.0	ND < 4.0
140 \ 42	ND < 44	ND < 41	ND < 39
	$\begin{array}{l} \text{AF3-S1 0-5ft} \\ \text{AF03619} \\ 5/27/2012 \\ 1.4 \\ \text{ND} < 13 \\ \text{ND} < 9.0 \\ \text{ND} < 5.0 \\ \text{ND} < 9.0 \\ \text{ND} < 130 \\ \text{ND} < 130 \\ \text{ND} < 7.0 \\ \text{ND} < 34 \\ \text{ND} < 34 \\ \text{ND} < 5.0 \\ \text{ND} < 5.0 \\ \text{ND} < 42 \end{array}$	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccc} HA3-SI \ 0-5ft & HA3-S2 \ 5-12ft & HA4-S1 \ 0-19ft \\ \hline AF03619 & AF03620 & AF03621 \\ 5/27/2012 & 5/27/2012 & 5/27/2012 \\ 1.4 & 1.2 & 1.5 \\ ND < 13 & ND < 14 & ND < 13 \\ ND < 9.0 & ND < 9.0 & ND < 9.0 \\ ND < 5.0 & ND < 5.0 & ND < 5.0 \\ ND < 9.0 & ND < 9.0 & ND < 9.0 \\ ND < 9.0 & ND < 9.0 & ND < 9.0 \\ ND < 9.0 & ND < 9.0 & ND < 9.0 \\ ND < 130 & ND < 130 & ND < 120 \\ ND < 7.0 & ND < 7.0 & ND < 7.0 \\ ND < 34 & ND < 35 & ND < 33 \\ ND < 34 & ND < 35 & ND < 33 \\ ND < 5.0 & ND < 5.0 & ND < 5.0 \\ ND < 5.0 & ND < 5.0 & ND < 5.0 \\ ND < 42 & ND < 44 & ND < 41 \\ \end{array}$

Volatile Organics [EPA 8260C] Units: ug/kg (Dry Wt) Client ID HA3-S1 0-5ft HA3-S2

Client ID	HA3-S1 0-	5ft HA3 82 5	100 1774		
Carbon Disulfide	ND < 90	$\frac{511}{1113-32} = -$	12ft HA4-S1 0-	19ft HA5-S1 0-5	ft
Methyl-t-Butyl Ether (MTBE)	ND < 50	ND < 9.0	ND < 9.0	ND < 8.0	
trans-1,2-Dichloroethene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
1,1-Dichloroethane	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
2-Butanone (MEK)	ND < 3.0	ND < 5.0	ND < 5.0	ND < 4.0	
2,2-Dichloropropane	ND < 2	ND < 22	ND < 21	ND < 20	
cis-1,2-Dichloroethene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 40	
Chloroform	ND < 5.0	ND < 5.0	ND < 5.0	$ND \leq 10$	
Tetrahydrofuran	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
1.1.1-Trichloroethane	ND < 21	ND < 22	ND < 21	ND < 20	
Carbon Tetrachlanda	ND < 5.0	ND < 5.0	ND < 50	ND < 20	
1 1-Dichloroproport	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
Benzene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
1 2 Dichlans et	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
1,2-Dichloroethane	ND < 5.0	ND < 50	ND < 5.0	ND < 4.0	
Trial 1	ND < 21	ND < 22	ND < 5.0	ND < 4.0	
1 nchloroethene	ND < 5.0	ND < 50	ND < 2	ND < 20	
1,2-Dichloropropane	ND < 5.0	ND < 50	ND < 5.0	ND < 4.0	
Dibromomethane	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
Bromodichloromethane	ND < 50	ND < 5.0	ND < 5.0	ND < 4.0	
2-Hexanone	ND < 21	ND < 5.0	ND < 5.0	ND < 4.0	
cis-1,3-Dichloropropene	ND < 50	ND < 22	ND < 21	ND < 20	1
Toluene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
trans-1,3-Dichloropropene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
1,1,2-Trichloroethane	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
Tetrachloroethene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 40	
1,3-Dichloropropane	ND < 5.0	ND < 5.0	ND < 5.0	ND < 40	
Dibromochloromethane	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
1,2-Dibromoethane	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
trans-1.4-Dichloro 2 Butons	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
Chlorobenzene	ND < 21	ND < 22	ND < 21	ND < 20	
1112-Tetrachloroathan	ND < 5.0	ND < 5.0	ND < 50	ND < 20	
Ethylbenzone	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
m+n Yulones	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
o Vulence	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
Strees	ND < 5.0	ND < 50	ND < 5.0	ND < 4.0	l
But	ND < 5.0	ND < 50	ND < 5.0	ND < 4.0	
Dromoform	ND < 5.0	ND < 50	ND < 5.0	ND < 4.0	
Isopropylbenzene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
1,1,2,2-1etrachloroethane	ND < 5.0	ND < 50	ND < 5.0	ND < 4.0	
Bromobenzene	ND < 50	ND < 50	ND < 5.0	ND < 4.0	
1,2,3-Trichloropropane	ND < 50	ND < 5.0	ND < 5.0	ND < 4.0	
n-Propylbenzene	ND < 50	ND < 5.0	ND < 5.0	ND < 4.0	
2-Chlorotoluene	ND < 50	ND < 5.0	ND < 5.0	ND < 4.0	
4-Chlorotoluene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
1,3,5-Trimethylbenzene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
tert-Butylbenzene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0	
1,2,4-Trimethylbenzene		ND < 5.0	ND < 5.0	ND < 40	
sec-Butylbenzene	10 < 5.0	ND < 5.0	ND < 5.0	ND < 40	
1,3-Dichlorobenzene	1 ND < 5.0	ND < 5.0	ND < 5.0	ND < 40	
4-Isopropyltoluene	IND < 5.0	ND < 5.0	ND < 5.0	ND < 40	
1,4-Dichlorobenzene	IND < 5.0	ND < 5.0	ND < 5.0	ND < 40	
1,2-Dichlorobenzene	ND < 5.0	ND < 5.0	ND < 5.0	ND < 40	
	ND < 5.0	ND < 5.0	ND < 5.0	$\frac{1}{ND} < 4.0$	
				1 + 4.0	

Volatile Organics [EPA 8260C] Units: ug/kg (Dry Wt)

Client ID	HA3-S1 0-5ft	HA3 \$25 126	TTTT A OA O ADA	
n-Butylbenzene	ND < 50	1113-32 3-1211	HA4-S1 0-19ft	HA5-S1 0-5ft
1.2-Dibromo-3-Chloropropage	1ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0
1.2.4 Trichland	ND < 5.0	ND < 5.0	ND < 5.0	ND < 10
1,2,4-1 inchlorobenzene	ND < 5.0	ND < 5.0	ND < 50	ND < 4.0
Hexachlorobutadiene	ND < 5.0	ND < 50	ND < 5.0	ND < 4.0
Naphthalene	ND < 50	ND < 5.0	ND < 5.0	ND < 4.0
1,2,3-Trichlorobenzene	10 < 3.0	ND < 5.0	ND < 5.0	9.3
12 Dichloroethana d4 (SUDD) 70 420	ND < 5.0	ND < 5.0	ND < 5.0	ND < 4.0
toluona do (CLIDD) To too	129	126	129	130
toluene-d8 (SURR) /0-130	100	100	100	150
4-bromofluorobenzene (SURR) 70-130	94	04.9	100	99.7
		74.0	93.8	91.4

Volatile Organics [EPA 8260C] Units: ug/kg (Dry Wt)

	Client ID	I	HA5 \$2.5 10H	
ſ	CET ID	-	A E03623	<u>.</u>
	Date Analyzed		5/28/2012	
	Dilution		1 3	
	Dichlorodifluoromethane		ND < 12	
	Chloromethane		ND < 12	
	Vinyl Chloride		ND < 4.0	
1	Bromomethane		ND < 80	
L	Chloroethane		ND < 80	
	Acetone		ND < 110	
	Acrylonitrile		ND < 60	
I	Trichlorofluoromethane		ND < 30	
1	Trichlorotrifluoroethane		ND < 30	
L	1,1-Dichloroethene		ND < 40	
1	Methylene Chloride		ND < 37	
1	Carbon Disulfide		ND < 80	
1	Methyl-t-Butyl Ether (MTBE)		ND < 4.0	
t	rans-1,2-Dichloroethene		ND < 4.0	
1	1,1-Dichloroethane		ND < 4.0	
2	2-Butanone (MEK)		ND < 19	
2	2,2-Dichloropropane		ND < 40	
С	is-1,2-Dichloroethene	1	ND < 4.0	
C	Chloroform		ND < 4.0	
ſ	etrahydrofuran	IN	VD < 19	
1	,1,1-Trichloroethane	IN	JD < 4.0	
C	Carbon Tetrachloride	IN	JD < 4.0	
1	,1-Dichloropropene	N	JD < 4.0	
В	enzene	N	JD < 4.0	l
1,	2-Dichloroethane	N	1D < 4.0	
$N_{\rm c}$	lethyl Isobutyl Ketone	N	D < 19	
Т	richloroethene	N	D < 4.0	
1,	2-Dichloropropane	N	D < 4.0	
D	ibromomethane	N	D < 4.0	
B	romodichloromethane	N	D < 4.0	
2-	Hexanone	Ν	D < 19	
cis	s-1,3-Dichloropropene	Ν	D < 4.0	
Τc	oluene	D < 4.0		
tra	ins-1,3-Dichloropropene	N	D < 4.0	
1,1	,2-Trichloroethane	N	D < 4.0	

Volatile Organics [EPA 8260C] Units: ug/kg (Dry Wt)

	Client ID		HA5 \$2 5 106	÷
	Tetrachloroethene		ND < 4.0	
	1,3-Dichloropropane		ND < 4.0	
	Dibromochloromethane		ND < 4.0	
	1,2-Dibromoethane		ND < 4.0	
	trans-1,4-Dichloro-2-Butene		ND < 4.0	
	Chlorobenzene		ND < 19	
1	1,1,1,2-Tetrachloroethane		ND < 4.0	
1	Ethylbenzene		ND < 4.0	
	m+p Xylenes		ND < 4.0	
	o-Xylene		ND < 4.0	
	Styrene		ND < 4.0	
	Bromoform		ND < 4.0	
	Isopropylbenzene		ND < 4.0	
	1,1,2,2-Tetrachloroethane		ND < 4.0	i
	Bromobenzene		ND < 4.0	
	1,2,3-Trichloropropane		ND < 4.0	
1	n-Propylbenzene		ND < 4.0	
	2-Chlorotoluene		ND < 4.0	
4	4-Chlorotoluene		ND < 4.0	
:	1,3,5-Trimethylbenzene		ND < 4.0	
t	ert-Butylbenzene		ND < 4.0	1
1	,2,4-Trimethylbenzene		ND < 4.0	1
s	ec-Butylbenzene		ND < 4.0	I
1	,3-Dichlorobenzene		ND < 4.0	I
4	-Isopropyltoluene		VD < 4.0	I
1	,4-Dichlorobenzene		JD < 4.0	
1	,2-Dichlorobenzene		JD < 4.0	
n	-Butylbenzene		JD < 4.0	
1	2-Dibromo-3-Chloropropane		JD < 4.0	
1,	2,4-Trichlorobenzene	N	JD < 4.0	
H	exachlorobutadiene	N	D < 4.0	
Ν	aphthalene	N	D < 4.0	
1,	2,3-Trichlorobenzene	N	D < 4.0	
1,	2 Dichloroethane-d4 (SURR) 70-130	1	35 H	
to	luene-d8 (SURR) 70-130	99).7	
4-	bromofluorobenzene (SURR) 70-130	92	2.3	

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

David Ditta

Laboratory Director

Form #3204		ite Time	m	rint	Ign	cimquisned by	vate Time			JUNIO 1		Date LITH PILINE	Finn Haley & Aldrich, Inc.	Print Steve Brousseau	Sign Mar 1 2 Barnes	Samplet and Keinquished by	Sampled and DP.		HASSI	HA4-51	HA3-S2	HA3-SI	HAZ-SZ	HA2-SI	Delivit.		HA1-St	Sample No.		II&A CONTACT Je	PROJECT NAME G	ALDRICH Suite 100 East Hart 7303
		Date	Fina	Print	Sign	Received by	Dale Star	Fin 2	Print U / W	Sign Krul,	Received by	Date JUN 1	Firm (1)	Print CV	KIVI ušiem IIVIV	Received by	0930	2012 0400	Ever CADO		(BMM 1245	18my Ilts	2012 1230	2012 1130	2012 130	2012 100	AMA 2	Date Time		1 Buchanon 860-290-313	176-000 VHWPCA	lord, CT 06108-
2mp 1		Time					Time (Low)	-				て「こと	7	۰ د	٦		S-10 Soil	o-S' Soil	O-lq Soil			o-s' Soil	5-IFF Soil	e-5' Soil	5-19 · Soit	0-5- Soi	1	Depth Typ	_	Ã		
5	¹⁴ Sample intered D HNO ₃	A Sample chilled C NaOH			40 mł 80z 80z 80z 0.25L	AGH A A A AD	X X X X		X								X X X X X	X X X X X	X X X X X			X X X V V	x x x x x	x x x x x	x x x x x		VOCs by 8 SVOCs by 8270 PCBs by 80 TPH by CTETPH Method	1260		CONTACT	LABORATORY	CHAIN O
	F HCL	E H ₂ SO ₄	PRESERVATION KEY		Box		×			AI 105							×	×	×	×	*		×	×	×	×	PH, flashpoi reactive CN, reactive sulfi	nt, ADBIYSIS Kequested		Stratford, CT Dave Ditta	CET	FCUSTOD
	H Sodium Bisulfate	G Methanol		Volume 1	Preservative	Clear Glass	Amber Glass	VOA Vial		Vohune	Preservative	Plastic Bottle	. Amber Glass	VOA Vial					5	2	S	5					Number o Container		PR(TU	DEI	Y RECORD
			The second below.	VES, blease explain in section below	vidence samples were tampered with? YES NO							Use CIDEP RCPs,	Adhere to CT PMC and RDEC.		Sampling Comments				,					JEON AGEC -	- heaven DCET.		(Special instructions, precautions, additional meth	Comments	NECT MANAGER Chris Harriman	UNAROUND TIME Normal	JVERV DATE 20	Phone 860-282.9. Fax 860-282.9.

Page 22 of 22

May 30, 2012

i

Project#: 37176-000 CET#: 12050553 Project: GNHWPCA

259 of 270

•~ j

,

Complete Environmental Testing, Inc.

.

ł

80 Lupes Drive Stratford, CT 06615 Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client: Ms. Jen Buchanon Haley & Aldrich 100 Corporate Place, Suite 105 Rocky Hill, CT 06067-1803

Analytical Report

CET # 12060003

Report Date: June 5, 2012 Client Project: GNHWPCA Client Project #: 37176-000

Connecticut Laboratory Certification PH 0116 Massachusetts Laboratory Certification M-CT903 Rhode Island Certification 199 New York Certification 11982 Florida Laboratory Certification E871064

Page 2 of 4

Project#: 37176-000 CET#: 12060003 Project: GNHWPCA

SAMPLE SUMMARY:

This report contains analytical data associated with the following samples only:

CETID	Client Sample ID	Matrix	Collection Date	Collection Time	Receipt Date
AF04368	HA1-S1 0-5ft	Soil	5/21/2012	11:00	05/22/2012

Sample temperature upon receipt was 1.1 degrees C

PREP ANALYSIS:

TCLP, Metals [EPA 1311]

Client ID	HA1-S1 0-5ft
CET ID	AF04368
Date Analyzed	6/2/2012

ANALYSIS:

TCLP Metals [EPA 6020A] Units: mg/l

Client ID	HA1-S1 0-5ft
CET ID	AF04368
Date Analyzed	6/4/2012
Dilution	1.0
Lead	0.33

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

David Ditta

Laboratory Director

Report Comments:

- 1. ND is None Detected at the specified detection limit.
- 2. All analyses were performed in house unless a Reference Laboratory is listed.
- 3. Samples will be disposed of 30 days after the report date.
- 4. Sample Result Flags:
 - E The result is estimated, above the calibration range.
 - H The surrogate recovery is above the control limits.
 - L The surrogate recovery is below the control limits.
 - B The compound was detected in the laboratory blank.
 - P The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
 - D The RPD between the sample and the sample duplicate is high. Sample homogeneity may be a problem.
- 5. All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Page 1 of 1

Main Identity

12060003

From:"Dave Ditta" <dditta1@cetlabs.com>To:<jbakos@cetlabs.com>Sent:Thursday, May 31, 2012 3:43 PMAttach:12050553.pdfSubject:FW: cet# 12050553

From: Buchanon, Jennifer N. [mailto:]Buchanon@haleyaldrich.com] Sent: Thursday, May 31, 2012 1:50 PM To: CET1 Subject: FW: cet# 12050553

Please run TCLP Lead for Sample ID: HA1-S1 0-5ft

From: cetreports [mailto:cetreports@cetlabs.com] Sent: Wednesday, May 30, 2012 4:33 PM To: Buchanon, Jennifer N. Subject: cet# 12050553

COMPLETE ENVIRONMENTAL LESTING, INC.

Please do not reply to this e-mail. This e-mail address is not monitored. If you need assistance please contact the lab at (203) 377-9984 or e-mail <u>cet1@cetlabs.com</u>

This e-mail and any attachments contain CET confidential information that may be proprietary or privileged. If you receive this message in error or are not the intended recipient, you should not retain, distribute, disclose or use any of this information and you should destroy the c-mail and any attachments or copies. If you received this message in error please call 203-377-9984.

6/1/2012

Project#: 37176-000
 CET#: 12050553
 Project: GNHWPCA

Page 22 of 22

80 Lupes Drive Stratford, CT 06615 Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client: Ms. Jen Buchanon Haley & Aldrich 100 Corporate Place, Suite 105 Rocky Hill, CT 06067-1803

Analytical Report

CET # 12050547

Report Date: May 30, 2012 Client Project: GNHWPCA Client Project #: 37176-000

Connecticut Laboratory Certification PH 0116 Massachusetts Laboratory Certification M-CT903 Rhode Island Certification 199 New York Certification 11982 Florida Laboratory Certification E871064 Project#: 37176-000 CET#: 12050547 Project: GNHWPCA

SAMPLE SUMMARY:

This report contains analytical data associated with the following samples only:

CETID	Client Sample ID	Matrix	Collection Date	Collection Time	Receipt Date
AF03604	HA5-OW	Water	5/21/2012	18:30	05/22/2012

Sample temperature upon receipt was 1.1 degrees C

PREP ANALYSIS:

Acid Digestion of Waters [EPA 3005A]

Client ID	HA5-OW
CET ID	AF03604
Date Analyzed	5/25/2012

Liquid-Liquid Extraction EPH [EPA 3510C]

Client ID	HA5-OW
CET ID	AF03604
Date Analyzed	5/24/2012

Liquid-Liquid Extraction SVOCs [EPA 3510C]

Client ID	HA5-OW	
CET ID	AF03604	
Date Analyzed	5/25/2012	

ANALYSIS:

Total Mercury [EPA 7470A] Units: mg/l

Client ID	HA5-OW
CET ID	AF03604
Date Analyzed	5/29/2012
Total Mercury	ND < 0.0004

Total Metals [EPA 200.7] Units: mg/l

Client ID	HA5-OW
CET ID	AF03604
Date Analyzed	5/25/2012
Dilution	1.0
Lead	0.097
Selenium	ND < 0.01
Cadmium	ND < 0.005
Chromium	ND < 0.05
Arsenic	ND < 0.004
Barium	0.66
Silver	ND < 0.012

Semi-Volatile Organics [EPA 8270D] Units: ug/l

Client ID	HA5-OW
CET ID	AF03604
Date Analyzed	5/29/2012
Dilution	1.0
Pvridine	ND < 4.0
n-Nitroso-dimethylamine	ND < 20
bis(2-Chloroethyl)ether	ND < 10
Phenol	ND < 20
Aniline	ND < 20
2-Chlorophenol	ND < 20
1,3-Dichlorobenzene	ND < 5.0
1.4-Dichlorobenzene	ND < 5.0
Benzyl Alcohol	ND < 20
1.2-Dichlorobenzene	ND < 5.0
bis(2-chloroisopropyl)ether	ND < 10
Hexachloroethane	ND < 3.0
N-Nitroso-di-n-propylamine	ND < 10
2-Methyl Phenol	ND < 20
3+4 Methyl Phenol	ND < 20
Nitrobenzene	ND < 20
Isophorone	ND < 20
2-Nitrophenol	ND < 20
2 4-Dimethylphenol	ND < 20
bis(2-Chloroethoxy)methane	ND < 20
Benzoic Acid	ND < 20
2 4-Dichlorophenol	ND < 20
1 2 4-Trichlorobenzene	ND < 5.0
Naphthalene	2.2
2.6-Dichlorophenol	ND < 20
4-Chloroaniline	ND < 20
1 2 4 5 Tetrachlorobenzene	ND < 20
Hexachlorobutadiene	ND < 20
4-Chloro-3-methylphenol	ND < 20
2-Methyl Naphthalene	ND < 1.0
Hexachlorocyclopentadiene	ND < 20
2 4 6-Trichlorophenol	ND < 20
2 4 5-Trichlorophenol	ND < 20
2-Chloronaphthalene	ND < 20
2-Nitroaniline	ND < 20
Acenaphthylene	ND < 0.30
Dimethylphthalate	ND < 20
2 6-Dinitrotoluene	ND < 75
4-Nitroaniline	ND < 20
Acenaphthene	ND < 1.0
2 4-Dinitrophenol	ND < 20
2 4-Dinitrotoluene	ND < 75
4-Nitrophenol	ND < 75
Dibenzofuran	ND < 1.0
2 3 4 6-Tetrachlorophenol	ND < 20
Fluorene	ND < 1.0
4-Chlorophenyl-phenylether	ND < 20
Diethylphthalate	ND < 20
3-Nitroaniline	ND < 20
4,6-Dinitro-2-methylphenol	ND < 20

Semi-Volatile Organics [EPA 8270D] Units: ug/l

Client ID	HA5-OW
n-Nitrosodiphenylamine	ND < 20
1,2-Diphenylhydrazine	ND < 20
4-Bromophenyl-phenylether	ND < 20
Hexachlorobenzene	ND < 0.077
Pentachlorophenol	ND < 1.0
Phenanthrene	0.54
Anthracene	ND < 1.0
Carbazole	ND < 1.0
Di-n-butylphthalate	ND < 20
Pentachloronitrobenzene	ND < 20
Fluoranthene	ND < 1.0
Pyrene	ND < 1.0
Butylbenzylphthalate	ND < 20
3,3-Dichlorobenzidine	ND < 75
Benzo[a]anthracene	0.48
Chrysene	ND < 1.0
bis(2-Ethylhexyl)phthalate	ND < 2.0
Di-n-octylphthalate	ND < 20
Benzo[b]fluoranthene	0.44
Benzo[k]fluoranthene	ND < 0.30
Benzo[a]pyrene	0.38
Indeno[1,2,3-cd]pyrene	0.31
Dibenz[a,h]anthracene	ND < 0.20
Benzo[g,h,i]perylene	ND < 1.0
2-Fluorophenol (Surr) 15-110	21
Phenol-d6(Surr) -	14
Nitrobenzene-d5(Surr) 30-130	44
2-Fluorobiphenyl (Surr) 30-130	44
2,4,6-Tribromophenol (Surr) 15-110	120 H
Terphenyl-d14 (Surr) 30-130	130

Conn. Extractable TPH [CT DEP] Units: mg/l

Client ID	HA5-OW
CET ID	AF03604
Date Analyzed	5/24/2012
Dilution	1.0
ETPH	ND < 0.10
Octacosane (surr) 50-150	84

Volatile Organics [EPA 8260C] Units: ug/l

Client ID	HA5-OW
CET ID	AF03604
Date Analyzed	5/23/2012
Dilution	1.0
Dichlorodifluoromethane	ND < 10
Chloromethane	ND < 2.7
Vinyl Chloride	ND < 1.6
Bromomethane	ND < 5.0
Chloroethane	ND < 5.0
Acetone	ND < 50
Acrylonitrile	ND < 0.50
Trichlorofluoromethane	ND < 25
Trichlorotrifluoroethane	ND < 25
1,1-Dichloroethene	ND < 1.0
Methylene Chloride	ND < 5.0
Carbon Disulfide	ND < 5.0
Methyl-t-Butyl Ether (MTBE)	ND < 5.0
trans-1,2-Dichloroethene	ND < 1.0
1,1-Dichloroethane	ND < 1.0
2-Butanone (MEK)	ND < 25
2,2-Dichloropropane	ND < 1.0
cis-1,2-Dichloroethene	ND < 1.0
Chloroform	ND < 1.0
Tetrahydrofuran	ND < 5.0
1,1,1-Trichloroethane	ND < 1.0
Carbon Tetrachloride	ND < 1.0
1,1-Dichloropropene	ND < 1.0
Benzene	ND < 1.0
1,2-Dichloroethane	ND < 1.0
Methyl Isobutyl Ketone	ND < 25
Trichloroethene	ND < 1.0
1,2-Dichloropropane	ND < 1.0
Dibromomethane	ND < 1.0
Bromodichloromethane	ND < 0.50
2-Hexanone	ND < 25
cis-1,3-Dichloropropene	ND < 0.50
Toluene	ND < 1.0
trans-1,3-Dichloropropene	ND < 0.50
1,1,2-Trichloroethane	ND < 1.0
Tetrachloroethene	ND < 1.0
1,3-Dichloropropane	ND < 0.50
Dibromochloromethane	ND < 0.50
1,2-Dibromoethane	ND < 0.50
trans-1,4-Dichloro-2-Butene	ND < 10
Chlorobenzene	ND < 1.0
1,1,1,2-Tetrachloroethane	ND < 1.0
Ethylbenzene	ND < 1.0
m+p Xylenes	ND < 1.0
o-Xylene	ND < 1.0
Styrene	ND < 1.0
Bromotorm	ND < 1.0
Isopropylbenzene	ND < 1.0
1,1,2,2-Tetrachloroethane	ND < 0.50
Bromobenzene	ND < 1.0

Volatile	Organics	IEPA	8260C1	Units:	ug/l
v oraciic	Oleantoo		020001	C	~~~/-

volatile Organics [ETA 0200C] O	$m_{0}, ug/1$
Client ID	HA5-OW
1,2,3-Trichloropropane	ND < 1.0
n-Propylbenzene	ND < 1.0
2-Chlorotoluene	ND < 1.0
4-Chlorotoluene	ND < 1.0
1,3,5-Trimethylbenzene	ND < 1.0
tert-Butylbenzene	ND < 1.0
1,2,4-Trimethylbenzene	15
sec-Butylbenzene	ND < 1.0
1,3-Dichlorobenzene	ND < 1.0
4-Isopropyltoluene	ND < 1.0
1,4-Dichlorobenzene	ND < 1.0
1,2-Dichlorobenzene	ND < 1.0
n-Butylbenzene	ND < 1.0
1,2-Dibromo-3-Chloropropane	ND < 1.0
1,2,4-Trichlorobenzene	ND < 1.0
Hexachlorobutadiene	ND < 0.45
Naphthalene	4.2
1,2,3-Trichlorobenzene	ND < 1.0
1,2 Dichloroethane-d4 (SURR) 70-130	100
toluene-d8 (SURR) 70-130	100
4-bromofluorobenzene (SURR) 70-130	107

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

David Ditta

Laboratory Director

Report Comments:

- 1. ND is None Detected at the specified detection limit.
- 2. All analyses were performed in house unless a Reference Laboratory is listed.
- 3. Samples will be disposed of 30 days after the report date.
- 4. Sample Result Flags:
 - E The result is estimated, above the calibration range.
 - H The surrogate recovery is above the control limits.
 - L The surrogate recovery is below the control limits.
 - B The compound was detected in the laboratory blank.
 - P The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
 - D The RPD between the sample and the sample duplicate is high. Sample homogeneity may be a problem.
- 5. All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

								[]	Ling		Form #3204	
	H Sodium Bisulfate	F HCL	HNO,		le filtered	B Samp		Time		Date	Date Time	
	G Methanol	E H ₂ SO4	NaOH	c	le chilled	A Samp				Fim		
		ESERVATION KEY	PR							Print	rint	
If YES, please explain in section below.	Volume		8oz 8oz	z 8oz	8oz 80	40 mJ				Sign		
Evidence samples were tampered with? YES NO	Preservative		A A	>	>		- W. A.		ved by	Recei	$rac \sim f \sim f = f = f$	7.15
	Clear Glass		x x	×	× ×			Time	5/21			
	Amber Gless				_				_ <	. Print	िंदिन	
	VOA Vial			-	_	×			AM	Sign		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		SOLID	-								vetundarsaren nik	1.5
	Volume					2	ļ		ved by	Recei	balinamished by	- 10
	Preservative			E	P A	Pn	5	Time	5 122 h	Date	hito Indiej & chuitei, une	7 7
Use CIDEP RCPs.	Plastic Bottle		_	X	_				्ह्र		inn Ualey & Aldrich Inc	
Adhere to CT PMC and RDEC.	Amber Glass				$\frac{\Lambda}{X}$			4	10.0100	Print	the Serve Brussean	. .
	VOA Vial				_	X		1	1 1 1 1	Sion		δT
Sampling Comments		TIQUID							ved by	Recei	ampled and Relinquished by	<u>от</u>
Comments (special instructions, precautions, additional method numbers, etc.)	Number of Containers 5		6	× RCRA 8 Metals	× 8270 1PH 09 × CTETPH	× VOCs by 8260	Type (Soil) Water	(lieet)	Time (830)	Date 2017	Sample No. HAS-OW	
		nalysis Requested	A									—
CT MANAGER Chris Harriman	PROJE	tta	Dave Dit	-	ONTAC	0			0-290-3134	Jen Buchanon 86	I&A CONTACT	anged.
AROUND TIME Normal	TURNA	, CT	Stratford	•.	DDRESS	 >				GNHWPCA	ROJECT NAME	70
ERY DATE 22 MAYLOR	DELIV		CET	FORY	ABORA	 				37176-000	I&A FILE NO.	- 1
Phone 860-282-9400 Fax 860-282-9500 Fax 860-282-9500 I of 1	RECORD	JSTODY)F CU	NC	IAI	CE			۴۹ 	& Aldrich, Inc. onecticut Blvd., 00 artford, CT 0610	HALEY & Haley ALDRICH Suite 1 FALDRICH Suite 1 Fast H	
いうどう												

Project#: 37176-000 CET#: 12050547 Project: GNHWPCA

1

Complete Environmental Testing, Inc.

٠.

· · · · ·

Form #3204

9