Greater New Haven Water Pollution Control Authority

New Haven, Connecticut

BIDDING REQUIREMENTS AND CONTRACT DOCUMENTS

for the construction of the

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility

Project No. CWF 2019-04

Volume 3

PROVIDED FOR INFORMATION ONLY

Request for Proposal for Process Air Compressor Equipment, dated December 2021

APG-Neuros Proposal; High Efficiency Air Bearing Turbo Blower, dated February 2, 2022

JACOBS

Wethersfield, CT

July 2023

Project No. E2X90000

Copy No._____

Greater New Haven Water Pollution Control Authority

New Haven, Connecticut

BIDDING REQUIREMENTS AND CONTRACT DOCUMENTS

for purchase of

Process Air Compressor Equipment

Process Air Compressor System for Low Level Nitrogen Removal East Shore Water Pollution Abatement Facility

Project No. CWF 2019-04

JACOBS

Wethersfield, CT

December 2021

Project No. E2X90000

Copy No.____

Pages

۱

TABLE OF CONTENTS

PROCUREMENT REQUIREMENTS

00 11 15	Notice of Request for Proposal Process Air Compressor
	Equipment1- 2
00 41 65	Request for Proposal1- 3
	Proposal Form
00 74 10	RCSA Title 22a, Section 22a-482-4 (g); Required Construction
	Contract Provisions Under the Connecticut Department of
	Environmental Protection's Clean Water Fund1- 6
00 74 12	Prohibition on Certain Telecommunication and Video
	Surveillance Services or Equipment in the SRF Programs
00 74 20	Governor's Executive Order No. Three
00 74 30	Governor's Executive Order No. Seventeen1- 2
00 74 40	American Iron and Steel Act DEEP Revised
	CWF Memo 2014-001a with the EPA 3-2-14 Memo
	attachment and AIS Bidder Certification1- 20
00 74 50	Contractor's Exempt Purchase Certificate1- 1

SPECIFICATIONS

DIVISION 1—GENERAL REQUIREMENTS

01 30 00	Administrative Requirements1- 11
	Supplements:
	Notice of Schedule Impact
	Transmittal of Equipment Manufacturer's Submittal Form
	Asset Maintenance Forms
01 43 34	Special Services1- 3
	Supplement:
	Manufacturer's Certificate of Proper Installation
01 61 01	Product Requirements1- 3
	Supplement:
	Equipment Manufacturer's Notice of Shipment of Equipment

DIVISIONS 2 THROUGH 43—NOT USED

Pages 1

DIVISION 44—POLLUTION AND WASTE CONTROL EQUIPMENT

Component – Factory Testing Summary Checklists Process Air Compressor Facility Preliminary Drawings

DIVISIONS 45 THROUGH 49—NOT USED

END OF SECTION

PROCUREMENT REQUIREMENTS

HAR BIDDING

GREATER NEW HAVEN WATER POLLUTION CONTROL AUTHORITY

NOTICE OF REQUEST FOR PROPOSAL (RFP) PROCESS AIR COMPRESSOR EQUIPMENT

PROJECT NO. CWF 2019-04 PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL EAST SHORE WATER POLLUTION ABATEMENT FACILITY

The Greater New Haven Water Pollution Control Authority intends to pre-select a single supplier to furnish process air compressor equipment and ancillary equipment, including all materials, equipment, or work required including commissioning, training, and performance testing to be incorporated into the Process Air Compressor System for Low Level Nitrogen Removal project at the East Shore Water Pollution Abatement Facility.

Proposals shall be received at the Office of Director of Finance and Administration of the Greater New Haven Water Pollution Control Authority located at 260 East Street, New Haven, Connecticut 06511, until 10:00 a.m., prevailing local time January 20, 2022. Proposals received after that time will not be accepted.

The bidders may be required to attend a virtual interview regarding the technical proposal.

The selected Proposer will be named as the preselected supplier of Process Air Compressor Equipment in the project specifications for the general construction of the Process Air Compressor System for Low Level Nitrogen Removal project. The Contractor shall be responsible for the purchase of the Process Air Compressor Equipment package from the Process Air Compressor Equipment Manufacturer as described herein and in the Proposal. In return, the Proposer must agree to enter into an agreement with the General Contractor who is selected by the Greater New Haven Water Pollution Control Authority to construct the Process Air Compressor System for Low Level Nitrogen Removal, and to provide the equipment and services as established in the Proposal.

The information for Bidders, Proposal, Form of Contract, Plans and Specifications may be examined at the web address <u>https://gnhwpca.com/doing-business-with-gnhwpca/vendor-portal/</u>. All Bidders must obtain the full "RFP" by contacting engineering@gnhwpca.com and referencing the project number CWF 2019-04.

All questions concerning this RFP must be submitted to the Authority via email in writing before 4:00 p.m. on January 7, 2022 (Email: engineering@gnhwpca.com and Karina.massey@jacobs.com). To be given consideration, questions must be received prior to the due date for questions indicated above. This office is the only point where information shall be disseminated. The Authority reserves the right to reject any and all proposals, and to waive informalities and irregularities in the preselection procedure.

All bidders are to note that this project is subject to the following requirements:

1. Any contract awarded under this RFP is expected to be funded in part by the State of Connecticut, Department of Energy and Environmental Protection. Neither the State of Connecticut nor any of

PW\DEN003\E290000\.SPECS\.RFP PAC

its departments, agencies, or employees is or will be party to this RFP or any resulting contract. This procurement will be subject to the requirements contained in Title 22a, Section 22a-482-4, subsections (h), (j), and (o).

- 2. Bidders are subject to affirmative action to ensure equal opportunity for employment, as noted in Governor's Executive Orders Three and Seventeen.
- 3. American Iron and Steel (AIS) requirements of Section 436 of Public Law (P.L.) 113-76, Consolidated Appropriations Acts, 2014.
- 4. State of Connecticut Wage Rates and Federal Minimum Wage Rates, as determined by the United States Department of Labor under the Davis-Bacon Act.
- United States Environmental Protection Agency's Prohibition on Certain Telecommunications and Video Surveillance Services or Equipment implementing Section 889 of Public Law 115-232, effective August 13, 2020.

A certified check or bid bond in the amount of ten percent (10%) of the total bid amount must accompany the bid. Said checks or bid bonds will be returned to the unsuccessful bidders upon execution of a contract between the selected firm and the selected Contractor. If any bid is not accompanied by a bid bond or certified check at the specified time for receipt of proposals, the incomplete proposal will not be read and this action will constitute automatic rejection of the bid.

The successful bidder will be required to furnish a performance bond and a labor and materials payment bond to the Greater New Haven Water Pollution Control Authority and the selected Contractor for the amount of the total bid. A certified check cannot be substituted for either bond.

The Greater New Haven Water Pollution Control Authority reserves the right to alter quantities and accept or reject any or all bids or portions of any bids, for any or no reason, including unavailability of appropriated funds as it may deem to be in its best interests.

All bidders are to note that the award of this proposal is subject to the following conditions and contingencies:

- 1. The approval of such government agencies as may be required by law.
- 2. The appropriation of adequate funds by the proper agencies.
- 3. The Proposal Form as provided in these documents, submitted with all applicable certifications and documentation in accordance with the bid documents.

Greater New Haven Water Pollution Control Authority

BY: Gabriel Varca Director of Finance and Administration

DATED: December 16, 2021

END OF SECTION

NOTICE OF RFP 00 11 15 - 2 PW\DEN003\E290000\.SPECS\.RFP PAC

REQUEST FOR PROPOSAL

1. DEFINITIONS

1.1. Bidder: Synonymous with Proposer, shall refer to any manufacturer's authorized representative submitting a proposal in response to this Request for Proposal.

1.2. Owner: Greater New Haven Water Pollution Control Authority.

1.3. Engineer: Jacobs

1.4. Contractor: General Contractor to be selected by Owner to perform the work to provide the ESWPAF Process Air Compressor System for Low Level Nitrogen Removal.

1.5. Equipment Manufacturer: The selected Proposer to this request for proposal that will be furnishing the Process Air Compressor Equipment for the ESWPAF Process Air Compressor System for Low Level Nitrogen Removal project.

1.6. Project: The ESWPAF Process Air Compressor System for Low Level Nitrogen Removal Project performed by the Contractor.

2. PROPOSAL

2.1. Proposals for the process air compressor equipment, mailed or delivered in person, shall be one package shall be sealed and be marked "Project CWF 2019-04 Process Air Compressor PROPOSAL DOCUMENTS ENCLOSED."

2.2. Prepare and submit five (5) hard copies and one (1) electronic (PDF) copy on USB drives.

2.3. The Proposal consists of the following:

2.3.1. Proposal Form: Completed Section 00 41 65-01, Request for Proposal, Proposal Form.

2.3.2. Proposal Submittal Information: Information as shown in Section 44 42 19.05, High Speed Turbo Air Compressors, Part 1, Article 1.05 Submittals, paragraph B Action Submittals.

2.3.3. Proposal Security:

2.3.3.1. Each Proposal shall be accompanied by Proposal Security made payable without condition to Director of Finance and Administration, Greater New Haven Water Pollution Control Authority, in the amount of 10 percent of the Equipment Manufacturer's Total Bid. Security may be in the form of either a bond or a certified check.

2.3.3.2. Each Bidder's proposal Security will be retained until the selected Equipment Manufacturer has a signed agreement with the Contractor for installation of the Equipment Manufacturer's equipment at the East Shore Water Pollution Abatement Facility.

2.4. The proposal is exempt from Connecticut State sales and use taxes on permanently installed materials and equipment supplied under this proposal.

2.5. All pricing in the proposal shall be free on board the project site, located at 345 East Shore Parkway, New Haven, CT 06405

3. PROPOSAL EVALUATION

3.1. The Engineer will evaluate Proposals as submitted by Equipment Manufacturers according to monetary and non-monetary criteria and review with the Owner. The evaluation process may include an interview held via electronic means. The local representative and the service technician that will support the Owner during service calls must attend the interview.

3.2. Receipt of the submittal by the Owner does not constitute either a direct or implied guarantee to the pre-selected Equipment Manufacturer that prequalification or purchase will be granted. Proposals may be rejected at anytime at the Owners discretion.

3.3. Engineer and Owner may request additional information from the Equipment Manufacturer after submission of the Proposal if any item is unclear or incomplete; or Owner may determine insufficient information was originally submitted and refuse to further consider the manufacturer and/or equipment. The Equipment Manufacturer shall have 7 calendar days from receipt of a written request to submit any requestion additional information to the Owner and Engineer.

4. PROJECT

4.1. The selected Equipment Manufacturer will be named as the preselected supplier of the process air compressors and ancillary equipment in the project specifications for the general construction of the Project. The Contractor will be responsible for the purchase of the Manufacturers Equipment from the Equipment Manufacturer as described herein and in Proposal. In return, Equipment Manufacturer must agree to enter into an agreement with the Contractor who is selected by the Owner to construct the Project, to provide the bonds, equipment and services as established in the Proposal. Equipment Manufacturer must also agree to: 4.1.1. Honor the equipment, materials, and services costs for an expected Project bid opening and Notice to Proceed18 months from the proposal due date.

4.1.2. In the event that the Notice to Proceed date for the General Contract occurs later than 18 months after the proposal due date, Equipment Manufacturer agrees to provide the equipment, materials, and services at a price negotiated with the Owner.

4.1.3. Provide assistance to Engineer in the preparation of the detailed construction documents related to the goods and serviced provided by Equipment Manufacturer.

4.1.4. The Owner reserves the right to delete optional items from the scope of supply and deduct the cost of these optional items from the price.

4.1.5. Agree to the following Payment and Retainage Terms:

4.1.5.1. Payments are subject to the 5 percent retainage imposed upon the General Contractor as part of the larger Project.

4.1.5.2. 10 percent of total price payment upon approval of all shop drawing submittals submitted through the Contractor.

4.1.5.3. 5 percent of total price payment upon approval of Operation and Maintenance manuals.

4.1.5.4. 70 percent of total price payment upon delivery of equipment to the Project site specified in Section 44 42 19.05, High Speed Turbo Air Compressors.

4.1.5.5. 5 percent of total price payment upon completion of installation, O&M training, startup assistance and testing, and successful demonstration testing.

4.1.5.6. 10 percent of total price payment upon completion of all services described in Section 44 42 19.05, High Speed Turbo Air Compressors, including acceptance of the installation by the Owner.

4.1.6. All retainage shall be released upon the Final Completion of the larger project. It is anticipated that the Project will have an 18-month Project duration.

END OF SECTION

REQUEST FOR PROPOSAL PROPOSAL FORM

Bidder:

1. PROPOSAL RECIPIENT.

1.1. This proposal is submitted to:

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511 Reference: Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

2. EQUIPMENT MANUFACTURER'S ACKNOWLEDGEMENTS.

2.1. Equipment Manufacturer accepts all of the terms and conditions of the Request for Proposal (Process Air Compressor Equipment) documents, including without limitation those dealing with consumption guarantees, performance guarantee, and liquidated damages.

2.2. Equipment Manufacturer acknowledges that upon acceptance of proposal, Equipment Manufacturer shall prepare preliminary shop drawings for Engineer to use in completing the construction bid documents. The successful proposal will be included in the bid documents to be advertised for bidding by Contractors who will subsequently provide and install this material as part of the Contract. Payment to the Equipment Manufacturer will be by the Contractor. Bid documents for the Contractor are anticipated to be in 2022 with an 18 month Project duration.

2.3. Equipment Manufacturer has given Engineer written notice of all conflicts, errors, ambiguities, or discrepancies that Equipment Manufacturer has discovered in Proposal Documents, and written resolution thereof by Engineer is acceptable to Equipment Manufacturer.

3. OTHER CONDITIONS.

3.1. Equipment Manufacturer agrees to honor the equipment, materials, and services costs in the Proposal for a Notice to Proceed date to the Contractor within 18 months from the proposal due date.

3.2. In the event that the Notice to Proceed date for the Project occurs later than 18 months after the proposal due date, Equipment Manufacturer agrees to provide the equipment, materials, and services at an adjusted selling price negotiated with the Owner.

3.3. The Authority reserves the right to delete alternate items from the scope of supply and deduct the cost of these optional items from the price.

3.4. If for any reason the Authority does not award the Project, the Authority is under no obligation to purchase the equipment, materials, and services in the Proposal.

3.5. The selected Equipment Manufacturer shall be required to provide Performance and Payment Bonds to the Owner and Contractor as part of their agreement with Contractor. Performance and Payment Bond, each in an amount equal to one hundred percent (100%) of the Lump Sum Cost as security for the faithful performance of this Proposal and as security for the payment of all persons performing Labor and furnishing Materials under this Contract. The surety shall be such surety company or companies that are acceptable to the Owner and Contractor and that are authorized to transact business in the State of Connecticut.

4. CONSUMPTION GUARANTEES.

4.1. The Proposer guarantees that the Process Air Compressor equipment offered in the Proposal will continuously meet the following Guarantees:

4.1.1. See Guaranteed Performance under Section 44 42 19.05, High Speed Turbo Air Compressors.

5. PROPOSAL SUBMISSION.

5.1. Completely fill and submit the attached, Proposal Form.

REQUEST FOR PROPOSAL 00 41 65 PROPOSAL FORM - 2

PROPOSAL FORM

Bidder: _____

Project CWF 2019-4: Purchase of Process Air Compressor for Low Level Nitrogen Removal Equipment

1 Proces 44 42	s Air Compressor System, as specified in section 19.05 High Speed Turbo Air Compressors.	R	S

Lump Sum Cost (words)

USD

Manufacturer's Extended Warranty:

Cost of extension of specified 1 year warranty to 5 years. USD_____

Annual Service Contract amount for Years 2 Through 5 of annual recommended maintenance.

USD_____

Equipment Manufacture's Options/Alternates:

The following Options or Alternate Prices are offered in addition to the Base Proposal:

Alternate / Description Option	Unit Cost USD Add (Deduct)
1	
3	
	*

Addenda Receipt:

Receipt of the following RFP Addenda is hereby acknowledged:

Addendum No.	Date:	
Addendum No.	Date:	
Addendum No.	Date:	

Agreement to Accept the Terms and Provisions of the RFP Documents:

We have reviewed the provisions of the RFP, the RFP Documents attached to the RFP, and the Addenda received and *agree to accept the provisions without exception* on any Order resulting from this RFP.

If NO, our exceptions are listed below a detailed on a separate document attached hereto. We understand that exceptions may be grounds for rejection of the Proposal:

Technical Exceptions:

Authorization:

The undersigned, having carefully examined the RFP Documents hereby offers and agrees to furnish all goods and services for the proposal sums proposed above and in accordance with the provisions set forth in the RFP Documents and the Proposal Form.

This Proposal submitted by:

Company Name:
Email Address:
Address:
Authorized Agent:
(name)
Authorized Agent:
(Signature)
Title:
For example: President, Vice-President

Submitted with this Proposal Form per Specification 00 41 65, Section 2:

Corporate seal

End of Section

- 1. Proposal Submittal Information
- 2. Proposal Security

Required Construction Contract Provisions Under the Connecticut Department of Environmental Protection's Clean Water Fund

REQUIRED CONSTRUCTION CONTRACT PROVISIONS UNDER THE CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION'S CLEAN WATER FUND

22a-482-4 (g) Required Provisions for Construction Contracts.

Municipalities must include, when appropriate, subdivisions (1) to (14), inclusive, of this subsection, or their equivalent, in each subagreement and may substitute other terms for "grantee" and "contractor" in their subagreements.

(1) Supersession

The municipality and the contractor agree that the following general provisions, or their equivalent, apply to eligible work to be performed under this contract and that these provisions supersede any conflicting provisions of this contract.

(2) Privity of Contract

This contract is expected to be funded in part by the State of Connecticut. Neither the state, nor any of its departments, agencies, or employees is or will be a party to this contract or any lower tier subcontract. This contract is subject to sections 22a-482-1 to 22a-482-4, inclusive, of the Regulations of Connecticut State Agencies.

(3) Changes for Contracts for Construction.

(A) The municipality may, at any time, without notice to any surety, by written order designated or indicated to be a change order, make any change in the work within the general scope of the subagreement, including but not limited to changes:

- (i) in the specifications (including drawings and designs);
- (ii) in the time, method, or manner of performance of the work;

(iii) in the municipality-furnished facilities, equipment, materials, services, or site; or

(iv) directing acceleration in the performance of the work.

(B) A change order shall also be any other written or oral order (including direction, instruction, interpretation or determination) from the municipality which causes any change, provided the contractor gives the municipality written notice stating the date, circumstances, and source of the order and that the contractor regards the order as a change order.

(C) Except as provided in subdivision (3) of this subsection, no order, statement, or conduct of the municipality shall be treated as a change under subdivision (3) of this subsection or entitle the contractor to an equitable adjustment.

(D) If any change under subdivision (3) of this subsection causes an increase or decrease in the contractor's cost or the time required to perform any part of the work under this contract, whether or not changed by any order, an equitable adjustment shall be made and the subagreement modified in writing. However, for claims based on defective specifications, no claim for any change under subparagraph (B) of this subdivision shall be allowed for any costs incurred more than 20 days before the contractor gives written notice as required in subparagraph (B) of this subdivision. In the case of defective specifications for which the municipality is responsible, the equitable adjustment shall include any increased cost reasonably incurred by the contractor in attempting to comply with those defective specifications.

(E) If the contractor intends to assert a claim for an equitable adjustment under this clause, he shall, within thirty (30) days after receipt of a written change order under subparagraph (A) of this subdivision, or the furnishing of a written notice under subparagraph (B) of this subdivision, submit to the grantee a written statement setting forth the general nature and monetary extent of such claim. The municipality may extend the

30-day period. The statement of claim may be included in the notice under subparagraph (B) of this subdivision.

(F) No claim by the contractor for an equitable adjustment shall be allowed if made after final payment under this contract.

(4) Changes for Contracts for Supplies.

(A) The municipality may at any time, by a written order and without notice to the sureties, make changes within the general scope of this subagreement in any one or more of the following:

(i) drawings, designs, or specifications, where the supplies to be furnished are to be specially manufactured for the municipality;

(ii) method of shipment or packing; and (iii) place of delivery.

(B) If any change causes an increase or decrease in the cost or the time required to perform any part of the work under this subagreement, whether or not changed by any such order, an equitable adjustment shall be made in the subagreement price or delivery schedule, or both, and the subagreement shall be modified in writing. Any claim by the contractor or adjustment under this clause shall be asserted within thirty (30) days from the date of receipt by the contractor of the notification of change. If the municipality decides that the facts justify such action, the municipality may receive and act upon any such claim asserted at any time before final payment under this subagreement. Where the cost of property is made obsolete or excessive as a result of a change is included in the contractor's claim for adjustment, the grantee shall have the right to prescribe the manner of disposition of such property. Nothing in this subdivision shall excuse the contractor from proceeding with the subagreement as changed.

(5) Differing Site Conditions.

(A) The contractor shall promptly, and before such conditions are disturbed, notify the municipality in writing of:

(i) subsurface or latent physical conditions at the site differing materially from those indicated in this subagreement; or

(ii) unknown physical conditions at the site, of an unusual nature, differing materially from those ordinarily encountered and generally recognized as inherent in work of the character provided for in this subagreement. The municipality shall promptly investigate the conditions and, if it finds that conditions are materially different and will cause an increase or decrease in the contractor's cost or the time required to perform any part of the work under this subagreement, whether or not changed as a result of such conditions, an equitable adjustment shall be made and the subagreement modified in writing.

(B) No claim of the contractor under this subdivision shall be allowed unless the contractor has given notice required in subparagraph (A) of this subdivision. However, the municipality may extend the prescribed time.

(C) No claim by the contractor for an equitable adjustment shall be allowed if asserted after final payment under this subagreement.

(6) Suspension of Work.

(A) The municipality may order the contractor, in writing, to suspend, delay, or interrupt all or any part of the work for such period of time as the municipality may determine to be appropriate for the convenience of the municipality.

(B) If the performance of all or any part of the work is suspended, delayed, or interrupted for an unreasonable period of time by an act of the municipality in administration of the contract, (or if no time is specified, within a reasonable time), an adjustment shall be made for any increase in the cost of performance of this contract

(excluding profit) necessarily caused by such unreasonable suspension, delay, or interruption and the contract modified in writing. However, no adjustment shall be made under this subdivision for any suspension, delay, or interruption to the extent that performance would have been so suspended, delayed, or interrupted by any other cause, including the fault or negligence of the contractor, or for which an equitable adjustment is provided for, or excluded, under any other provision of the contract.

(C) No claim under this subdivision shall be allowed for any costs incurred more than twenty (20) days before the contractor notified the municipality in writing of the act or failure to act involved (this requirement does not apply to a claim resulting from a suspension order), and unless the claim, in an amount stated, is asserted in writing as soon as practicable after the termination of such suspension, delay, or interruption, but not later than the date of final payment under the contract.

(7) Termination.

(A) This contract may be terminated in whole or in part in writing by either party in the event of substantial failure by the other party to fulfill its obligations under this subagreement through no fault of the terminating party, provided that no termination may be effected unless the other party is given not less than ten (10) calendar days written notice (delivered by certified mail, return receipt requested) of intent to terminate and an opportunity for consultation with the terminating party prior to termination.

(B) This contract may be terminated in whole or in part in writing by the municipality for its convenience, provided that the contractor is given not less than ten (10) calendar days written notice (delivered by certified mail, return receipt requested) of intent to terminate and an opportunity for consultation with the terminating party prior to termination.

(C) If termination for default is effected by the municipality, an equitable adjustment in the price provided for in this contract shall be made but no amount shall be allowed for anticipated profit on unperformed services or other work, and any payment due to the contractor at the time of termination may be adjusted to cover any additional costs to the municipality because of the contractor's default. If termination for default is effected by the contractor, or if termination for convenience is effected by the municipality, the equitable adjustment shall include a reasonable profit for services or other work performed. The equitable adjustment for any termination shall provide for payment to the contractor for services rendered and expenses incurred prior to the termination in addition to termination settlement costs reasonably incurred by the contractor relating to commitments which had become firm prior to the termination.

(D) Upon receipt of a termination action pursuant to subparagraphs (A) or (B) of this subdivision, the contractor shall promptly discontinue all services affected (unless the notice directs otherwise), and deliver or otherwise make available to the municipality all data, drawings, specifications, reports, estimates, summaries and such other information and materials as may have been accumulated by the contractor in performing this contract whether completed or in process.

(E) Upon termination under subparagraphs (A) or (B) of this subdivision the municipality may take over the work and may award another party a contract to complete the work under this contract.

(F) If, after termination for failure of the contractor to fulfill contractual obligations, it is determined that the contractor had not failed to fulfill contractual obligations, the termination shall be deemed to have been for the convenience of the municipality. In such

event, adjustment of the price provided for in this contract shall be made as provided in subparagraph (C) of this subdivision.

(8) Remedies.

Except as may be otherwise provided in this contract, all claims, counter- claims, disputes, and other matters in question between the municipality and the contractor arising out of or relating to this contract or the breach thereof will be decided by arbitration, if the parties mutually agree, or in a court of competent jurisdiction within the district in which the municipality is located.

(9) Price Reduction for Defective Cost or Pricing Data.

NOTE– This subdivision is applicable to any contract negotiated between the municipality and its contractor in excess of \$500,000; negotiated change orders in excess of \$500,000 or 10 percent of the contract, whichever is less, affecting the price of a formally advertised, competitively awarded, fixed price contract; or any lower tier subcontract or purchase order in excess of \$500,000 or 10 percent of the assistance agreement, whichever is less, under a contract other than a formally advertised, competitively awarded, fixed price subagreement. This subdivision is not applicable for contracts to the extent that they are awarded on the basis of effective price competition.

The contractor and subcontractor, where appropriate, warrant that cost and pricing data submitted for evaluation with respect to negotiation of prices for negotiated contracts, lower tier subcontracts and change orders is based on current, accurate, and complete data supported by their books and records. If the municipality or the Commissioner determines that any price (including profit) negotiated in connection with this contract, any lower tier subcontract, or any amendment thereunder was increased by any significant sums because the data provided was incomplete, inaccurate, or not current at the time of submission, then such price, cost, or profit shall be reduced accordingly, and the contract shall be modified in writing to reflect such reduction. Failure to agree on a reduction shall be subject to subdivision (8) of this subsection.

NOTE- Since the contract is subject to reduction under this subdivision by reason of defective cost or pricing data submitted in connection with lower tier subcontracts, the contractor may wish to include a clause in each lower tier subcontract requiring the lower tier subcontractor to appropriately indemnify the contractor. It is also expected that any lower tier subcontractor subject to such indemnification will generally require substantially similar indemnification for defective cost or pricing data required to be submitted by lower tier subcontractors.

(10) Audit; Access to Records.

(A) The contractor shall maintain books, records, documents, and other evidence directly pertinent to performance on grant work under this contract in accordance with generally accepted accounting principles and practices consistently applied. The contractor shall also maintain the financial information and data used by the contractor in the preparation or support of the cost submission required under section 22a-482-4 (i) (6) for any negotiated contract or change order and a copy of the cost summary submitted to the municipality. The municipality and the Commissioner or any of his or her authorized representatives shall have access to all such books, records, documents, and other evidence for the purpose of inspection, audit and copying during normal business hours. The contractor will provide proper facilities for such access and inspection.

(B) If this is a formally advertised, competitively awarded, fixed price contract, the contractor agrees to make subparagraphs (A) to (F), inclusive, of this subdivision applicable

to all negotiated change orders and contract amendments affecting the contract price. In the case of all other types of prime contracts, the contractor agrees to include subparagraphs (A) to (F), inclusive, of this subdivision in all his subcontracts in excess of \$10,000 and to subparagraphs (A) through (F), inclusive, of this subdivision applicable to all change orders directly related to project performance.

(C) Audits conducted under this subdivision shall be in accordance with generally accepted auditing standards and established procedures and guidelines of the reviewing or audit departments and shall meet the requirements of section 7-396a of the General Statutes.

(D) The contractor agrees to disclose all information and reports resulting from access to records under subparagraphs (A) and (B) of this subdivision to any of the parties referred to in subparagraph (A) of this subdivision.

(E) Records under subparagraphs (A) and (B) of this subdivision shall be maintained and made available during performance on assisted work under this contract and until three years from the date of final state payment for the project. In addition, those records which relate to any dispute appeal arising under a grant assistance agreement, to litigation, to the settlement of claims arising out of such performance, or to costs or items to which an audit exception has been taken, shall be maintained and made available until three years after the date of resolution of such appeal, litigation, claim, or exception.

(F) This right of access provision (with respect to financial records) applies to:

(i) negotiated prime subagreements:

(ii) negotiated change orders or contract amendments in excess of \$10,000 affecting the price of any formally advertised, competitively awarded, fixed price contract; and

(iii) subcontracts or purchase orders under any contract other than a formally advertised, competitively awarded, fixed price contract. However, this right of access does not apply to a prime contract, lower tier subcontract, or purchase order awarded after effective price competition, except with respect to records pertaining directly to contract performance, (excluding any financial records of the contractor), if there is any indication that fraud, gross abuse, or corrupt practices may be involved or if the contract is terminated for default or for convenience.

(11) Covenant Against Contingent Fees.

The contractor warrants that no person or selling agency has been employed or retained to solicit or secure this contract upon an agreement or understanding for a commission, percentage, brokerage, or contingent fee, excepting bona fide employees or bona fide established commercial or selling agencies maintained by the contractor for the purpose of securing business. For breach or violation of this warranty the grantee shall have the right to annul this agreement without liability or, at its discretion, to deduct from the contract price or consideration, or otherwise recover the full amount of such commission, percentage, brokerage, or contingent fee.

(12) Gratuities.

(A) If the municipality finds, after a notice and hearing, that the contractor, or any of the contractor's agents or representatives, offered or gave gratuities (in the form of entertainment, gifts, or otherwise) to any official, employee, or agent of the municipality or the state, in an attempt to secure a contract or favorable treatment in awarding, amending, or making any determinations related to the performance of this agreement, the municipality may, by written notice to the contractor, terminate this agreement. The municipality may also pursue other rights and remedies that the law or this agreement provides. However, the existence of the facts on which the municipality bases such findings shall be in issue and may be reviewed in proceedings under subdivision (8) of this subsection.

(B) In the event this contract is terminated, as provided in subparagraph (A) of this subdivision, the municipality may pursue the same remedies against the contractor as it could pursue in the event of a breach of the contract by the contractor and, as a penalty, in addition to any other damages to which it may be entitled by law, may pursue exemplary damages in an amount (as determined by the grantee) which shall be not less than three nor more than ten times the costs the contractor incurs in providing any such gratuities to any such officer or employee.

(13) Responsibility of the Contractor.

(A) The contractor agrees to perform all work under this agreement in accordance with this agreement's designs, drawings, and specifications.

(B) The contractor warrants and guarantees for a period of one (1) year from the date of substantial completion of the system that the completed system is free from all defects due to faulty materials, equipment or workmanship; and the contractor shall promptly make whatever adjustments or corrections necessary to cure such defects, including repairs of any damage to other parts of the system resulting from such defects. The municipality shall give notice to the contractor of observed defects with reasonable promptness. In the event that the contractor fails to make adjustments, repairs, corrections or other work that may be made necessary by such defect, the municipality may do so and charge the contractor the cost incurred. The performance bond shall remain in full force and effect through the guarantee period.

(C) The contractor's obligations under this subdivision are in addition to the contractor's other express or implied warranties under this agreement or state law and in no way diminish any other rights that the municipality may have against the contractor for faulty material, equipment, or work.

(14) Final Payment.

Upon satisfactory completion of the work performed under this agreement, as a condition before final payment under this agreement, or as a termination settlement under this agreement, the contractor shall execute and deliver to the municipality a release of all claims against the municipality arising under or by virtue of this agreement, except claims which are specifically exempted by the contractor to be set forth therein. Unless otherwise provided in this agreement or by state law or otherwise expressly agreed to by the parties to this agreement, final payment under this agreement or settlement upon termination of this agreement shall not constitute a waiver of the municipality's claims against the contractor or his sureties under this agreement or applicable performance and payment bonds.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

OFFICE OF WATER

MEMORANDUM

Prohibition on Certain Telecommunication and Video Surveillance Services or **SUBJECT:** Equipment in the SRF Programs Digitally signed by KIRSTEN ANDERER FROM: Kiri Anderer, P.E., Acting Associate Branch Chief KIRSTEN Infrastructure Branch, OGWDW Date: 2020.12.11 07:55:52 ANDERER -05'00' Michael Deane, Branch Chief Digitally signed by MICHAEL MICHAEL DEANE DEANE State Revolving Fund Branch, OWM Date: 2020.12.11 17:56:38 -05'00' TO: **SRF Branch Chiefs** Regions 1-10

Effective August 13, 2020, recipients and subrecipients of EPA funded assistance agreements, including borrowers under EPA funded revolving loan funds, must comply with regulations at <u>2 CFR 200.216</u>, *Prohibition on certain telecommunication and video surveillance services or equipment*, implementing section 889 of <u>Public Law 115-232</u>. The regulation prohibits the use of Federal funds to procure (enter into, extend, or renew contracts) or obtain equipment, systems, or services that use "covered telecommunications equipment or services" identified in the regulation as a substantial or essential component of any system, or as critical technology as part of any system. Prohibitions extend to the use of Federal funds by recipients and subrecipients to enter into a contract with an entity that "uses any equipment, system, or service that uses covered telecommunications equipment or services" as a substantial or essential component of any system, or as critical technology as part of any system. Certain equipment, systems, or services, including equipment, systems, or services produced or provided by entities subject to the prohibition are recorded in the <u>System for Award Management</u> exclusion list.

As described in section 889 of Public Law 115-232, covered telecommunications equipment or services includes:

- Telecommunications equipment produced by Huawei Technologies Company or ZTE Corporation (or any subsidiary or affiliate of such entities).
- For the purpose of public safety, security of government facilities, physical security surveillance of critical infrastructure, and other national security purposes, video surveillance and telecommunications equipment produced by Hytera Communications Corporation, Hangzhou Hikvision Digital Technology Company, or Dahua Technology Company (or any subsidiary or affiliate of such entities).
- Telecommunications or video surveillance services provided by such entities or using such equipment.

• Telecommunications or video surveillance equipment or services produced or provided by an entity that the Secretary of Defense, in consultation with the Director of the National Intelligence or the Director of the Federal Bureau of Investigation, reasonably believes to be an entity owned or controlled by, or otherwise connected to, the government of a covered foreign country.

Applicability in the State Revolving Fund (SRF) Programs

Clean Water and Drinking Water SRF (CWSRF and DWSRF) programs may not expend equivalency funds for these products on or after August 13, 2020. States must ensure that equivalency assistance agreements include the telecommunications prohibition condition <u>provided by EPA's Office of Grants</u> and <u>Debarment</u> (OGD) in OGD's most recent EPA General Terms and Conditions. The condition must also be in construction contracts associated with equivalency assistance agreements.

There is no exhaustive list of components and services that fall under the prohibition. State SRF managers and local assistance recipients should exercise due diligence and be particularly mindful of project components with internet or cellular connections. For example, recipients should be mindful of automatic meter reading (AMR) technology and advanced metering infrastructure (AMI), instrumentation control systems (e.g. process control systems, distributed control systems and programmable logic controls), and security cameras and other electronic security measures to ensure that those items are procured from a non-excluded entity. Items included in the prohibition are not eligible SRF costs, and the SRF programs cannot reimburse borrowers for these costs.

The prohibition also applies to the CWSRF administrative funds (if states are billing those costs to the federal CWSRF capitalization grant) and the four DWSRF set-asides. States should be mindful of items such as cell phones, computers, and mobile WiFi routers or hotspots funded by those accounts.

If you have questions on the implementation of this grant condition, please contact Michael Deane at <u>Deane.Michael@epa.gov</u> or Kiri Anderer at <u>Anderer Kirsten@epa.gov</u>.

Eff: 8/13/2020

<u>Per EPA Guidance, the following language must be inserted in all bid/Specification documents</u> to ensure proper compliance to the Prohibition on Certain Telecommunications and Video <u>Surveillance Services or Equipment:</u>

Prohibition on Certain Telecommunications and Video Surveillance Services or Equipment This term and condition implements 2 CFR 200.216 and is effective for obligations and expenditures of EPA financial assistance funding on or after 8/13/2020. As required by 2 CFR 200.216, EPA recipients and subrecipients, including borrowers under EPA funded revolving loan fund programs, are prohibited from obligating or expending loan or grant funds to procure or obtain; extend or renew a contract to procure or obtain; or enter into a contract (or extend or renew a contract) to procure or obtain equipment, services, or systems that use covered telecommunications equipment or services as a substantial or essential component of any system, or as critical technology as part of any system. As described in Public Law 115-232, section 889, covered telecommunications equipment is telecommunications equipment produced by Huawei Technologies Company or ZTE Corporation (or any subsidiary or affiliate of such entities). Recipients, subrecipients, and borrowers also may not use EPA funds to purchase: a. For the purpose of public safety, security of government facilities, physical security surveillance of critical Page 4 of 29 infrastructure, and other national security purposes, video surveillance and telecommunications equipment produced by Hytera Communications Corporation, Hangzhou Hikvision Digital Technology Company, or Dahua Technology Company (or any subsidiary or affiliate of such entities). b. Telecommunications or video surveillance services provided by such entities or using such equipment. c. Telecommunications or video surveillance equipment or services produced or provided by an entity that the Secretary of Defense, in consultation with the Director of the National Intelligence or the Director of the Federal Bureau of Investigation, reasonably believes to be an entity owned or controlled by, or otherwise connected to, the government of a covered foreign country. Consistent with 2 CFR 200.471, costs incurred for telecommunications and video surveillance services or equipment such as phones, internet, video surveillance, and cloud servers are allowable except for the following circumstances: a. Obligating or expending EPA funds for covered telecommunications and video surveillance services or equipment or services as described in 2 CFR 200.216 to: (1) Procure or obtain, extend or renew a contract to procure or obtain; (2) Enter into a contract (or extend or renew a contract) to procure; or (3) Obtain the equipment, services, or systems. Certain prohibited equipment, systems, or services, including equipment, systems, or services produced or provided by entities identified in section 889, are recorded in the System for Award Management exclusion list.

Executive Order No. Three

STATE OF CONNECTICUT BY HIS EXCELLENCY THOMAS J. MESKILL GOVERNOR EXECUTIVE ORDER NO. THREE

WHEREAS, sections 4-61d (b) and 4-11a of the 1969 supplement to the general statutes require nondiscrimination clauses in state contracts and subcontracts for construction on public buildings, other public works and goods and services and

WHEREAS, section 4-61e (c) of the 1969 supplement to the general statutes requires the labor department to encourage and enforce compliance with this policy by both employers and labor unions, and to promote equal employment opportunities, and

WHEREAS, the government of this state recognizes the duty and desirability of its leadership in providing equal employment opportunity, by implementing these laws.

NOW, THEREFORE, I, THOMAS J. MESKILL, Governor of the State of Connecticut, acting by virtue of the authority vested in me under section twelve of article fourth of the constitution of the state, as supplemented by section 3-1 of the general statutes, <u>do hereby ORDER and DIRECT</u>, as follows, by this Executive Order:

The <u>labor commissioner shall be responsible</u> for the administration of this Order and <u>shall adopt such regulations</u> as he deems necessary and appropriate to achieve the purposes of this Order. Upon the promulgation of this Order, the <u>commissioner of finance and control shall issue a directive forthwith to all state agencies</u>, that henceforth all state con-tracts and subcontracts for construction on public buildings, other public works and goods and services shall contain a pro-vision rendering such contract or subcontract subject to this Order, and that such contract or subcontract may be canceled, terminated or suspended by the labor commissioner for violation of or noncompliance with this Order or state and federal laws concerning nondiscrimination, notwithstanding that the labor commissioner is not a party to such contract or subcontract.

Π

Ш

IV

Each contractor having a contracting containing the provisions prescribed in section 4-11a of the 1969 supplement to the general statutes, <u>shall file</u> and shall cause each of his subcontractors to file, <u>compliance reports with the contracting agency or the labor commissioner</u>, as may be directed. Such reports shall be filed within such times and shall contain such information as to employment policies and statistics of the contractor and each subcontractor, and shall be in such form as the labor commissioner may prescribe. Bidders or prospective contractors or subcontractors may be required to state whether they have participated in any previous contract subject to the provisions of this Order of any preceding similar Order, and in that event to submit on behalf of themselves and their proposed subcontractors compliance reports prior to or as an initial part of their bid or negotiation of a contract.

<u>Whenever the contractor or subcontractor has a collective bargaining agreement or contract or understanding with a labor</u> organization or employment agency as defined in section 31-122 of the general statutes, the compliance report shall identify the said organization or agency and the contracting agency or the labor commissioner may require a compliance report to be filed with the contracting agency or the labor commissioner, as may be directed, by such organization or agency, signed by an authorized officer or agent of such organization or agency, with supporting information, to the effect that the signer's practices and policies including but not limited to matters concerning personnel, training, apprenticeship, member-ship, grievance and representation, and upgrading, do not discriminate on grounds of race, color, religious creed, age, sex or national origin, or ancestry of any individual, and that the signer will either affirmatively cooperate in the implementation of the policy and provisions of this Order, or that it consents and agrees that recruitment, employment and the terms and conditions of employment under the proposed contract shall be in accordance with the purposes and provisions of the Order.

The labor commissioner may by regulation exempt certain classes of contracts, subcontracts or purchase order from the implementation of this Order, for standard commercial supplies or raw materials, for less than specified amounts of money or numbers of workers or for subcontractors below a specified tier. The labor commissioner may also provide by regulation for the exemption of facilities of a contractor which are in all respect a separate and distinct from activities of the contractor related to the performance of the state contract, provided only that such exemption will not interfere with or impede the implementation of this Order, and provided further, that in the absence of such an exemption, all facilities shall be covered by the provisions of this Order.

Each contracting agency shall be primarily responsible for obtaining compliance with the regulations of the labor commissioner with respect to contracts entered into by such agency or its contractors. All contracting agencies shall comply with the regulations of the labor commissioner in discharging their primary responsibility for securing compliance with the provisions of contracts and otherwise with the terms of this Order and of the regulations of the labor commissioner issued pursuant to this Order. They are directed to cooperate with the labor commissioner such information and assistance as he may require in the performance of his functions under this Order. They are further directed to appoint or designate from among the personnel of each agency, compliance officers, whose duty shall be to seek compliance with the objectives of this Order by conference, conciliation, mediation, or persuasion.

VI

The labor commissioner may investigate the employment practices and procedures of any state contractor or sub-contractor and the practices and policies of any labor organization or employment agency hereinabove described, relating to employment under the state contract, as concerns nondiscrimination by such organization or agency as hereinabove described, or the labor commissioner may initiate such investigation by the appropriate contract agency, to determine whether or not the contractual provisions, hereinabove specified or statutes of the state respecting they have been violated. Such investigation shall be conducted in accordance with the procedures established by the labor commissioner and the investigating agency shall report to the labor commissioner any action taken or recommended.

PW\DEN003\E290000\.SPECS\.RFP PAC SEPTEMBER 9, 2021

EXECUTIVE ORDER NO. THREE 00 74 30 - 1 The labor commissioner shall receive and investigate or cause to be investigated complaints by employees or prospective employees of a state contractor or subcontractor or member or applicants for membership or apprenticeship or training in a labor organization or employment agency hereinabove described, which allege discrimination contrary to the contractual provisions specified hereinabove or state statutes requiring nondiscrimination in employment opportunity. If this investigation is conducted for the labor commissioner by a contracting agency, that agency shall report to the labor commissioner what action has been taken or is recommended with regard to such complaints.

VIII

The <u>labor commissioner shall use his best efforts</u> directly and through contracting agencies, or other interested federal, state and local agencies, contractors and all other available instrumentalities, including the commission on human rights and opportunities, the executive commissioner in providing equal employment opportunities to all apprentices and provide training, employment and upgrading opportunities for disadvantaged workers, in accordance with section 31-51 (d) of the 1969 supplement to the general statutes, to cause any labor organization or any employment agency whose members are engaged in work under government contracts or referring workers or providing or supervising apprentice-ship or training for or in the course of work under a state contract or subcontract to cooperate in the implementation of the purposes of this Order. The labor commissioner shall in appropriate cases notify the commission on human rights and opportunities or other appropriate state or federal agencies whenever it has reason to believe that the practices of any such organization or agency violate equal employment opportunity requirements or state or federal law.

IX

The labor commissioner or any agency officer or employee in the executive branch designated by regulation of the labor commissioner may hold such hearings, public or private, as the labor commissioner may deem advisable for compliance, enforcement or educational purposes under this Order.

Х

(a) The labor commissioner may hold or cause to be held hearings, prior to imposing ordering or recommending the imposition or penalties and sanctions under this Order. No order for disbarment or any contractor from further state contracts shall be made without affording the contractor an opportunity for a hearing. In accordance with such regulations as the labor commissioner may adopt, the commissioner or the appropriate contracting agency may

- (1) Publish or cause to be published the names of contractors or labor organizations or employment agencies as hereinabove described which it has concluded have complied or failed to comply with the provisions of this Order or the regulations of the labor commissioner in implementing this Order.
- (2) Recommend to the commission on human rights and opportunities that in cases in which there is substantial or material violation or threat thereof of the contractual provision or related state statutes concerned herein, appropriate proceedings be brought to enforce them, including proceedings by the commission on its own motion under chapter 563 of the general statutes and the enjoining, within the limitations or applicable law, of organizations, individuals or groups who prevent directly or indirectly or seek to prevent directly or indirectly compliance with the provisions of this Order.
- (3) Recommend that criminal proceedings be brought under chapter 939 of the general statutes.
- (4) Cancel, terminate, suspend or cause to be canceled, terminated, or suspended in accordance with law any contract or any portion or portions thereof for failure of the contractor or subcontractor to comply with the nondiscrimination provisions of the contract. Contracts may be canceled, terminated, suspended absolutely or their continuance conditioned upon a pro-gram for future compliance approved by the contracting agency.
- (5) Provide that any contracting agency shall refrain from entering into any further contract or extensions or modifications of existing contracts with any contractor until he has satisfied the labor commissioner that he has established and will carry out personnel and employment policies compliant with this Order.
- (6) Under regulations prescribed by the labor commissioner each contracting agency shall make reasonable efforts within a reasonable period of time to secure compliance with the contract provisions of this Order by methods of convenience, conciliation, mediation or persuasion, before other proceedings shall be instituted under this Order or before a state contract shall be can-celled or terminated in whole or in part for failure of the contractor or subcontractor to com-ply with the contract provisions of state statute and this Order.

(b) Any contracting agency taking any action authorized by this Order, whether on its own motion or as directed by the labor commissioner or pursuant to his regulations shall promptly notify him of such action. Whenever the labor commissioner makes a determination under this order, he shall promptly notify the appropriate contracting agency and other interested federal, state and local agencies of the action recommended. The state and local agency or agencies shall take such action and shall report the results thereof to the labor commissioner within such time as he shall specify.

XI

If the labor commissioner shall so direct, contracting agencies shall not enter into contracts with any bidder or prospective contractor unless he has satisfactorily complied with the provisions of this Order, or submits a program for compliance acceptable to the labor commissioner, or if the labor commissioner so authorizes, to the contracting agency.
XII

Whenever a contracting agency cancels or terminates a contract, or a contractor has been disbarred from further government contracts because of noncompliance with the contract provisions with regard to nondiscrimination, the labor com-missioner or the contracting agency shall rescind such disbarment, upon the satisfaction of the labor commissioner that the contractor has purged himself of such noncompliance and will thenceforth carry out personnel and employment policies of non-discrimination in compliance with the provision of this Order.

XIII

The labor commissioner may delegate to any officer, agency or employee in the executive branch any function or duty of the labor commissioner under this Order except authority to promulgate regulations of a general nature.

XIV

This Executive Order supplements the Executive Order issued on September 28, 1967. All regulations, orders, instructions, designations and other directives issued heretofore in these premises, including these issued by the heads of various departments or agencies under or pursuant to prior order or statute, shall remain in full force and effect, unless and until revoked or superseded by appropriate authority, to the extent that they are not inconsistent with this Order.

This Order shall become effective thirty days after the date of this Order.

Dated at Hartford, Connecticut, this 16th day of June, 1971.

GOVERNOR

GUIDELINES AND RULES OF STATE LABOR COMMISSIONER IMPLEMENTING GOVERNOR'S EXECUTIVE ORDER NO. THREE

SEC. 1 PERSONS AND FIRMS SUBJECT TO EXECUTIVE ORDER NO. THREE AND GUIDELINES AND RULES.

a. Every contractor, or subcontractor as defined in Sec. 2 hereof, supplier of goods or services, vendor, bidder and prospective contractor or subcontractor, having ten or more employees as defined in Sec. 3 of these guidelines, having or entering into or bidding to enter into any type of contractual relationship with the State of Connecticut or any of its agencies, boards, commissions, departments or officers, and if the consideration, cost, subject matter or value of the goods or services exceeds \$5,000.00, shall be subject to the Governor's Executive Order No. Three and these Guidelines and Rules.

b. A copy of the Governor's Executive Order No. Three and of these Guidelines and Rules shall be available to each said contractor, subcontractor, supplier, vendor, bidder and prospective contractor and subcontractor, and the said Executive Order No. Three and these Guidelines and Rules shall be incorporate by reference and made a part of the contract, purchase order, agreement or document concerned. A copy of the Executive Order and of these Guidelines and Rules shall be furnished to a contracting party or bidder on request.

c. All persons, partnerships, associations, firms, corporations and other entities having less than ten employees as defined in Sec. 3 at the time of the bid and execution of the contract and continuing through the performance of the contract are exempt from the provisions of the said Executive Order and these Guidelines and Rules. All contracts, subcontracts, purchase orders and agreements wherein the consideration ins \$5,000.00 or less shall be exempt from Executive Order No. Three and from these Guidelines and Rules.

SEC. 2 SUBCONTRACTORS

As used herein, subcontractors are persons, partnerships, associations, firms or corporations or other entities having contractual relationship with a contractor who in turn has a contract with the State of Connecticut or any of its agencies, board, commissions or departments. Subcontractors below this tier are exempt from the Executive Order and from these Guidelines and Rules.

SEC. 3 EMPLOYEES

As used herein, employees are persons working full or part-time irrespective of personnel classification whose wages, salaries, or earnings are subject to the Federal Insurance Contribution Act and/or to Federal Withholding Tax as a matter of law (whether in fact or not any actual withholding occurs in a given case), in an employee-employer relationship at the time of bid, contract execution, or offer or acceptance, and/or during any time thereafter during the existence of the performance period of the contract to the conclusion thereof.

SEC. 4 REPORTS

a. Prior to the execution of the contract or prior to acceptance of a bid, as the case may be, the contractor, subcontractor, bidder or vendor shall file a report with the State Labor Commissioner, which report shall be complete and contain all of the information therein prescribed. The report shall be on Form E.O.3-1, a facsimile of which is attached hereto and made a part hereof, or in lieu thereof the contractor, subcontractor, bidder or vendor shall submit a detailed report containing all of the information required in Form E.O. 3-1.

b. The Labor Commissioner may require the filing of additional reports prior to final payment or prior to any renewal or extension of the contract and during the duration of the contract at such times as the Commissioner may, in his discretion, from time to time deem necessary. The Labor Commissioner may require the filing of additional information or reports, and the contractor, subcontractor, bidder or vendor shall furnish said information or report within the times prescribed by the Labor Commissioner.

c. The Labor Commissioner may, at his discretion, also require timely statistical reports on the number of minority employees employed or to be employed in the performance of the contract, and the Labor Commissioner may de-fine such minority groups or persons.

d. Reports filed pursuant to these Guidelines and Rules in Implementation of Executive Order No. Three are not public records subject to public inspection, but may be inspected only by federal and state officials having jurisdiction and authority to investigate matters of this type. All federal and state agencies empowered by law to investigate matters relating to Executive order No. Three shall have access to these reports for inspection or copying during regular business hours.

e. Any person who willfully, wantonly or through negligence destroys or permits to be destroyed, alters or allows to be altered after filing any reports submitted in compliance herewith shall be subject to penalties as pre-scribed by law.

SEC. 5. MANDATORY CLAUSES IN DOCUMENTS

All contracts shall contain the following provisions verbatim:

This contract is subject in the provisions of Executive Order No. Three of Governor Thomas J. Meskill promulgated June 16, 1971 and, as such, this contract may be canceled, terminated or suspended by the state labor commissioner for violation of or noncompliance with said Executive Order No. Three, or any state or federal law concerning nondiscrimination, notwithstanding that the labor commissioner is not a party to this contract. The parties to this contract, as part of the consideration hereof, agree that said Executive Order No. Three is incorporated herein by reference and made a part hereof. The parties agree to abide by said Executive Order and agree that the state labor commissioner shall have continuing jurisdiction in respect to contract performance in regard to nondiscrimination, until the contract is completed or terminated prior to completion.

The (contractor), (subcontractor), (bidder), (vendor) agrees, as part consideration hereof, that his (order) (contract) is subject to the Guidelines and Rules issued by the state labor commissioner to implement Executive Order No. Three, and that he will not discriminate in his employment practices or policies, will file all reports as required, and will fully cooperate with the State of Connecticut and the state labor commissioner.

These provisions are in addition to and not in lieu of other clauses required by law.*

*N.B. The above paragraphs contain requirements additional to those set forth in July 16, 1971 directive to state agencies.

Every purchase order or like form submitted by a vendor or bidder, as applicable, shall contain the following b clause verbatim:

Vendor agrees, as part of the consideration hereof, that this order is subject to the provisions of Executive Order No. Three and the Guidelines and Rules issued by the Labor Commissioner implementing said Order as to nondiscrimination, and vendor agrees to comply therewith.

Where preprinted contract forms have been prescribed by federal authority and the rules of the federal agency prohibit the alteration thereof, the compliance officer of the State agency concerned shall submit to the Labor Commissioner a suggested short form or addendum acceptable to the federal agency, and such cases, after approval by the Labor Commissioner, said clause may be substituted.

COOPERATION OF STATE AGENCIES, BOARDS AND COMMISSIONS SEC. 6.

Every agency, board, commission and departments of the State of Connecticut shall cooperate with the Labor Commissioner in the implantation of Executive Order No. Three and shall furnish such information and assistance as the Labor Commissioner may from time to time request.

INVESTIGATIONS, COMPLAINTS SEC 7

The Labor Commissioner may initiate an investigation upon receipt of a complaint alleging discrimination. The Labor Commissioner may request that an investigation be conducted by the State agency which is the party to the contract in question. Investigations shall be conducted in accordance with acceptable legal standards, safeguarding the rights of all parties involved, and obtaining all of the relevant facts necessary for a complete determination of the issues. If the Labor Commissioner is not satisfied with the investigation or any part thereof he may order it to continue or to proceed further.

HEARINGS SEC. 8.

The Labor Commissioner or officers designed by the heads of the State agencies, boards and commissions may conduct hearings on complaints filed. Hearings shall be held only after a report of the complaint has been filed

with the Labor Commissioner and after a hearing on the complaint has been authorized or directed by the Labor Commission-er. Hearings shall be in accordance with the accepted principles of administrative law. All parties shall be afforded the opportunity to a full, fair, impartial and complete hearing, the opportunity to examine and cross examine witnesses and to be

present at all sessions of the hearing. If any party is vulnerable to a charge of a violation of the law, he shall be afforded the opportunity to procure counsel who say be present at the hearing.

SEC. 9. EQUAL EMPLOYMENT OPPORTUNITIES

All State contracting agencies, employers, and labor unions shall use their best efforts to provide equal employment opportunities to all apprentices and to provide training, employment and upgrading opportunities for disadvantaged workers in accordance with section 31-51 (d) of the General Statutes.

SEC. 10. DUTIES OF CONTRACTING AGENCIES.

All State contracting agencies shall be responsible for compliance with said Executive Order and with all state and federal laws All State contracting agencies shall be responsible for compliance with said Executive Order and with all state and federal laws relating to equal employment opportunities. All contracting agencies conducting investigations for the Labor Commissioner pursuant to Executive Order No. Three and these Guidelines and Rules shall report to the Labor Commissioner the action taken or recommended with regard to each complaint filed. Each officer of the executive department, every commissioner, and each executive head of each State agency, board and commission in the executive branch of the State government is expected to assume the responsibility of seeing to complete compliance with the Governor's Executive Order No. Three and shall forthwith take steps to assure and guarantee that there shall be no discrimination within their departments, agencies, boards or commissions in the performance of any state contract on the basis of race, creed, color, sex, age, national origin or national ancestry, or in any way in violation of any state or federal law relating thereto.

BY VIRTUE OF THE AUTHORITY VESTED IN ME PURSUANT TO EXECUTIVE ORDER NO. THREE EFFECTIVE JULY 16, 1971, AND THE GENERAL STATUTES OF CONNECTICUT.

Date in Wethersfield, Connecticut this 19th day of Nov., 1971,

Jack Fusari Labor Commissioner FOR HOR BIDDING PURPOSES

Executive Order No. Seventeen

FOR HOR BIDDING PURPOSES

STATE OF CONNECTICUT THOMAS J. MESKILL GOVERNOR EXECUTIVE ORDER NO. SEVENTEEN

WHEREAS, Section 31-247 of the General statutes of Connecticut as amended requires the maintaining of the established free services of the Connecticut State Employment Service to both employers and prospective employees and

WHEREAS, Section 31-5 of the General Statutes of Connecticut requires that no compensation or fee shall be charged or received directly or indirectly for the services of the Connecticut State Employment Service and

WHEREAS, large numbers of our citizens who have served in the Armed Forces of our nation are returned to civilian life in our state and seeking employment in civilian occupations and

WHEREAS, we owe a duty as well as gratitude to these returning veterans including the duty to find suitable employment for them and

WHEREAS, many of our handicapped citizens are fully capable of employment and are entitled to be placed in suitable employment and

WHEREAS, many of the citizens of our state who are unemployed are unaware of the job openings and employment opportunities which do in fact exist in our state and

WHEREAS, notwithstanding the free services of the Connecticut State Employment Service, many of our Connecticut employers do not use its free services or do not avail themselves fully of all the services offered.

NOW, THEREFORE, I, Thomas J. Meskill, Governor of the State of Connecticut, acting by virtue of the authority vested in me under the fourth article of the Constitution of the State and in accordance with Section 3-1 of the General Statutes, do hereby ORDER and DIRECT, as follows, by this Executive Order:

The Labor Commissioner shall be responsible for the administration of this Order and shall do all acts necessary and appropriate to achieve its purpose. Upon the promulgation of this Order, the Commissioner of Finance and Control shall issue a directive forthwith to all state agencies that henceforth all state contracts and subcontracts for construction on public buildings, other public works and goods and services shall contain a provision rendering such contract or subcontract subject to this Order, and that such contract or subcontract may be canceled, terminated or suspended by the Labor Commissioner for violation of or noncompliance with this Order, notwithstanding that the Labor Commissioner is not a party to such contract or subcontract.

Π

Every contractor and subcontractor having a contract with the state or any of its agencies, boards, commissions, or departments, every individual partnership, corporation, or business entity having business with the state or who or which seeks to do business in the state, and every bidder or prospective bidder who submits a bid or replies to an invitation to bid on any state contract shall list all employees openings with the office of the Connecticut State Employment Service in the area where the work is in be performed or where the services are to be rendered.

All state contracts shall contain a clause which shall be a condition of the contract that the contractor and any subcontractor holding a contract directly under the contractor shall list all employment openings with the Connecticut State Employment Service. The Labor Commissioner may allow exceptions to listings of employment openings which the contractor proposes to fill from within its organization from employees on the rolls of contractor on the date of publication of the invitation to bid or the date on which the public announcement was published or promulgated advising of the program concerned.

IV

Ш

Each contracting agency of the state shall be primarily responsible for obtaining compliance with this Executive Order. Each contracting agency shall appoint or designate from amount its personnel one or more persons who shall be responsible for compliance with the objectives of this Order

v

The Labor Commissioner shall be an is hereby empowered to inspect the books, records, payroll and personnel data of each individual or business entity subject to this Executive Order and may hold hearings or conference, formal or informal, in pursuance of the duties and responsibilities hereunto delegated to the Labor Commissioner.

VI

The Labor Commissioner or any agency officer or employee in the executive branch designated by regulation of the Labor Commissioner may hold such hearings, public or private, as the Labor Commissioner may deem advisable for compliance, enforcement or educational purposes under this Order.

VII

(a) The Labor Commissioner may hold or cause to be held hearings, prior to imposing, ordering, or recommending the imposition of penalties and sanctions under this Order. In accordance herewith, the Commissioner or the appropriate contracting agency may suspend, cancel, terminate, or cause to be suspended, canceled, or terminated in accordance with

law any contract or any portion or portions thereof for failure of the contractor or subcontractor to comply with the listing provisions of the contract. Contracts may be canceled, terminated, suspended absolutely or their continuance conditioned upon a program for future compliance approved by the contracting agency.

(b) Any contracting agency taking any action authorized by this Order, whether on its own motion or as directed by the Labor Commissioner, shall promptly notify him of such action. Whenever the Labor Commissioner makes a determination under this Order, he shall promptly notify the appropriate contracting agency of the action recommended. The agency shall report the results to the Labor Commissioner promptly.

PW\DEN003\E290000\.SPECS\.RFP PAC SEPTEMBER 9, 2021

EXECUTIVE ORDER NO. SEVENTEEN 00 74 40 - 1 VIII

If the Labor Commissioner shall so direct, contracting agencies shall not enter into contracts with any bidder or prospective contractor unless he has satisfactorily complied with the provisions of this Order.

This Order shall become effective sixty days after the date of this Order.

Dated at Hartford, Connecticut, this 15th day of February, 1973.

PW\DEN003\E290000\.SPECS\.RFP PAC SEPTEMBER 9, 2021

Governor

American Iron and Steel Act DEEP Revised

FOR HOR BIDDING PURPOSES

79 Elm Street • Hartford, CT 06106-5127

www.ct.gov/deep

Affirmative Action/Equal Opportunity Employer

Memorandum

To: All Connecticut Municipalities, Water Pollution Control Facilities, and Consultants

Date: May 28, 2015

Re: Revised American Iron and Steel Memorandum

The Department of Energy and Environmental Protection's (DEEP) Municipal Water Pollution Control Section has updated the American Iron and Steel (AIS) memorandum that was distributed on May 19, 2014.

On June 10, 2014, the Water Resources Reform and Development Act of 2014 (WRRDA) was signed into law by President Obama, which amended the Federal Water Pollution Control Act (FWPCA). The FWPCA section 608 extended the AIS provision that was originally scheduled to expire on September 30, 2014.

This means that AIS is now a **permanent** project requirement for all Connecticut Clean Water Fund (CWF) projects.

The effective date for the newly codified AIS provision is the date of enactment of the WRRDA, or June 10, 2014.

A recent Environmental Protection Agency (EPA) memorandum dated September 18, 2014 indicates that EPA intends to interpret the WRRDA language for the AIS requirement in the same manner as described in an earlier EPA guidance memo dated March 20, 2014. Therefore, the March 20, 2014 EPA memorandum shall still serve as the final EPA AIS guidance on how to apply the AIS requirement, and it is attached to the revised CWF memo.

The final memorandum is now available on our website at http://www.ct.gov/dep/cwp.

Sincerely,

George V. Hicks, P.E.

Supervising Sanitary Engineer Bureau of Water Protection & Land Reuse

79 Elm Street • Hartford, CT 06106-5127

www.ct.gov/deep

Affirmative Action/Equal Opportunity Employer

Revised Clean Water Fund Memorandum (2014-001a)

TO: All Connecticut Municipalities and Consultants

RE: Implementation of American Iron and Steel provisions on Connecticut Clean Water Fund Projects

I. PURPOSE

To provide clarification on the applicability of American Iron and Steel (AIS) provisions to construction projects funded by the Connecticut Clean Water Fund (CWF).

II. GOVERNING FEDERAL PUBLIC LAW

Section 436 of Public Law (P.L.) 113-76, Consolidated Appropriations Act, 2014.

III. APPLICABILITY

All Connecticut CWF projects must use "iron and steel products" (Section III.A) that are "produced in the United States" for construction projects. The final Environmental Protection Agency (EPA) AIS guidance memorandum dated March 20, 2014 ("final EPA AIS guidance") on how to apply the AIS requirement is attached.

This memorandum summarizes the final EPA AIS guidance, and describes how it relates specifically to Connecticut CWF projects. Section III.C details what is required for a CWF project that is subject to the AIS provisions. Any definitions provided by the final EPA AIS guidance are included in Section IV.

Section 436 of P.L. 113-76 excludes products (Section III.B) to the AIS requirement, as well as a waiver request process to exclude products or the entire project from AIS requirements (Section III.D).

A. Applicable Iron and Steel Products

- 1. The AIS requirement applies to all of the following products:
 - a. Lined or unlined pipes and fittings;
 - b. Manholes covers and other "municipal castings";
 - c. Hydrants;
 - d. Tanks;
 - e. Flanges;
 - f. Pipe clamps and restraints;
 - g. Valves;
 - h. "Structural steel";
 - i. Reinforced precast concrete; or
 - j. "Construction materials".

Refer to Section IV for further clarification of items b, h, and j.

- 2. Each project item listed in Section III.A.1 and is considered to be "primarily iron or steel", or comprised of greater than 50% iron or "steel" as measured by cost, becomes subject to the AIS requirement.
 - a. The cost used to determine AIS applicability shall be based on the material costs, and shall include the cost to pour and cast iron and/or steel components.
 - b. The cost used to determine AIS applicability shall not include assembly cost.
- 3. Unlike the products listed in Section III.A.1.a h and j, all reinforced precast concrete used in applicable products is subject to the AIS requirement, no matter how much iron or steel comprises the reinforced precast concrete. The reinforcing bar and wire must be produced in the US and meet the same standards as for any other iron or steel product. The casting of the concrete product must take place in the US. The cement and other raw materials used in concrete production are not required to be of domestic origin.
- 4. "Construction materials" are any products that become permanently incorporated into the project, even if those products may be considered temporary in most instances. For example, any iron or steel sheeting or piles that are not removed after construction is completed are considered to be "construction materials" subject to the AIS requirement.

B. Excluded Products

- 1. The AIS requirement does <u>not</u> apply to any mechanical and/or electrical components, equipment and systems. Mechanical and electrical components, equipment and systems are not considered construction materials.
- 2. The following examples (including their appurtenances necessary for their intended use and operation) are NOT considered construction materials, and are therefore NOT subject to the AIS requirement:
 - a. Pumps;
 - b. Motors;
 - c. Gear reducers;
 - d. Drives (including variable frequency drives (VFDs));
 - e. Electric/pneumatic/manual accessories used to operate valves (such as electric valve actuators);
 - f. Mixers;
 - g. Gates;
 - h. Motorized screens (such as traveling screens);
 - i. Blowers/aeration equipment;
 - j. Compressors;
 - k. Meters, sensors, controls and switches;
 - 1. Supervisory control and data acquisition (SCADA);
 - m. Membrane bioreactor systems;
 - n. Membrane filtration systems;
 - o. Filters, clarifiers and clarifier mechanisms;
 - p. Rakes, grinders;
 - q. Disinfection systems;
 - r. Presses (including belt presses);
 - s. Conveyors, cranes;
 - t. HVAC (excluding ductwork), water heaters, heat exchangers;
 - u. Generators;

- v. Cabinetry and housings (such as electrical boxes/enclosures);
- w. Lighting fixtures;
- x. Electrical conduit;
- y. Emergency life systems;
- z. Metal office furniture, shelving;
- aa. Laboratory equipment, analytical instrumentation; and
- bb. Dewatering equipment.
- Raw materials such as iron ore, limestone, and iron/steel scrap are not covered by the AIS
 requirement. If any raw materials are being applied as a coating, the raw materials are similarly not
 covered.

C. AIS Requirements

- 1. For each item that meets the criteria indicated in Sections III.A, the iron and steel products contained in that item must be "produced in the United States (US)".
 - a. All manufacturing processes must take place in the US, with the exception of metallurgical processes involving the refinement of steel additives.
 - b. Manufacturing processes covered by the AIS requirement include: melting, refining, forming, rolling, drawing, refining, finishing, fabricating, coating.
 - c. In the case of reinforced precast concrete, the casting of the concrete must also occur in the US. The cement and other raw materials used in the concrete production may come from non-US sources.
 - d. Each domestic iron and steel product must remain in the US for the entire manufacturing process; otherwise, it will be considered foreign source material.
 - e. Non-iron or steel components of an iron and steel product may come from non-US sources.
- 2. The construction contract language contained in Appendix 4 of the attached final EPA AIS guidance must be included in the CWF contract documents in order to obtain CWF approval of the engineering plans and specifications.
- 3. Certification for AIS compliance
 - a. Certification must be provided for all items in Section III.A.
 - b. Types of Certification
 - i. <u>Step certification process</u>: Each handler (supplier, fabricator, manufacturer, processor, etc) of the iron and steel products certifies that their step in the process was domestically performed.
 - ii. <u>Final manufacturer certification</u>: Alternatively, the final manufacturer that delivers the iron or steel product to the worksite, vendor, or contractor, may provide a certification asserting that all manufacturing processes occurred in the US.
 - c. AIS compliance certification must be provided on company letterhead, in the format provided by Appendix 5 of the attached final EPA AIS guidance.
 - d. These certifications shall be collected and maintained by the municipality, and must be available upon request by either the EPA or the DEEP.

D. Waiver Request Process

- 1. A waiver from the AIS requirement may be requested for a CWF project if at least one of the following conditions is sufficiently demonstrated:
 - a. The AIS requirement will increase the cost of the overall project by more than 25 percent, as demonstrated by the inclusion of a bid alternate and backup calculations;

- b. The iron and steel products are not produced in the United States in sufficient and "reasonably available quantities" and of "satisfactory quality", as demonstrated by soliciting proposals from at least three manufacturers; or
- c. The AIS requirement is inconsistent with the public interest.
- 2. Waiver Request Format
 - a. The waiver request must include a table with responses to the "Information Checklist for Waiver Request" in Appendix 1 of the attached final EPA AIS guidance.
 - b. Evaluation of the waiver request shall include the criteria in the "HQ Review Checklist for Waiver Request" in Appendix 2 of the attached final EPA AIS guidance.
 - c. Waiver requests shall be submitted to the Connecticut Department of Energy and Environmental Protection (DEEP) for initial screening.
 - d. If the DEEP determines that a waiver to the AIS requirement has been sufficiently demonstrated, the DEEP will forward the waiver request to the EPA.
- 3. Final Waiver Determination
 - a. The waiver request shall be made available on the EPA website and the DEEP CWF webpage.
 - b. The EPA shall allow for informal public input for at least 15 days prior to making a determination.

IV. DEFINITIONS

AIS: American Iron and Steel

<u>Assistant recipients</u>: A borrower or grantee that receives funding from a State CWSRF program. In the case of Connecticut CWF projects, "assistance recipients" are the municipalities, as defined below.

CGS: Connecticut General Statutes

<u>Construction materials</u>: Construction materials are those articles, materials, or supplies made primarily of iron and steel, that are permanently incorporated into the applicable project, not including mechanical and/or electrical components, equipment and systems.

Some construction materials may overlap with what is also considered "structural steel". This includes, but is not limited to, the following products: wire rod, bar, angles, concrete reinforcing bar, wire, wire cloth, wire rope and cables, tubing, framing, joists, trusses, fasteners (i.e., nuts and bolts), welding rods, decking, grating, railings, stairs, access ramps, fire escapes, ladders, wall panels, dome structures, roofing, ductwork, surface drains, cable hanging systems, manhole steps, fencing and fence tubing, guardrails, doors, and stationary screens.

CWF: Connecticut Clean Water Fund

CWSRF: Clean Water State Revolving Fund

DEEP: Connecticut Department of Energy and Environmental Protection

<u>Electrical equipment</u>: Electrical equipment is typically any machine powered by electricity and includes components that are part of the electrical distribution system.

EPA: Federal Environmental Protection Agency

FWPCA: Federal Water Pollution Control Act

Final EPA AIS Guidance: This refers to the attached EPA Memorandum entitled "Implementation of American Iron and Steel provisions of P.L. 113-76, Consolidated Appropriations Act, 2014" dated March 20, 2014.

HVAC: Heating, ventilation, and air conditioning

<u>Municipality</u>: Any "municipality" eligible for the CWF, as defined in Section 22a-475 of the CGS. The municipalities are the "assistance recipients" for the purposes of the AIS requirement.

<u>Iron and Steel Products</u>: The term "iron and steel products" means the following products are made of "primarily iron or steel": lined or unlined pipes and fittings, manholes covers and other municipal castings, hydrants, tanks, flanges, pipe clamps and restraints, valves, structural steel, reinforced precast concrete, and construction materials.

<u>Mechanical equipment</u>: Mechanical equipment is typically that which has motorized parts and/or is powered by a motor.

<u>Municipal castings</u>: Municipal castings are cast iron or steel infrastructure products that are melted and cast. They typically provide access, protection, or housing for components incorporated into utility owned drinking water, storm water, wastewater, and surface infrastructure. They are typically made of grey or ductile iron, or steel. Examples of municipal castings are:

- Access Hatches;
- Ballast Screen;
- Benches (Iron or Steel);
- Bollards;
- Cast Bases;
- Cast Iron Hinged Hatches, Square and Rectangular;
- Cast Iron Riser Rings;
- Catch Basin Inlet;
- Cleanout/Monument Boxes;
- Construction Covers and Frames;
- Curb and Corner Guards;
- Curb Openings;
- Detectable Warning Plates;
- Downspout Shoes (Boot, Inlet);
- Drainage Grates, Frames and Curb Inlets;
- Inlets;
- Junction Boxes;
- Lampposts;
- Manhole Covers, Rings and Frames, Risers;
- Meter Boxes;
- Service Boxes;
- Steel Hinged Hatches, Square and Rectangular;
- Steel Riser Rings;

- Trash receptacles;
- Tree Grates;
- Tree Guards;
- Trench Grates; and
- Valve Boxes, Covers and Risers.

<u>Primarily Iron or Steel</u>: To be considered "primarily iron or steel", the product must be made of greater than 50% iron or steel, measured by cost. The cost should be based on the material costs.

P.L.: Public Law

<u>Production in the US</u>: For the purposes of the AIS requirement, "production in the US" of the iron or steel used in an applicable product requires that all manufacturing processes must take place in the US, except metallurgical processes involving refinement of steel additives.

<u>Reasonably Available Quantity</u>: The quantity of iron or steel products is available or will be available at the time needed and place needed, and in the proper form or specification as specified in the project plans and design.

Satisfactory Quality: The quality of iron or steel products, as specified in the project plans and designs.

SCADA: Supervisory control and data acquisition

<u>Steel</u>: An alloy that includes at least 50 percent iron, between 0.02 and 2 percent carbon, and may include other elements. Metallic elements such as chromium, nickel, molybdenum, manganese, and silicon may be added during the melting of steel for the purpose of enhancing properties such as corrosion resistance, hardness, or strength. The definition of steel includes carbon steel, alloy steel, stainless steel, tool steel, and other specialty steels.

<u>Step Certification</u>: A step certification is a process under which each handler (supplier, fabricator, manufacturer, processor, etc.) of the iron and steel products certifies that their step in the process was domestically performed.

<u>Structural steel</u>: Structural steel is rolled flanged shapes, having at least one dimension of their cross-section three inches or greater, which are used in the construction of bridges, buildings, ships, railroad rolling stock, and for numerous other constructional purposes. Such shapes are designated as wide-flange shapes, standard I-beams, channels, angles, tees and zees. Other shapes include H-piles, sheet piling, tie plates, cross ties, and those for other special purposes. Some structural steel may overlap with what is also considered "construction materials" (see definition above).

RCSA: Regulations of the Connecticut State Agencies

US: United States

<u>VFDs</u>: Variable frequency drives

WRRDA: Water Resources Reform and Development Act of 2014

5/28/2015 Date

George V. Hicks, P.E. Supervising Sanitary Engineer Bureau of Water Protection & Land Reuse

Attachment: EPA Memorandum: "Implementation of American Iron and Steel provisions of P.L. 113-76, Consolidated Appropriations Act, 2014" dated March 20, 2014.

TO:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

MAR 2 0 2014

OFFICE OF WATER

MEMORANDUM

- SUBJECT: Implementation of American Iron and Steel provisions of P.L. 113-76, Consolidated Appropriations Act, 2014
- FROM: For Andrew D. Sawyers, Director Office of Wastewater Management (4201M)

Peter C. Grevatt, Director Office of Ground Water and Drinking Water (4601M)

Water Management Division Directors Regions I - X

P.L. 113-76, Consolidated Appropriations Act, 2014 (Act), includes an "American Iron and Steel (AIS)" requirement in section 436 that requires Clean Water State Revolving Loan Fund (CWSRF) and Drinking Water State Revolving Loan Fund (DWSRF) assistance recipients to use iron and steel products that are produced in the United States for projects for the construction, alteration, maintenance, or repair of a public water system or treatment works if the project is funded through an assistance agreement executed beginning January 17, 2014 (enactment of the Act), through the end of Federal Fiscal Year 2014.

Section 436 also sets forth certain circumstances under which EPA may waive the AIS requirement. Furthermore, the Act specifically exempts projects where engineering plans and specifications were approved by a State agency prior to January 17, 2014.

The approach described below explains how EPA will implement the AIS requirement. The first section is in the form of questions and answers that address the types of projects that must comply with the AIS requirement, the types of products covered by the AIS requirement, and compliance. The second section is a step-by-step process for requesting waivers and the circumstances under which waivers may be granted.

Implementation

The Act states:

Sec. 436. (a)(1) None of the funds made available by a State water pollution control revolving fund as authorized by title VI of the Federal Water Pollution Control Act (33 U.S.C. 1381 et seq.) or made available by a drinking water treatment revolving loan fund as authorized by section 1452 of the Safe Drinking Water Act (42 U.S.C. 300j–12) shall be used for a project for the construction, alteration, maintenance, or repair of a public water system or treatment works unless all of the iron and steel products used in the project are produced in the United States.

(2) In this section, the term "iron and steel products" means the following products made primarily of iron or steel: lined or unlined pipes and fittings, manhole covers and other municipal castings, hydrants, tanks, flanges, pipe clamps and restraints, valves, structural steel, reinforced precast concrete, and construction materials.

(b) Subsection (a) shall not apply in any case or category of cases in which the Administrator of the Environmental Protection Agency (in this section referred to as the "Administrator") finds that—

(1) applying subsection (a) would be inconsistent with the public interest;

(2) iron and steel products are not produced in the United States in sufficient and reasonably available quantities and of a satisfactory quality; or

(3) inclusion of iron and steel products produced in the United States will increase the cost of the overall project by more than 25 percent.

(c) If the Administrator receives a request for a waiver under this section, the Administrator shall make available to the public on an informal basis a copy of the request and information available to the Administrator concerning the request, and shall allow for informal public input on the request for at least 15 days prior to making a finding based on the request. The Administrator shall make the request and accompanying information available by electronic means, including on the official public Internet Web site of the Environmental Protection Agency.

(d) This section shall be applied in a manner consistent with United States obligations under international agreements.

(e) The Administrator may retain up to 0.25 percent of the funds appropriated in this Act for the Clean and Drinking Water State Revolving Funds for carrying out the provisions described in subsection (a)(1) for management and oversight of the requirements of this section.

(f) This section does not apply with respect to a project if a State agency approves the engineering plans and specifications for the project, in that agency's capacity to approve such plans and specifications prior to a project requesting bids, prior to the date of the enactment of this Act.

The following questions and answers provide guidance for implementing and complying with the AIS requirements:

Project Coverage

1) What classes of projects are covered by the AIS requirement?

All treatment works projects funded by a CWSRF assistance agreement, and all public water system projects funded by a DWSRF assistance agreement, from the date of enactment through the end of Federal Fiscal Year 2014, are covered. The AIS requirements apply to the entirety of the project, no matter when construction begins or ends. Additionally, the AIS requirements apply to all parts of the project, no matter the source of funding.

2) Does the AIS requirement apply to nonpoint source projects or national estuary projects?

No. Congress did not include an AIS requirement for nonpoint source and national estuary projects unless the project can also be classified as a 'treatment works' as defined by section 212 of the Clean Water Act.

3) Are any projects for the construction, alteration, maintenance, or repair of a public water system or treatment works excluded from the AIS requirement?

Any project, whether a treatment works project or a public water system project, for which engineering plans and specifications were approved by the responsible state agency prior to January 17, 2014, is excluded from the AIS requirements.

4) What if the project does not have approved engineering plans and specifications but has signed an assistance agreement with a CWSRF or DWSRF program prior to January 17, 2014?

The AIS requirements do not apply to any project for which an assistance agreement was signed prior to January 17, 2014.

5) What if the project does not have approved engineering plans and specifications, but bids were advertised prior to January 17, 2014 and an assistance agreement was signed after January 17, 2014?

If the project does not require approved engineering plans and specifications, the bid advertisement date will count in lieu of the approval date for purposes of the exemption in section 436(f).

6) What if the assistance agreement that was signed prior to January 17, 2014, only funded a part of the overall project, where the remainder of the project will be funded later with another SRF loan?

If the original assistance agreement funded any construction of the project, the date of the original assistance agreement counts for purposes of the exemption. If the original assistance agreement was only for planning and design, the date of that assistance agreement will count for purposes of the exemption only if there is a written commitment or expectation on the part of the assistance recipient to fund the remainder of the project with SRF funds.

7) What if the assistance agreement that was signed prior to January 17, 2014, funded the first phase of a multi-phase project, where the remaining phases will be funded by SRF assistance in the future?

In such a case, the phases of the project will be considered a single project if all construction necessary to complete the building or work, regardless of the number of contracts or assistance agreements involved, are closely related in purpose, time and place. However, there are many situations in which major construction activities are clearly undertaken in phases that are distinct in purpose, time, or place. In the case of distinct phases, projects with engineering plans and specifications approval or assistance agreements signed prior to January 17, 2014 would be excluded from AIS requirements while those approved/signed on January 17, 2014, or later would be covered by the AIS requirements.

8) What if a project has split funding from a non-SRF source?

Many States intend to fund projects with "split" funding, from the SRF program and from State or other programs. Based on the Act language in section 436, which requires that American iron and steel products be used in any project for the construction, alteration, maintenance, or repair of a public water system or treatment works receiving SRF funding between and including January 17, 2014 and September 30, 2014, any project that is funded in whole or in part with such funds must comply with the AIS requirement. A "project" consists of all construction necessary to complete the building or work regardless of the number of contracts or assistance agreements involved so long as all contracts and assistance agreements awarded are closely related in purpose, time and place. This precludes the intentional splitting of SRF projects into separate and smaller contracts or assistance agreements to avoid AIS coverage on some portion of a larger

project, particularly where the activities are integrally and proximately related to the whole. However, there are many situations in which major construction activities are clearly undertaken in separate phases that are distinct in purpose, time, or place, in which case, separate contracts or assistance agreement for SRF and State or other funding would carry separate requirements.

9) What about refinancing?

If a project began construction, financed from a non-SRF source, prior to January 17, 2014, but is refinanced through an SRF assistance agreement executed on or after January 17, 2014 and prior to October 1, 2014, AIS requirements will apply to all construction that occurs on or after January 17, 2014, through completion of construction, unless, as is likely, engineering plans and specifications were approved by a responsible state agency prior to January 17, 2014. There is no retroactive application of the AIS requirements where a refinancing occurs for a project that has completed construction prior to January 17, 2014.

10) Do the AIS requirements apply to any other EPA programs, besides the SRF program, such as the Tribal Set-aside grants or grants to the Territories and DC?

No, the AIS requirement only applies to funds made available by a State water pollution control revolving fund as authorized by title VI of the Federal Water Pollution Control Act (33 U.S.C. 1381 et seq.) or made available by a drinking water treatment revolving loan fund as authorized by section 1452 of the Safe Drinking Water Act (42 U.S.C. 300j–12)

Covered Iron and Steel Products

11) What is an iron or steel product?

For purposes of the CWSRF and DWSRF projects that must comply with the AIS requirement, an iron or steel product is one of the following made primarily of iron or steel that is permanently incorporated into the public water system or treatment works:

Lined or unlined pipes or fittings; Manhole Covers; Municipal Castings (defined in more detail below); Hydrants; Tanks; Flanges; Pipe clamps and restraints; Valves; Structural steel (defined in more detail below); Reinforced precast concrete; and Construction materials (defined in more detail below).

12) What does the term 'primarily iron or steel' mean?

'Primarily iron or steel' places constraints on the list of products above. For one of the listed products to be considered subject to the AIS requirements, it must be made of greater than 50% iron or steel, measured by cost. The cost should be based on the material costs.

13) Can you provide an example of how to perform a cost determination?

For example, the iron portion of a fire hydrant would likely be the bonnet, body and shoe, and the cost then would include the pouring and casting to create those components. The other material costs would include non-iron and steel internal workings of the fire hydrant (i.e., stem, coupling, valve, seals, etc). However, the assembly of the internal workings into the hydrant body would not be included in this cost calculation. If one of the listed products is not made primarily of iron or steel, United States (US) provenance is not required. An exception to this definition is reinforced precast concrete, which is addressed in a later question.

14) If a product is composed of more than 50% iron or steel, but is not listed in the above list of items, must the item be produced in the US? Alternatively, must the iron or steel in such a product be produced in the US?

The answer to both question is no. Only items on the above list must be produced in the US. Additionally, the iron or steel in a non-listed item can be sourced from outside the US.

15) What is the definition of steel?

Steel means an alloy that includes at least 50 percent iron, between .02 and 2 percent carbon, and may include other elements. Metallic elements such as chromium, nickel, molybdenum, manganese, and silicon may be added during the melting of steel for the purpose of enhancing properties such as corrosion resistance, hardness, or strength. The definition of steel covers carbon steel, alloy steel, stainless steel, tool steel and other specialty steels.

16) What does 'produced in the United States' mean?

Production in the United States of the iron or steel products used in the project requires that all manufacturing processes, including application of coatings, must take place in the United States, with the exception of metallurgical processes involving refinement of steel additives. All manufacturing processes includes processes such as melting, refining, forming, rolling, drawing, finishing, fabricating and coating. Further, if a domestic iron and steel product is taken out of the US for any part of the manufacturing process, it becomes foreign source material. However, raw materials such as iron ore, limestone and iron and steel scrap are not covered by the AIS requirement, and the material(s), if any, being applied as a coating are similarly not covered. Non-iron or steel components of an iron and steel product may come from non-US sources. For example, for products such as valves and hydrants, the individual non-iron and steel components do not have to be of domestic origin.

17) Are the raw materials used in the production of iron or steel required to come from US sources?

No. Raw materials, such as iron ore, limestone, scrap iron, and scrap steel, can come from non-US sources.

18) If an above listed item is primarily made of iron or steel, but is only at the construction site temporarily, must such an item be produced in the US?

No. Only the above listed products made primarily of iron or steel, permanently incorporated into the project must be produced in the US. For example trench boxes, scaffolding or equipment, which are removed from the project site upon completion of the project, are not required to be made of U.S. Iron or Steel.

19) What is the definition of 'municipal castings'?

Municipal castings are cast iron or steel infrastructure products that are melted and cast. They typically provide access, protection, or housing for components incorporated into utility owned drinking water, storm water, wastewater, and surface infrastructure. They are typically made of grey or ductile iron, or steel. Examples of municipal castings are:

Access Hatches; Ballast Screen; Benches (Iron or Steel); Bollards; Cast Bases; Cast Iron Hinged Hatches, Square and Rectangular; Cast Iron Riser Rings; Catch Basin Inlet; Cleanout/Monument Boxes: Construction Covers and Frames; Curb and Corner Guards; Curb Openings; Detectable Warning Plates; Downspout Shoes (Boot, Inlet); Drainage Grates, Frames and Curb Inlets; Inlets; Junction Boxes; Lampposts; Manhole Covers, Rings and Frames, Risers;

Meter Boxes; Service Boxes; Steel Hinged Hatches, Square and Rectangular; Steel Riser Rings; Trash receptacles; Tree Grates; Tree Guards; Trench Grates; and Valve Boxes, Covers and Risers.

20) What is 'structural steel'?

Structural steel is rolled flanged shapes, having at least one dimension of their cross-section three inches or greater, which are used in the construction of bridges, buildings, ships, railroad rolling stock, and for numerous other constructional purposes. Such shapes are designated as wide-flange shapes, standard I-beams, channels, angles, tees and zees. Other shapes include H-piles, sheet piling, tie plates, cross ties, and those for other special purposes.

21) What is a 'construction material' for purposes of the AIS requirement?

Construction materials are those articles, materials, or supplies made primarily of iron and steel, that are permanently incorporated into the project, not including mechanical and/or electrical components, equipment and systems. Some of these products may overlap with what is also considered "structural steel". This includes, but is not limited to, the following products: wire rod, bar, angles, concrete reinforcing bar, wire, wire cloth, wire rope and cables, tubing, framing, joists, trusses, fasteners (i.e., nuts and bolts), welding rods, decking, grating, railings, stairs, access ramps, fire escapes, ladders, wall panels, dome structures, roofing, ductwork, surface drains, cable hanging systems, manhole steps, fencing and fence tubing, guardrails, doors, and stationary screens.

22) What is not considered a 'construction material' for purposes of the AIS requirement?

Mechanical and electrical components, equipment and systems are not considered construction materials. Mechanical equipment is typically that which has motorized parts and/or is powered by a motor. Electrical equipment is typically any machine powered by electricity and includes components that are part of the electrical distribution system.

The following examples (including their appurtenances necessary for their intended use and operation) are NOT considered construction materials: pumps, motors, gear reducers, drives (including variable frequency drives (VFDs)),

electric/pneumatic/manual accessories used to operate valves (such as electric valve actuators), mixers, gates, motorized screens (such as traveling screens), blowers/aeration equipment, compressors, meters, sensors, controls and switches, supervisory control and

data acquisition (SCADA), membrane bioreactor systems, membrane filtration systems, filters, clarifiers and clarifier mechanisms, rakes, grinders, disinfection systems, presses (including belt presses), conveyors, cranes, HVAC (excluding ductwork), water heaters, heat exchangers, generators, cabinetry and housings (such as electrical boxes/enclosures), lighting fixtures, electrical conduit, emergency life systems, metal office furniture, shelving, laboratory equipment, analytical instrumentation, and dewatering equipment.

23) If the iron or steel is produced in the US, may other steps in the manufacturing process take place outside of the US, such as assembly?

No. Production in the US of the iron or steel used in a listed product requires that all manufacturing processes must take place in the United States, except metallurgical processes involving refinement of steel additives.

24) What processes must occur in the US to be compliant with the AIS requirement for reinforced precast concrete?

While reinforced precast concrete may not be at least 50% iron or steel, in this particular case, the reinforcing bar and wire must be produced in the US and meet the same standards as for any other iron or steel product. Additionally, the casting of the concrete product must take place in the US. The cement and other raw materials used in concrete production are not required to be of domestic origin.

If the reinforced concrete is cast at the construction site, the reinforcing bar and wire are considered to be a construction material and must be produced in the US.

Compliance

25) How should an assistance recipient document compliance with the AIS requirement?

In order to ensure compliance with the AIS requirement, specific AIS contract language must be included in each contract, starting with the assistance agreement, all the way down to the purchase agreements. Sample language for assistance agreements and contracts can be found in Appendix 3 and 4.

EPA recommends the use of a step certification process, similar to one used by the Federal Highway Administration. The step certification process is a method to ensure that producers adhere to the AIS requirement and assistance recipients can verify that products comply with the AIS requirement. The process also establishes accountability and better enables States to take enforcement actions against violators.

Step certification creates a paper trail which documents the location of the manufacturing process involved with the production of steel and iron materials. A step certification is a process under which each handler (supplier, fabricator, manufacturer,

processor, etc) of the iron and steel products certifies that their step in the process was domestically performed. Each time a step in the manufacturing process takes place, the manufacturer delivers its work along with a certification of its origin. A certification can be quite simple. Typically, it includes the name of the manufacturer, the location of the manufacturing facility where the product or process took place (not its headquarters), a description of the product or item being delivered, and a signature by a manufacturer's responsible party. Attached, as Appendix 5, are sample certifications. These certifications should be collected and maintained by assistance recipients.

Alternatively, the final manufacturer that delivers the iron or steel product to the worksite, vendor, or contractor, may provide a certification asserting that all manufacturing processes occurred in the US. While this type of certification may be acceptable, it may not provide the same degree of assurance. Additional documentation may be needed if the certification is lacking important information. Step certification is the best practice.

26) How should a State ensure assistance recipients are complying with the AIS requirement?

In order to ensure compliance with the AIS requirement, States SRF programs must include specific AIS contract language in the assistance agreement. Sample language for assistance agreements can be found in Appendix 3.

States should also, as a best practice, conduct site visits of projects during construction and review documentation demonstrating proof of compliance which the assistance recipient has gathered.

27) What happens if a State or EPA finds a non-compliant iron and/or steel product permanently incorporated in the project?

If a potentially non-compliant product is identified, the State should notify the assistance recipient of the apparent unauthorized use of the non-domestic component, including a proposed corrective action, and should be given the opportunity to reply. If unauthorized use is confirmed, the State can take one or more of the following actions: request a waiver where appropriate; require the removal of the non-domestic item; or withhold payment for all or part of the project. Only EPA can issue waivers to authorize the use of a non-domestic item. EPA may use remedies available to it under the Clean Water Act, the Safe Drinking Water Act, and 40 CFR part 31 grant regulations, in the event of a violation of a grant term and condition.

It is recommended that the State work collaboratively with EPA to determine the appropriate corrective action, especially in cases where the State is the one who identifies the item in noncompliance or there is a disagreement with the assistance recipient.

If fraud, waste, abuse, or any violation of the law is suspected, the Office of Inspector General (OIG) should be contacted immediately. The OIG can be reached at 1-

888-546-8740 or OIG_Hotline@epa.gov. More information can be found at this website: http://www.epa.gov/oig/hotline.htm.

28) How do international trade agreements affect the implementation of the AIS requirements?

The AIS provision applies in a manner consistent with United States obligations under international agreements. Typically, these obligations only apply to direct procurement by the entities that are signatories to such agreements. In general, SRF assistance recipients are not signatories to such agreements, so these agreements have no impact on this AIS provision. In the few instances where such an agreement applies to a municipality, that municipality is under the obligation to determine its applicability and requirements and document the actions taken to comply for the State.

Waiver Process

The statute permits EPA to issue waivers for a case or category of cases where EPA finds (1) that applying these requirements would be inconsistent with the public interest; (2) iron and steel products are not produced in the US in sufficient and reasonably available quantities and of a satisfactory quality; or (3) inclusion of iron and steel products produced in the US will increase the cost of the overall project by more than 25 percent.

In order to implement the AIS requirements, EPA has developed an approach to allow for effective and efficient implementation of the waiver process to allow projects to proceed in a timely manner. The framework described below will allow States, on behalf of the assistance recipients, to apply for waivers of the AIS requirement directly to EPA Headquarters. Only waiver requests received from states will be considered. Pursuant to the Act, EPA has the responsibility to make findings as to the issuance of waivers to the AIS requirements.

Definitions

The following terms are critical to the interpretation and implementation of the AIS requirements and apply to the process described in this memorandum:

<u>Reasonably Available Quantity</u>: The quantity of iron or steel products is available or will be available at the time needed and place needed, and in the proper form or specification as specified in the project plans and design.

<u>Satisfactory Quality</u>: The quality of iron or steel products, as specified in the project plans and designs.

Assistance Recipient: A borrower or grantee that receives funding from a State CWSRF or DWSRF program.

Step-By-Step Waiver Process

Application by Assistance Recipient

Each local entity that receives SRF water infrastructure financial assistance is required by section 436 of the Act to use American made iron and steel products in the construction of its project. However, the recipient may request a waiver. Until a waiver is granted by EPA, the AIS requirement stands, except as noted above with respect to municipalities covered by international agreements.

The waiver process begins with the SRF assistance recipient. In order to fulfill the AIS requirement, the assistance recipient must in good faith design the project (where applicable) and solicit bids for construction with American made iron and steel products. It is essential that the assistance recipient include the AIS terms in any request for proposals or solicitations for bids, and in all contracts (see Appendix 3 for sample construction contract language). The assistance recipient may receive a waiver at any point before, during, or after the bid process, if one or more of three conditions is met:

- 1. Applying the American Iron and Steel requirements of the Act would be inconsistent with the public interest;
- 2. Iron and steel products are not produced in the United States in sufficient and reasonably available quantities and of a satisfactory quality; or
- 3. Inclusion of iron and steel products produced in the United States will increase the cost of the overall project by more than 25 percent.

Proper and sufficient documentation must be provided by the assistance recipient. A checklist detailing the types of information required for a waiver to be processed is attached as Appendix 1.

Additionally, it is strongly encouraged that assistance recipients hold pre-bid conferences with potential bidders. A pre-bid conference can help to identify iron and steel products needed to complete the project as described in the plans and specifications that may not be available from domestic sources. It may also identify the need to seek a waiver prior to bid, and can help inform the recipient on compliance options.

In order to apply for a project waiver, the assistance recipient should email the request in the form of a Word document (.doc) to the State SRF program. It is strongly recommended that the State designate a single person for all AIS communications. The State SRF designee will review the application for the waiver and determine whether the necessary information has been included. Once the waiver application is complete, the State designee will forward the application to either of two email addresses. For CWSRF waiver requests, please send the application to: <u>cwsrfwaiver@epa.gov</u>. For DWSRF waiver requests, please send the application to: <u>dwsrfwaiver@epa.gov</u>.

Evaluation by EPA

After receiving an application for waiver of the AIS requirements, EPA Headquarters will publish the request on its website for 15 days and receive informal comment. EPA Headquarters will then use the checklist in Appendix 2 to determine whether the application properly and adequately documents and justifies the statutory basis cited for the waiver – that it is quantitatively and qualitatively sufficient – and to determine whether or not to grant the waiver.

In the event that EPA finds that adequate documentation and justification has been submitted, the Administrator may grant a waiver to the assistance recipient. EPA will notify the State designee that a waiver request has been approved or denied as soon as such a decision has been made. Granting such a waiver is a three-step process:

1. Posting – After receiving an application for a waiver, EPA is required to publish the application and all material submitted with the application on EPA's website for 15 days. During that period, the public will have the opportunity to review the request and provide informal comment to EPA. The website can be found at: <u>http://water.epa.gov/grants_funding/aisrequirement.cfm</u>

2. Evaluation – After receiving an application for waiver of the AIS requirements, EPA Headquarters will use the checklist in Appendix 2 to determine whether the application properly and adequately documents and justifies the statutory basis cited for the waiver – that it is quantitatively and qualitatively sufficient – and to determine whether or not to grant the waiver.

3. Signature of waiver approval by the Administrator or another agency official with delegated authority – As soon as the waiver is signed and dated, EPA will notify the State SRF program, and post the signed waiver on our website. The assistance recipient should keep a copy of the signed waiver in its project files.

Public Interest Waivers

EPA has the authority to issue public interest waivers. Evaluation of a public interest waiver request may be more complicated than that of other waiver requests so they may take more time than other waiver requests for a decision to be made. An example of a public interest waiver that might be issued could be for a community that has standardized on a particular type or manufacturer of a valve because of its performance to meet their specifications. Switching to an alternative valve may require staff to be trained on the new equipment and additional spare parts would need to be purchased and stocked, existing valves may need to be unnecessarily replaced, and portions of the system may need to be redesigned. Therefore, requiring the community to install an alternative valve would be inconsistent with public interest.

EPA also has the authority to issue a public interest waiver that covers categories of products that might apply to all projects.

EPA reserves the right to issue national waivers that may apply to particular classes of assistance recipients, particular classes of projects, or particular categories of iron or steel products. EPA may develop national or (US geographic) regional categorical waivers through the identification of similar circumstances in the detailed justifications presented to EPA in a waiver request or requests. EPA may issue a national waiver based on policy decisions regarding the public's interest or a determination that a particular item is not produced domestically in reasonably available quantities or of a sufficient quality. In such cases, EPA may determine it is necessary to issue a national waiver.

If you have any questions concerning the contents of this memorandum, you may contact us, or have your staff contact Jordan Dorfman, Attorney-Advisor, State Revolving Fund Branch, Municipal Support Division, at dorfman.jordan@epa.gov or (202) 564-0614 or Kiri Anderer, Environmental Engineer, Infrastructure Branch, Drinking Water Protection Division, at anderer.kirsten@epa.gov or (202) 564-3134.

Attachments

Appendix 1: Information Checklist for Waiver Request

The purpose of this checklist is to help ensure that all appropriate and necessary information is submitted to EPA. EPA recommends that States review this checklist carefully and provide all appropriate information to EPA. This checklist is for informational purposes only and does not need to be included as part of a waiver application.

Items Votes
 General Waiver request includes the following information: Description of the foreign and domestic construction materials Unit of measure Quantity Price Time of delivery or availability Location of the construction project Name and address of the proposed supplier A detailed justification for the use of foreign construction materials Waiver request was submitted according to the instructions in the memorandum Assistance recipient made a good faith effort to solicit bids for domestic iron and steel products, as demonstrated by language in requests for proposals contractor
Cost Waiver Requests
 Waiver request includes the following information: Comparison of overall cost of project with domestic iron and steel products to overall cost of project with foreign iron and steel products Relevant excerpts from the bid documents used by the contractors to complete the comparison Supporting documentation indicating that the contractor made a reasonable survey of the market, such as a description of the process for identifying suppliers and a list of contacted suppliers
Availability Waiver Requests
 Waiver request includes the following supporting documentation necessary to demonstrate the availability, quantity, and/or quality of the materials for which the waiver is requested: Supplier information or pricing information from a reasonable number of domestic suppliers indicating availability/delivery date for construction materials Documentation of the assistance recipient's efforts to find available domestic sources, such as a description of the process for identifying suppliers and a list of contacted suppliers. Project schedule Relevant excerpts from project plans, specifications, and permits indicating the required quantity and quality of construction materials Waiver request includes a statement from the prime contractor and/or supplier confirming the non-availability of the domestic construction materials for which the waiver is sought
 Has the State received other waiver requests for the materials described in this waiver request. for comparable projects?

Appendix 2: HQ Review Checklist for Waiver Request

Instructions: To be completed by EPA. Review all waiver requests using the questions in the checklist, and mark the appropriate box as Yes, No or N/A. Marks that fall inside the shaded boxes may be grounds for denying the waiver. If none of your review markings fall into a shaded box, the waiver is eligible for approval if it indicates that one or more of the following conditions applies to the domestic product for which the waiver is sought:

- 1. The iron and/or steel products are not produced in the United States in sufficient and reasonably available quantities and of a satisfactory quality.
- 2. The inclusion of iron and/or steel products produced in the United States will increase the cost of the overall project by more than 25 percent.

Review Items Yes No	N/A	Comments
Cost Waiver Requests		
Does the waiver request include the following information?		
 Comparison of overall cost of project with domestic iron and steel products to overall cost of project with foreign iron and 		
steel products		
 Relevant excerpts from the bid documents used by the contractors to complete the comparison 		
 A sufficient number of bid documents or pricing information from domestic sources to constitute a reasonable survey of 		
the market		
Does the Total Domestic Project exceed the Total Foreign Project Cost by more than 25%?		
Availability Waiver Requests		
• Does the waiver request include supporting documentation sufficient to show the availability, quantity, and/or quality of the		
iron and/or steel product for which the waiver is requested?		
 Supplier information or other documentation indicating availability/delivery date for materials 		
 Project schedule 		
 Relevant excerpts from project plans, specifications, and permits indicating the required quantity and quality of materials 		
Does supporting documentation provide sufficient evidence that the contractors made a reasonable effort to locate domestic		
suppliers of materials, such as a description of the process for identifying suppliers and a list of contacted suppliers?		
Based on the materials delivery/availability date indicated in the supporting documentation, will the materials be unavailable		
when they are needed according to the project schedule? (By item, list schedule date and domestic delivery quote date or other		
relevant information)		
Is EPA aware of any other evidence indicating the non-availability of the materials for which the waiver is requested?		
Examples include:		
 Multiple waiver requests for the materials described in this waiver request, for comparable projects in the same State 		
 Multiple waiver requests for the materials described in this waiver request, for comparable projects in other States 		
- Correspondence with construction trade associations indicating the non-availability of the materials		
• Are the available domestic materials indicated in the bid documents of inadequate quality compared those required by the		
project plans, specifications, and/or permits?		
		<u> </u>
16		

Appendix 3: Example Loan Agreement Language

ALL ASSISTANCE AGREEMENT MUST HAVE A CLAUSE REQUIRING COMPLIANCE WITH THE AIS REQUIREMENT. THIS IS AN EXAMPLE OF WHAT COULD BE INCLUDED IN SRF ASSISTANCE AGREEMENTS. EPA MAKES NO CLAIMS REGARDING THE LEGALITY OF THIS CLAUSE WITH RESPECT TO STATE LAW:

Comply with all federal requirements applicable to the Loan (including those imposed by the 2014 Appropriations Act and related SRF Policy Guidelines) which the Participant understands includes, among other, requirements that all of the iron and steel products used in the Project are to be produced in the United States ("American Iron and Steel Requirement") unless (i) the Participant has requested and obtained a waiver from the Agency pertaining to the Project or (ii) the Finance Authority has otherwise advised the Participant in writing that the American Iron and Steel Requirement is not applicable to the Project.

Comply with all record keeping and reporting requirements under the Clean Water Act/Safe Drinking Water Act, including any reports required by a Federal agency or the Finance Authority such as performance indicators of program deliverables, information on costs and project progress. The Participant understands that (i) each contract and subcontract related to the Project is subject to audit by appropriate federal and state entities and (ii) failure to comply with the Clean Water Act/Safe Drinking Water Act and this Agreement may be a default hereunder that results in a repayment of the Loan in advance of the maturity of the Bonds and/or other remedial actions.

Appendix 4: Sample Construction Contract Language

ALL CONTRACTS MUST HAVE A CLAUSE REQUIRING COMPLIANCE WITH THE AIS REQUIREMENT. THIS IS AN EXAMPLE OF WHAT COULD BE INCLUDED IN ALL CONTRACTS IN PROJECTS THAT USE SRF FUNDS. EPA MAKES NO CLAIMS REGARDING THE LEGALITY OF THIS CLAUSE WITH RESPECT TO STATE OR LOCAL LAW:

The Contractor acknowledges to and for the benefit of the City of ("Purchaser") and the (the "State") that it understands the goods and services under this Agreement are being funded with monies made available by the Clean Water State Revolving Fund and/or Drinking Water State Revolving Fund that have statutory requirements commonly known as "American Iron and Steel;" that requires all of the iron and steel products used in the project to be produced in the United States ("American Iron and Steel Requirement") including iron and steel products provided by the Contactor pursuant to this Agreement. The Contractor hereby represents and warrants to and for the benefit of the Purchaser and the State that (a) the Contractor has reviewed and understands the American Iron and Steel Requirement, (b) all of the iron and steel products used in the project will be and/or have been produced in the United States in a manner that complies with the American Iron and Steel Requirement, unless a waiver of the requirement is approved, and (c) the Contractor will provide any further verified information, certification or assurance of compliance with this paragraph, or information necessary to support a waiver of the American Iron and Steel Requirement, as may be requested by the Purchaser or the State. Notwithstanding any other provision of this Agreement, any failure to comply with this paragraph by the Contractor shall permit the Purchaser or State to recover as damages against the Contractor any loss, expense, or cost (including without limitation attorney's fees) incurred by the Purchaser or State resulting from any such failure (including without limitation any impairment or loss of funding, whether in whole or in part, from the State or any damages owed to the State by the Purchaser). While the Contractor has no direct contractual privity with the State, as a lender to the Purchaser for the funding of its project, the Purchaser and the Contractor agree that the State is a third-party beneficiary and neither this paragraph (nor any other provision of this Agreement necessary to give this paragraph force or effect) shall be amended or waived without the prior written consent of the State.
Appendix 5: Sample Certifications

The following information is provided as a sample letter of <u>step</u> certification for AIS compliance. Documentation must be provided on company letterhead.

Date

Company Name

Company Address

City, State Zip

Subject: American Iron and Steel Step Certification for Project (XXXXXXXXX)

I, (company representative), certify that the (melting, bending, coating, galvanizing, cutting, etc.) process for (manufacturing or fabricating) the following products and/or materials shipped or provided for the subject project is in full compliance with the American Iron and Steel requirement as mandated in EPA's State Revolving Fund Programs.

Item, Products and/or Materials:

- 1. Xxxx
- 2. Xxxx
- 3. Xxxx

Such process took place at the following location:

If any of the above compliance statements change while providing material to this project we will immediately notify the prime contractor and the engineer.

Signed by company representative

The following information is provided as a sample letter of certification for AIS compliance. Documentation must be provided on company letterhead.

Date

Company Name

Company Address

City, State Zip

Subject: American Iron and Steel Certification for Project (XXXXXXXXX)

I, (company representative), certify that the following products and/or materials shipped/provided to the subject project are in full compliance with the American Iron and Steel requirement as mandated in EPA's State Revolving Fund Programs.

Item, Products and/or Materials:

- 1. Xxxx
- 2. Xxxx
- 3. Xxxx

Such process took place at the following location:

If any of the above compliance statements change while providing material to this project we will immediately notify the prime contractor and the engineer.

Signed by company representative

American Iron and Steel Provisions - Bidder Certification

The Bidder ("Contractor") acknowledges to and for the benefit of the Greater New Haven Water Pollution Control Authority ("Purchaser") and the State of Connecticut ("State") that it understands the goods and services under this Agreement are being funded with monies made available by the Clean Water State Revolving Fund and/or Drinking Water State Revolving Fund that have statutory requirements commonly known as "American Iron and Steel;" that requires all of the iron and steel products used in the project to be produced in the United States ("American Iron and Steel Requirement") including iron and steel products provided by the Contractor pursuant to this Agreement. The Contractor hereby represents and warrants to and for the benefit of the Purchaser and the State that (a) the Contractor has reviewed and understands the American Iron and Steel Requirement, (b) all of the iron and steel products used in the project will be and/or have been produced in the United States in a manner that complies with the American Iron and Steel Requirement, unless a waiver of the requirement is approved, and (c) the Contractor will provide any further verified information, certification or assurance of compliance with this paragraph, or information necessary to support a waiver of the American Iron and Steel Requirement, as may be requested by the Purchaser or the State. Notwithstanding any other provision of this Agreement, any failure to comply with this paragraph by the Contractor shall permit the Purchaser or State to recover as damages against the Contractor any loss, expense or cost (including without limitation attorney's fees) incurred by the Purchaser or State resulting from any such failure (including without limitation any impairment or loss of funding, whether in whole or in part, from the State or any damages owed to the State by the Purchaser). While the Contractor has no direct contractual privity with the State, as a lender to the Purchaser for the funding of its project, the Purchaser and the Contractor agree that the State is a third-party beneficiary and neither this paragraph (nor any other provision of this Agreement necessary to give this paragraph force or effect) shall be amended or waived without the prior written consent of the State.

Please Print

Bidder (Contractor):

By:

Name of Contractor (Company)

Address

Signature

Print Name

City/State/Zip Code

Date

3

CONTRACTOR'S EXEMPT PURCHASE CERTIFICATE

Town	Grant or Loan Identifier
Contract Name	Contract Number
I hereby certify under penalties of (FAL	SE STATEMENT) that I am engaged in the
performance of a construction contract fund- organization:	ed by the following named exempt agency or

Department of Environmental Protection 79 Elm Street, Hartford, Connecticut

That such agency is, to the best of my knowledge and belief, exempt from the Education, Welfare and Public Health Tax (Sales and Use Tax) because it is a branch of the State Government, in accordance with Regulation 12-426-18 of the Sales and Use Tax Division of the State Department of Revenue Services.

That this certificate is issued to cover all purchases of material and supplies to be physically incorporated in and become a permanent part of the project referred to above.

Signature of CONTRACTOR	Date
Name of Firm:	
Business Address:	
×	
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

SPECIFICATIONS FORFOR BIDDING

SECTION 01 30 00 ADMINISTRATIVE REQUIREMENTS

PART 1 GENERAL

1.01 DEFINITIONS

- A. Action Submittal: Written and graphic information submitted by Bidder as part of the proposal for Engineer's review. The Equipment Manufacturer will formally re-submit the Action Submittal items through the Contractor for approval.
- B. Informational Submittal: Information submitted by Equipment Manufacturer that does not require Engineer's approval.
- C. Preliminary Operation and Maintenance (O&M) Data: Initial and subsequent submissions for Engineer's review.
- D. Final O&M Data: Engineer-accepted data, submitted as specified herein.
- E. Maintenance Operation: As used on Maintenance Summary Form is defined to mean any routine operation required to ensure satisfactory performance and longevity of Goods. Examples of typical maintenance operations are cleaning, lubrication, belt tensioning, adjustment of pump packing glands, and routine adjustments.
- F. Operation and Maintenance Manual: Provided by the Equipment Manufacturer for the equipment provided as part of the Process Air Compressor for Low Level Nitrogen Removal contract.
- G. Asset Management Forms: Forms provided by the Owner for the Equipment Manufacturer to record product and equipment data.

1.02 PROJECT COORDINATION

- A. Onsite Coordination:
 - 1. Contractor will coordinate the activities at the Point of Destination related to the Goods furnished under this Contract.
 - 2. Equipment Manufacturer shall fully coordinate its activities with Contractor and other Contractors. This includes promptly bringing to Engineer's and Contractor's attention any conflict or coordination problem.

1.03 CONTRACT PROGRESS REPORTING

- A. Progress Schedule:
 - 1. Bar chart schedule demonstrating Equipment Manufacturer's plan for fulfilling Contract requirements.
 - 2. Information shall be comprehensive and shall represent all activities, including submittals and procurement necessary to complete Contract.
 - 3. Typical minimum detail on the schedule shall include, but not be limited to, the following:
 - a. Delivery durations and date(s) of Shop Drawings and Sample submittals.
 - b. Delivery durations and date(s) of Operation and Maintenance Data.
 - c. When in relation to previous schedule items the Equipment Manufacturer places purchase orders with major subcontractors and suppliers.
 - d. When in relation to previous schedule items the Equipment Manufacturer orders castings and forgings.
 - e. When in relation to previous schedule items of starting assembly of specified Goods.
 - f. Duration of finishing assembly of specified Goods.
 - g. When in relation to previous schedule items the testing at plant is to be done.
 - h. When in relation to previous schedule items to expect the shipment from Equipment Manufacturer.
 - i. When in relation to previous schedule items to expect the arrival of equipment at Point of Destination.
 - 4. Assist Contractor in determining the most current schedule information on the Contract items, including whether Equipment Manufacturer is on schedule or delayed. These requirements apply fully to telephone inquiries, personal visits, letters, or other communication.
 - Schedule Reporting: Submit Notice of Schedule Impact at any time that a Progress Schedule activity is delayed by 5 or more days.
 - a. Complete and submit to party named on the form attached.
 - b. Transmit completed form either in facsimile, e-mail, or mail via registered overnight mail service.

1.04 SUBMITTAL PROCEDURES

- A. Direct submittals to Engineer at the following address, unless specified otherwise:
 - JACOBS Attn: Karina Massey 100 Great Meadow Rd Suite 707 Wethersfield, CT 06109
 - 2. E-mail: Karina.massey@jacobs.com; cc <u>mricozzi@gnhwpca.com</u> & jmegale@gnhwpca.org
- B. Electronic Submittals: Submittals shall, unless specifically accepted, be made in electronic format.
 - 1. Each submittal shall be an electronic file in Adobe Acrobat Portable Document Format (PDF). Use the latest version available at time of execution of the Agreement.
 - 2. Electronic files that contain more than 10 pages in PDF format shall contain internal book marking from an index page to major sections of the document.
 - 3. PDF files shall be set to open "Bookmarks and Page" view.
 - 4. Add general information to each PDF file, including title, subject, author, and keywords.
 - 5. PDF files shall be set up to print legibly at 8.5-inch by 11-inch, 11-inch by 17-inch, or 22-inch by 34-inch. No other paper sizes will be accepted.
 - 6. Submit new electronic files for each resubmittal.
 - 7. Include a copy of the Transmittal of Equipment Manufacturer's Submittal form, located at end of section, with each electronic file.
 - Engineer will reject submittal that is not electronically submitted, unless specifically accepted. All submittals from the Equipment Manufacturer are to be submitted via the Contractor during construction.
 - 9. Provide Engineer with authorization to reproduce and distribute each file as many times as necessary for Project documentation.
 - 10. Detailed procedures for handling electronic submittals will be discussed at the preconstruction conference.

Transmittal of Submittal:

- 1. Review each submittal and check for compliance with Contract Documents.
- 2. Stamp each submittal with uniform approval stamp before submitting; stamp to include Project name, submittal number, Specification number, Equipment Manufacturer's reviewer name, date of Equipment Manufacturer's approval, and statement certifying that submittal has

been reviewed, checked, and approved for compliance with Contract Documents. Engineer will not review submittals that do not bear Equipment Manufacturer's certification as required by the General Conditions, and will return them without action.

- 3. Complete, sign, and transmit with each submittal package, one Transmittal of Equipment Manufacturer's Submittal form in format approved by Engineer.
- 4. Identify each submittal with the following:
 - a. Numbering and Tracking System:
 - 1) Sequentially number each submittal.
 - 2) Resubmission of submittal shall have original number with sequential alphabetic suffix.
 - b. Specification section and paragraph to which submittal applies.
 - c. Project title and Owner's project number.
 - d. Date of transmittal.
 - e. Names of Equipment Manufacturer, Subcontractor or Supplier, and manufacturer as appropriate.
- 5. Identify and describe each deviation or variation from Contract Documents.
- D. Format:
 - 1. Do not base Shop Drawings on reproductions of Contract Documents.
 - 2. Present in a clear and thorough manner and in sufficient detail to show kind, size, arrangement, and function of components, materials, and devices, and compliance with Contract Documents.
 - 3. Index with labeled tab dividers in orderly manner.
- E. Timeliness of Submittal: Schedule and submit in accordance with the Equipment Manufacturer's Progress Schedule, and requirements of individual Specification sections.
 - Processing Time:
 - Time for review shall commence on Engineer's receipt of submittal.
 Engineer will act upon Equipment Manufacturer's submittal and transmit response to Equipment Manufacturer not later than 30 days after receipt, unless otherwise specified.
 - Resubmittals will be subject to same review time.
 - No adjustment of Contract Times or Price will be allowed due to delays in providing Goods or Special Services caused by rejection and subsequent resubmittals.

- G. Resubmittals: Clearly identify each correction or change made.
- H. Incomplete Submittals:
 - 1. Engineer will return entire submittal for Equipment Manufacturer's revision if preliminary review deems it incomplete.
 - 2. When any of the following are missing, submittal will be deemed incomplete:
 - a. Equipment Manufacturer's certification as required by the General Conditions.
 - b. Transmittal of Equipment Manufacturer's Submittal, completed and signed.
 - c. Insufficient number of copies.
- I. Submittals not required by Contract Documents:
 - 1. Will not be reviewed and will be returned stamped "Not Subject to Review."
 - 2. Engineer will keep one copy and return all remaining copies to Equipment Manufacturer.
- J. Action Submittals:
 - 1. Prepare and submit as required by individual Specification sections.
 - 2. Shop Drawings:
 - a. Copies: Submit in electronic PDF Format.
 - Identify and Indicate:
 - Applicable Contract Drawing and Detail number, products, units and assemblies, and system or equipment identification or tag numbers.
 - 2) Goods and Component Title: Identical to title shown on Drawings.
 - 3) Critical field dimensions and relationships to other critical features. Note dimensions established by field measurement.
 - 4) Project-specific information drawn accurately to scale.

Manufacturer's standard schematic drawings and diagrams as follows:

- 1) Modify to delete information that is not applicable.
- 2) Supplement standard information to provide information specifically applicable.
- d. Product Data: Provide as specified in individual Specifications.

ESWPAF PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL PROCESS AIR COMPRESSOR EQUIPMENT RFP

- e. Foreign Manufacturers: When proposed, include following additional information:
 - 1) Names and addresses of at least two companies that maintain technical service representatives close to Project.
 - 2) Complete list of spare parts and accessories for each piece of equipment.
- 3. Samples:
 - a. Quantity: Two, unless otherwise specified in individual Specifications.
 - b. Preparation: Mount, display, or package Samples in manner specified to facilitate review of quality. Attach label on unexposed side that includes the following:
 - 1) Manufacturer name.
 - 2) Model number.
 - 3) Material.
 - 4) Sample source.
 - c. Manufacturer's Color Chart: Units or sections of units showing full range of colors, textures, and patterns available.
 - d. Full-size Samples:
 - 1) Size as indicated in individual Specification section.
 - 2) Cured and finished in manner specified.
 - 3) Physically identical with Goods proposed for use.
- K. Action Submittal Dispositions: Engineer will review, mark, and stamp as appropriate, and distribute marked-up copies as noted:
 - 1. Approved:
 - Equipment Manufacturer may provide Goods or Special Services covered by submittal.
 - Distribution: Electronic.
 - 2. Approved as Noted:
 - a. Equipment Manufacturer may provide Goods or Special Services covered by submittal, in accordance with Engineer's notations.
 - . Distribution: Electronic.
 - B. Partial Approval, Resubmit as Noted:
 - a. Make corrections or obtain missing portions, and resubmit.
 - b. Except for portions indicated, Equipment Manufacturer may begin to provide Goods or Special Services covered by submittal, in accordance with Engineer's notations.
 - c. Distribution: Electronic.
 - 4. Revise and Resubmit:
 - a. Equipment Manufacturer may not provide Goods or Special Services covered by submittal.
 - b. Distribution: Electronic.

- L. Informational Submittals:
 - 1. Copies: Electronic copies, unless otherwise indicated in individual Specification section.
 - 2. Refer to individual Specification sections for specific submittal requirements.
 - 3. Engineer will review each submittal. If submittal meets conditions of the Contract, Engineer will forward submittal to appropriate parties. If Engineer determines submittal does not meet conditions of the Contract and is therefore considered unacceptable, Engineer will return with review comments to Equipment Manufacturer, and require that submittal be corrected and resubmitted.

1.05 OPERATION AND MAINTENANCE (O&M) DATA

- A. Format and Scheduling:
 - 1. Preliminary Data:
 - a. Format: Instructional Manual.

a)

b).

- b. Submit subsequent to Engineer approval of Shop Drawings, but prior to shipment date.
- c. Submit two copies for Engineer's review.
 - 1) If data meets conditions of the Contract:
 - One copy will be returned to Equipment Manufacturer.
 - b) One copy will be retained in Engineer's file.
 - If data does not meet conditions of the Contract:
 - a) All copies will be returned to Equipment Manufacturer with Engineer's comments (on separate document) for revision.
 - Resubmit same number of copies, revised in accordance with Engineer's comments.
- . Final Data:

B.

- a. Submit at the time of shipment of Goods.
- b. Format: Instructional Manual and Electronic Media.
 - Data: Submit 3 hard copies and one electronic copies.

Instructional Manual Format:

- 1. Binder: Commercial quality, permanent, three-ring or three-post binders with durable plastic cover.
- 2. Size: 8-1/2 inches by 11 inches, minimum.
- 3. Cover: Identify manual with typed or printed title "OPERATION AND MAINTENANCE DATA" and list:
 - a. Project title.
 - b. Designate applicable system, equipment, material, or finish.

PW\DEN003\E2X90000\.SPECS\.RFP PAC OCTOBER 15, 2021

ESWPAF PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL PROCESS AIR COMPRESSOR EQUIPMENT RFP

- c. Identity of separate structure as applicable.
- d. Identity of general subject matter covered in manual.
- e. Identity of equipment number, if applicable, and Specification section.
- 4. Title Page:
 - a. Equipment Manufacturer's name, address, and telephone number.
 - b. Subcontractor, supplier, or maintenance contractor's name, address, and telephone number, as appropriate.
 - 1) Identify area of responsibility of each.
 - 2) Provide name and telephone number of local source of supply for parts and replacement.
- 5. Table of Contents:
 - a. Neatly typewritten and arranged in systematic order with consecutive page numbers.
 - b. Identify each product by product name and other identifying numbers or symbols as set forth in Contract Documents.
- 6. Paper: 20-pound minimum, white for typed pages.
- 7. Text: Manufacturer's printed data, or neatly typewritten.
- 8. Three-hole punch data for binding and composition; arrange printing so that punched holes do not obliterate data.
- 9. Material shall be suitable for reproduction, with quality equal to original. Photocopying of material will be acceptable, except for material containing photographs.
- C. Electronic Media Format:
 - 1. Portable Document Format (PDF):
 - a. After all preliminary data has been found to be acceptable to Engineer, submit Operation and Maintenance data in PDF format on USB drive.
 - b. Files to be exact duplicates of Engineer-accepted preliminary data. Arrange by specification number and name.
 - . Files to be fully functional and viewable in most recent version of Adobe Acrobat.
 - Data shall be represented on the Asset Management Forms provided at the end of this section.
- D. Data Content:
 - 1. Product Data:
 - a. Include only those sheets that are pertinent to specific product.
 - b. Clearly annotate each sheet to:
 - 1) Identify specific product or part installed.
 - 2) Identify data applicable to installation.
 - 3) Delete references to inapplicable information.

ADMINISTRATIVE REQUIREMENTS 01 30 00 - 8

PW\DEN003\E2X90000\.SPECS\.RFP PAC OCTOBER 15, 2021

- c. Function, normal operating characteristics, and limiting conditions.
- d. Performance curves, engineering data, nameplate data, and tests.
- e. Complete nomenclature and commercial number of replaceable parts.
- f. Original manufacturer's parts list, illustrations, detailed assembly drawings showing each part with part numbers and sequentially numbered parts list, and diagrams required for maintenance.
- g. Spare parts ordering instructions.
- h. Where applicable, identify installed spares and other provisions for future work (for example, reserved panel space, unused components, wiring, terminals).
- 2. Color-coded piping diagrams.
- 3. Charts of valve tag numbers, with the location and function of each valve.
- 4. Drawings: Supplement product data with Drawings as necessary to clearly illustrate:
 - a. Format:
 - 1) Provide reinforced, punched, binder tab; bind in with text.
 - 2) Reduced to 8-1/2 inches by 11 inches, or 11 inches by 17 inches folded to 8-1/2 inches by 11 inches.
 - 3) Where reduction is impractical, fold and place in 8-1/2-inch by 11-inch envelopes bound in text.
 - 4) Identify Specification section and product on Drawings and envelopes.
 - Relations of component parts of equipment and systems.
 - Control and flow diagrams.
 - Coordinate drawings with Project record documents to assure correct illustration of completed installation.
 - Instructions and Procedures: Within text, as required to supplement product data.
 - . Format:
 - 1) Organize in consistent format under separate heading for each different procedure.
 - 2) Provide logical sequence of instructions for each procedure.
 - 3) Provide information sheet for Contractor's personnel, including:
 - a) Proper procedures in event of failure.
 - b) Instances that might affect validity of warranties.
 - b. Installation Instructions: Including alignment, adjusting, calibrating, and checking.
 - c. Operating Procedures:
 - 1) Startup, break-in, routine, and normal operating instructions.
 - 2) Test procedures and results of factory tests where required.
 - 3) Regulation, control, stopping, and emergency instructions.

ESWPAF PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL PROCESS AIR COMPRESSOR EQUIPMENT RFP

- 4) Description of operation sequence by control manufacturer.
- 5) Shutdown instructions for both short and extended duration.
- 6) Summer and winter operating instructions, as applicable.
- 7) Safety precautions.
- 8) Special operating instructions.
- d. Maintenance and Overhaul Procedures:
 - 1) Routine maintenance.
 - 2) Guide to troubleshooting.
 - Disassembly, removal, repair, reinstallation, and re-assembly.
- E. Content for Each Electric or Electronic Item or System:
 - 1. Description of Unit and Component Parts:
 - a. Function, normal operating characteristics, and limiting conditions.
 - b. Performance curves, engineering data, nameplate data, and tests.
 - c. Complete nomenclature and commercial number of replaceable parts.
 - d. Interconnection wiring diagrams, including control and lighting systems.
 - 2. Circuit Directories of Panelboards:
 - a. Electrical service.
 - b. Controls.
 - c. Communications.
 - 3. List of electrical relay settings and control and alarm contact settings.
 - 4. Electrical interconnection wiring diagram, including control and lighting systems.
 - 5. Operating Procedures:
 - a. Routine and normal operating instructions.
 - b. Sequences required.
 - c. Safety precautions.
 - d. Special operating instructions.
 - 6. Maintenance Procedures:
 - a. Routine maintenance.
 - b. Guide to troubleshooting.
 - c. Adjustment and checking.
 - d. List of relay settings, control and alarm contact settings.
 - Manufacturer's printed operating and maintenance instructions.
 - 8. List of original manufacturer's spare parts, manufacturer's current prices, and recommended quantities to be maintained in storage.

- F. Maintenance Summary:
 - 1. Compile individual Maintenance Summary for each applicable item, respective unit or system, and for components or sub-units.
 - 2. Format:
 - a. Use Maintenance Summary Form bound with this section or electronic facsimile of such.
 - b. Each Maintenance Summary may take as many pages as required.
 - c. Use only 8-1/2-inch by 11-inch size paper.
 - d. Complete using typewriter or electronic printing.
 - 3. Include detailed lubrication instructions and diagrams showing points to be greased or oiled; recommend type, grade, and temperature range of lubricants and frequency of lubrication.
 - 4. Recommended Spare Parts:
 - a. Data to be consistent with manufacturer's Bill of Materials/Parts List furnished in O&M manuals.
 - b. "Unit" is the unit of measure for ordering the part.
 - c. "Quantity" is the number of units recommended.
 - d. "Unit Cost" is the current purchase price.

1.06 SUPPLEMENTS

- A. The Supplements listed below, following "End of Section," are part of this Specification:
 - 1. Notice of Schedule Impact.
 - 2. Transmittal of Equipment Manufacturer's Submittal Form.
 - 3. Asset Maintenance Forms:
 - a. Asset Summary Form.
 - b. Maintenance Summary Form.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

END OF SECTION

NOTICE OF SCHEDULE IMPACT

Attention: Address: E-mail: RE: Contract No.: Name of Contract: Type of Goods: Type of Goods: Nature of Delay: New Estimated Date for Final Shop Drawings: New Estimated Date for Start of Manufacture: New Estimated Date for Finish of Manufacture: New Estimated Date for Shipment: New Estimated Date for Arrival at Point of Destination: EQUIPMENT MANUFACTURER:
Address:
E-mail: RE: Contract No.:
RE: Contract No.: Name of Contract: Type of Goods: Type of Goods: Nature of Delay: New Estimated Date for Final Shop Drawings: New Estimated Date for Start of Manufacture: New Estimated Date for Finish of Manufacture: New Estimated Date for Finish of Manufacture: New Estimated Date for Shipment: New Estimated Date for Arrival at Point of Destination:
Name of Contract: Type of Goods: Type of Goods: Nature of Delay: New Estimated Date for Final Shop Drawings: New Estimated Date for Start of Manufacture: New Estimated Date for Start of Manufacture: New Estimated Date for Finish of Manufacture: New Estimated Date for Shipment: New Estimated Date for Arrival at Point of Destination: EQUIPMENT MANUFACTURER:
Type of Goods:
Nature of Delay: New Estimated Date for Final Shop Drawings: New Estimated Date for Start of Manufacture: New Estimated Date for Finish of Manufacture: New Estimated Date for Shipment: New Estimated Date for Arrival at Point of Destination:
New Estimated Date for Final Shop Drawings:
New Estimated Date for Start of Manufacture: New Estimated Date for Finish of Manufacture: New Estimated Date for Shipment: New Estimated Date for Arrival at Point of Destination: EQUIPMENT MANUFACTURER:
New Estimated Date for Finish of Manufacture:
New Estimated Date for Shipment:
New Estimated Date for Arrival at Point of Destination:
EQUIPMENT MANUFACTURER:
EQUIPMENT MANUFACTURER:
Name:
Address:
City: Zip: Telephone:
E-mail:
By (Name/Title): Date:

(Send this form as addressed if delay is over 5 days. Send either via e-mail.)

TRANSMITTAL OF EQUIPMENT MANUFACTURER'S SUBMITTAL

(ATTACH TO EACH SUBMITTAL)

		Date:			
TO:		Submittal N	o.:		
		New Sub	omittal 🗌 Resub	mittal	
		Project:			
		Project No.:		4	C
		Specification (Cover or	n Section No.: nly one section with	each transm	nittal)
FROM .		Schedule Da	te of Submittal:		
Eq	uipment Manufacturer				
		- C		2	×
SUBMITTA	L TYPE: Shop Drawing	Sample		nformational	
The followi	ng items are hereby submitted:				
Number of Copies	Description of Item Submitted (Type, Size, Model Number, Etc.)	Spec. and Para. No.	Drawing or Brochure Number	Contains to Cor	Variation ntract
				No	Yes
		7			
$-\mathbf{O}$					
2					
S					

EQUIPMENT MANUFACTURER hereby certifies that (i) EQUIPMENT MANUFACTURER has complied with the requirements of Contract Documents in preparation, review, and submission of designated Submittal and (ii) the Submittal is complete and in accordance with the Contract Documents and requirements of laws and regulations and governing agencies.

EQUIPMENT MANUFACTURER (Authorized Signature)

PW\DEN003\E2X90000\.SPECS\.RFP PAC OCTOBER 15, 2021

By:___

ASSET SUMMARY FORM

Ow	vner Name:	GNHWI	РСА	Project N	umber/Name: _			
Genera	al:							
[Description:					Tag #:		
	Туре:						1	Co
	Area:							
Build	ding/Room:					\sim		
	Vendor:				Website:)),	,0	
Ma	inufacturer:				Website:			
	Model #:		Serial #:		\bigcirc	Mfg Job #:		
I	Install Date:			- F	Purchase Date:	if serial # is	unavailable	
Sta	art-up Date:			Warra	anty End Date:			
Specifi	ication(s):				\mathbf{O}			
		Pump Size/Size	Pump Flow	Pump Head	Pump Media			
			\frown					
		HP	Frame	RPM	Voltage			
			6					
Compo	onent(s):				Specifications ((if applicable)		
ID	Component	Name - Mfg.		HP	Frame	RPM	Voltage	
1								
2								
3								
4	2							
5								

ASSET SUMMARY FORM cont.

Attachment(s):

ID	Attachment Name
1	
2	
3	

Existing Asset(s):

If replacing existing asset, record the tag and descripition of each existing asset:

Тад	Description	
		2 4
		7.14
Contact Informati	on:	
General Contr.:		Email:
		Phone:
Design Engineer:		Email:
		Phone:
Sub-Contractor:		Email:
	$)^{\prime}$	Phone:
X		
For Owner Use Or	<u>11y:</u>	
Representative:		CMMS Upload Date:
		CMMS Asset ID:

ASSET SUMMARY FORM

Ow	vner Name:	GNHWI	РСА	Project N	umber/Name: _			
Genera	al:							
[Description:					Tag #:		
	Туре:						1	Co
	Area:							
Build	ding/Room:					\sim		
	Vendor:				Website:)),	,0	
Ma	inufacturer:				Website:			
	Model #:		Serial #:		\bigcirc	Mfg Job #:		
I	Install Date:			- F	Purchase Date:	if serial # is	unavailable	
Sta	art-up Date:			Warra	anty End Date:			
Specifi	ication(s):				\mathbf{O}			
		Pump Size/Size	Pump Flow	Pump Head	Pump Media			
			\frown					
		HP	Frame	RPM	Voltage			
			6					
Compo	onent(s):				Specifications ((if applicable)		
ID	Component	Name - Mfg.		HP	Frame	RPM	Voltage	
1								
2								
3								
4	2							
5								

ASSET SUMMARY FORM cont.

Attachment(s):

ID	Attachment Name
1	
2	
3	

Existing Asset(s):

If replacing existing asset, record the tag and descripition of each existing asset:

Тад	Description	
		2 4
		7.14
Contact Informati	on:	
General Contr.:		Email:
		Phone:
Design Engineer:		Email:
		Phone:
Sub-Contractor:		Email:
	$)^{\prime}$	Phone:
X		
For Owner Use Or	<u>11y:</u>	
Representative:		CMMS Upload Date:
		CMMS Asset ID:

SECTION 01 43 34 SPECIAL SERVICES

PART 1 GENERAL

1.01 **DEFINITIONS**

- A. Startup Assistance: Assistance provided from the Equipment Manufacturer in order to plan out the testing phase of the project.
- B. Factory Testing: Controlled tests necessary to demonstrate that Equipment meet specified performance requirements.
- C. Functional Testing: Field tests necessary to demonstrate that installed Equipment function and operate in the manner intended. Functional testing is a prerequisite to demonstration testing when specified.
- D. Demonstration Testing: Field tests necessary to demonstrate, after successful functional testing, that Equipment meet specified performance requirements within acceptable tolerances as specified.
- E. Installing Contractor: The entity, under separate contract with the Contractor, whose responsibilities include the installation of the Equipment provided under this Contract.

1.02 MANUFACTURER'S REPRESENTATIVE

- A. Where Special Services are specified, Equipment Manufacturer shall furnish a qualified representative of manufacturer.
- B. If manufacturer's representative is found deficient in training or experience by Contractor or Engineer, furnish replacement representative after acceptance of resume and other qualification documentation of proposed representative.

1.03 INSTALLATION ASSISTANCE

A. See Section 44 42 19.05, High Speed Turbo Air Compressors.

1.04 COMMISSIONING ASSISTANCE

- A. Startup Assistance: Where specified, furnish representative to assist installing contractor with startup of furnished Equipment:
 - 1. Equipment Manufacturer's representative shall be present during prestartup meetings.

PW\DEN003\E2X90000\.SPECS\.RFP PAC SEPTEMBER 8, 2021

- 2. Furnish labor and materials, tools, instruments, and services for checking, testing, and startup specified.
- 3. Develop a standard record of testing. This record shall:
 - a. Be subject to approval of Engineer.
 - b. Include name of Equipment and subsystem, if applicable.
 - c. Have provisions for recording dates of completion for checking, inspection by manufacturer, verification of instrumentation and controls, and completion of subsystem tests.
 - d. Allow space for describing problems remaining with Equipment, and for signature of Engineer indicating acceptance.
- B. Functional Testing: Where specified, assist installing contractor in performing functional (or run) testing of furnished Equipment. Furnish representative to assist with test and necessary adjustments.
- C. Demonstration Testing: Where specified, assist installing contractor in conducting demonstration testing of furnished Equipment. Furnish representative to assist with tests as specified for the particular Equipment and to correct malfunctions.

1.05 MANUFACTURER'S CERTIFICATE OF PROPER INSTALLATION

- A. When so specified, a Manufacturer's Certificate of Proper Installation form, a copy of which is attached to this section, shall be completed and signed by Equipment Manufacturer's representative.
- B. Such form shall certify signing party is a duly authorized representative of Equipment Manufacturer, is empowered by Equipment Manufacturer to inspect, approve, and operate their Equipment and is authorized to make recommendations required to ensure that the Equipment are complete and operational.

1.06 DEMONSTRATION AND TRAINING

- Where specified, furnish Equipment Manufacturer's representative to instruct Contractor's personnel in proper operation and maintenance techniques for the furnished Equipment:
- B. Training services may include classroom or onsite instruction, either prestartup or post-startup, as stated in the Specifications.

- C. Prestartup Training:
 - 1. Prestartup training shall be completed at least 14 days prior to actual startup.
 - 2. Operation and Maintenance Data shall be reviewed and accepted before initiation of prestartup training.
- D. Post-Startup Training: Furnish and coordinate specified manufacturers' services and Equipment Manufacturer's personnel for post-startup training of Owner's operating and maintenance personnel.

PART 2 PRODUCTS (NOT USED)

PART 3 EXECUTION

- 3.01 SUPPLEMENTS
 - A. The supplements listed below, following "End of Section," are part of this Specification.
 - 1. Forms: Manufacturer's Certificate of Proper Installation.

END OF SECTION

MANUFACTURER'S CERTIFICATE OF PROPER INSTALLATION

CONTRACTOR:	EQPT SERIAL NO:				
EQPT TAG NO:	EQPT/SYSTEM:				
PROJECT NO: SPEC. SECTION:					
I hereby certify that the above-referenced equipment/sys	stem has been:				
(Check Applicable)					
Installed in accordance with manufacturer's recommendations.					
Inspected, checked, and adjusted.					
Serviced with proper initial lubricants.					
Electrical and mechanical connections meet quality and safety standards.					
All applicable safety equipment has been properly installed.					
Functional tests.					
System has been performance tested, and meets or exceeds specified performance requirements. (When complete system of one manufacturer)					
Note: Attach any performance test doo	cumentation from manufacturer.				
Comments:					
	/				
I, the undersigned Manufacturer's Representative, herebrepresentative of the manufacturer, (ii) empowered by the equipment and (iii) authorized to make recommendation the Equipment Manufacturer are complete and operation further certify that all information contained herein is true.	by certify that I am (i) a duly authorized the manufacturer to inspect, approve, and operate its as required to ensure that the Equipment furnished by thal, except as may be otherwise indicated herein. I are and accurate.				
Date:, 20					
Equipment Manufacturer:					
Manufacturer's Authorized Representative:	(Autoriand Clause and				
	(Authorized Signature)				
•					

SECTION 01 61 01 PRODUCT REQUIREMENTS

PART 1 GENERAL

1.01 DESIGN REQUIREMENTS

A. As specified in Section 44 42 19.05, High Speed Turbo Air Compressors.

1.02 PREPARATION FOR SHIPMENT

- A. Where specified, factory test results shall be reviewed and accepted by Contractor or Engineer before Equipment are shipped.
- B. When practical, Equipment shall be factory assembled. When impractical:
 - 1. Furnish assembly instructions.
 - 2. Mark or tag the separate parts and assemblies for field assembly.
 - 3. Cover machined and unpainted parts that may be damaged by elements with a strippable protective coating.
- C. Package or crate Equipment to provide protection from damage during shipping, handling, and storage.
- D. Marking: Mark or tag outside of each package or crate to indicate its purchase order number, bill of lading number, contents by name, name of project and Equipment Manufacturer, equipment number, and approximate weight.
- E. Spare Parts and Special Tools:
 - 1. Deliver at same time as Equipment delivery.
 - 2. Mark to identify associated products by name, equipment, and part number.
 - 3. Package parts for protection against damage from elements during shipping, handling, and storage.
 - 4. Ship in boxes or containers marked to indicate contents and as stated above.

Accessories:

- 1. Deliver at same time as Equipment delivery.
- 2. Furnish accessories required to place each item of equipment in full operation.
- 3. Accessories include, but are not limited to, adequate oil and grease as required for first lubrication of equipment and additional maintenance required by manufacturer prior to Contractor turning equipment over to

PW\DEN003\E2X90000\.SPECS\.RFP PAC AUGUST 12, 2021 Owner, light bulbs, fuses, hydrant wrenches, valve keys, chain operators, special tools, and other items as required for initial operation.

1.03 DELIVERY OF EQUIPMENT

- A. Notify Contractor, on Equipment Manufacturer's Notice of Shipment of Equipment form attached to this Section, 15 days prior to shipment of Equipment in accordance with Article 6 of General Conditions. Provide all applicable information requested on form.
- B. In accordance with Article 6 of the General Conditions, provide 24-hour telephone notice prior to expected delivery time at the Point of Destination. Notice shall include approximate hour of delivery.
- C. Delivery of Equipment shall be made during regular daytime working hours, Monday through Friday, unless other arrangements have been made previously with the Contractor.
- D. Inspection on Delivery:
 - 1. Construction Contractor will record receipt of Equipment at the Point of Destination.
 - 2. Upon receipt of Equipment at the Point of Destination, Construction Contractor and Engineer will inspect for completeness and evidence of damage during shipment.
 - 3. Should there appear to be damage, Construction Contractor or Engineer will immediately inform the transportation carrier.
 - 4. Damaged or incomplete Equipment to be returned to Equipment Manufacturer for replacement will not be unloaded, except as necessary to expedite return shipment.
 - 5. Equipment Manufacturer shall expedite replacement of damaged, incomplete, or lost items.

1.04 UNLOADING OF EQUIPMENT

After acceptance by inspecting party, Equipment will be unloaded by Construction Contractor in accordance with manufacturer's instructions, or as specified.
1.05 SUPPLEMENTS

- A. The Supplements listed below, following "End of Section," are part of this Specification:
 - 1. Equipment Manufacturer's Notice of Shipment of Equipment.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

END OF SECTION

FOR HOR BIDDING PURPOSES

EQUIPMENT MANUFACTURER'S NOTICE OF SHIPMENT OF EQUIPMENT

То:		
Attention:		
Address:		C C
Fax No.:		
E-mail:		A S.
RE: Contract No.:		
Name of Contract:		
Equipment to be Shipped:		
ATTACH BILL(S) OF LADING FOR AL	L SHIPMENTS	S TO THIS FORM.
Date of Shipment:		
Manner of Shipment/Name of Carrier:		
Anticipated Date of Delivery:		
Special Equipment or Services Required for	Unloading/Stora	age:
	×	
EQUIPMENT MANUFACTURER:		
Name:		
Address:		
City: State:	Zip:	Telephone:
E-mail:		
By (Name/Title):		Date:
1		

Delivery of this notice should be either via fax, e-mail, or registered overnight mail to Contractor, Engineer and Owner. FOR HOR BIDDING PURPOSES

SECTION 44 42 19.05 HIGH SPEED TURBO AIR COMPRESSORS

PART 1 GENERAL

1.01 DESCRIPTION

- A. This section covers the work and services necessary to design, fabricate, test, deliver to site, and startup of High Speed Turbo Air Compressors and all appurtenances as specified herein.
- B. The compressors shall be complete pre-packaged units. High efficiency, high speed motors shall be furnished as an integral part of the compressor core assembly. In general, each compressor shall be housed in a sound attenuating enclosure with flanged inlet and outlet connections, shall have an inlet air filter, inlet silencer, inlet and outlet flexible joints, outlet silencer, check valve, electric actuated isolation valve, blow-off valve and silencer, motor cooling air outlet silencer, adjustable frequency drive, instruments and integral local control panel, magnetic bearings, uninterruptible power supply (UPS) and other appurtenances as described in this specification section needed for a complete system. Harmonic filters required to reduce harmonic distortion to the limits specified herein, shall also be supplied either in separate enclosures or inside the compressor enclosures. The compressor system shall also be supplied with a single master control panel (MCP), located remotely, to monitor and control the compressors based on operational requirements and motor run time. The same supplier shall furnish the turbo air compressors and accessories.
- C. The compressors will be installed in the Process Air Facility at the East Shore Water Pollution Abatement Facility with suction taken from a plenum within the building and discharged to a common discharge manifold to supply air for aeration within the Biological Reactor Basins (Bioreactors).
 - . Compressors shall be complete pre-packaged units as described below:
 - High efficiency, high speed, single-stage, radial centrifugal turbo air compressor with magnetic bearing and direct coupled electric motor providing absolutely oil-free air to the aeration system.
 - 2. A UL listed adjustable Frequency Drive (AFD) to vary the speed of the motor/compressor.
 - 3. An inlet filter and inlet silencer.
 - 4. AFD/motor cooling air outlet silencer.
 - 5. Discharge check valve.
 - 6. Discharge butterfly isolation valve (electrically actuated).

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

- 7. Blowoff valve with flanged silencer.
- 8. Inlet and outlet flexible connections.
- 9. Pressure and temperature monitoring devices.
- 10. Local Control Panel (LCP) with uninterruptible power supply (UPS) mounted and prewired on a common base plate with each turbo air compressor.
- 11. A single Main Control Panel (MCP), located remotely as shown on the drawings to monitor and cycle all of the compressors based on air requirements and motor run time. The master panel shall be designed to control all compressors, including standby unit.
- 12. Harmonic filters.
- E. The compressor equipment shall be produced and assembled by the compressor manufacturer at a facility owned and operated by the compressor manufacturer and under the direct supervision and control of the compressor manufacturer.
- F. The compressor manufacturer may provide the compressor control panels and adjustable frequency drives from another manufacturer. However, all of this equipment shall be the responsibility of the compressor manufacturer to furnish and coordinate.
- G. Compressors shall be automatically sequenced, through the MCP, to control compressor speed and number of compressors based on either system flow or a constant discharge header pressure with mode selection and setpoints received from Plant SCADA over a Rockwell EtherNet/IP network when MCP is remote mode or received from MCP when in local mode.
- H. Supplier of High Speed Turbo Air Compressor system shall participate in applications software (PLC and OIT programming) workshops. The purpose of the workshop is to coordinate project scope of work, system functionality, network communications and messaging, alarms, displays, and required interlocks between Plant SCADA, MCP, and LCPs. Workshop can be conducted remotely via Zoom or Microsoft Teams or through telephone conference. Provide total minimum of 8 hours for the workshops during design and 40 hours for workshops and coordination with the SCADA developer during construction and programming.

1.02 REFERENCES

- A. The following is a list of standards which may be referenced in this section:
 - 1. American Bearing Manufacturers' Association (ABMA).
 - 2. American Iron and Steel Institute (AISI).
 - 3. American National Standards Institute (ANSI).

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 2

ESWPAF PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL PROCESS AIR COMPRESSOR EQUIPMENT RFP

- 4. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): 52.2, Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size.
- 5. American Society of Mechanical Engineers (ASME):
 - a. PTC-13, Performance Test Code on Compressors and Exhausters.
 - b. PTC 36, Measurement of Industrial Sound.
- 6. ASTM International (ASTM):
 - a. A48/A48M, Standard Specification for Gray Iron Castings.
 - b. A278, Gray Iron Castings for Pressure-Containing Parts for Temperatures Up to 343 degrees C.
- 7. Institute of Electrical and Electronics Engineers (IEEE):
 - a. 85, Test Procedure for Airborne Sound Measurements on Rotating Electric Machinery.
 - b. 112, Standard Test Procedures for Polyphase Induction Motors and Generators.
- 8. National Electrical Manufacturers Association (NEMA): MG 1, Motors and Generators.
- 9. Occupational Safety and Health Administration (OSHA).
- 10. Underwriters Laboratories, Inc. (UL):
 - a. 674, Electric Motors and Generators for Use in Division 1 Hazardous (Classified) Locations.
 - b. 1283, Standard for Safety for Electromagnetic Interference Filters.

1.03 DEFINITIONS

E.

- A. Actual Cubic Feet per Minute (acfm): Air volume in cubic feet per minute corrected to Site conditions of elevation, temperature, and relative humidity.
- B. Ambient (Inlet) Pressure: absolute pressure of the ambient air measured in the vicinity of the compressor inlet measured at the stagnation condition. This will equal barometric pressure under typical conditions.
 - Ambient (Inlet) Temperature: total temperature of the ambient air in the vicinity of the compressor package, but unaffected by it.
- D. Input Horsepower (IHP): Input horsepower (or wire power) is the total horsepower required to operate the compressor motor and all ancillary equipment drive motors.

Compressor Package: Compressor package is defined by the limits of the scope of supply as specified in the overall project contractual agreement pertaining to the compressor installation. This shall include all deliverable components including valves, control panels, disconnects, etc. as specified herein to form an operational machine including but not limited to inlet, discharge, and all power devices that affect power consumption.

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

- F. Discharge Pressure: Pressure in pounds per square inch gauge (psig) at compressor package discharge flange. Typically measured downstream of the check valve at rated capacity.
- G. Inlet Cubic Feet per Minute (icfm): The rate of flow which is determined by delivered mass flow rate divided by inlet total density as defined by the inlet to the package. Air volume in cubic feet per minute entering compressor at inlet pressure and temperature conditions corrected for Site conditions and includes inlet filter and inlet line losses.
- H. Overall (Wire to Air) Efficiency: Is the wire to air isentropic efficiency of the entire compressor package. This includes energy losses from all components within the compressor package. This is the ratio of total measured wire-to-air (system) power demand to the power of compression due to an assumed reversible, adiabatic compression process with constant entropy.
- I. Pressure Rise: Difference between pressure at the compressor package discharge flange (typically downstream of the check valve) and the package inlet flange in pounds per square inch (psi).
- J. Standard Cubic Feet per Minute (scfm): Air volume in cubic feet per minute corrected to standard conditions of 68 degrees F, 14.70 psia, and 36 percent relative humidity.
- K. Compressor Package Total Wire Power (kW or hp): The compressor package total wire power is the electrical power measured at the power input to the compressor package. This shall include all power consuming electrical components of the compressor package as required for installation and normal operation. i.e., drive motor, motor cooling fan, magnetic bearing and controller, bearing cooling fans, coolant pump and heat exchanger, enclosure and package cooling fan, sine wave filter or output reactor, variable frequency drive and cooling fan, input choke or line reactor, harmonic filter, local control panel, PLC or processor, HMI and miscellaneous electronics, voltage transformer(s), DC power supplies, power conditioner, etc. If the compressor package receives multiple power feeds, this is the sum of all wire powers measured individually.

1.04 COMPRESSOR DESIGN CRITERIA

A. Each Turbo Air Compressor system shall be designed for the following conditions of service:

Table 1 Design Criteria Summary Table			
Total Number of Compressors	6 (5 duty, 1 standby)		
Method of Operation	In parallel, continuous system operation with cycling of units as determined by air demand of the system		
Compressor Type	High Speed Turbo		
Drive Type	Direct coupled		
Design Site Elevation (NAVD 88)	19 feet		
Inlet Pressure	Ambient		
Maximum Compressor Inlet Pressure Loss (air pipes, dirty filter and inlet silencer)	0.25 psi		
Design Total Compressor System Capacity	43,600 scfm		
Design Discharge Pressure ¹	7.7 to 10.25 psig		
Package Discharge Flange	ANSI 150-pound. bolt pattern		
Primary Air Source	Ambient air		
Package Inlet Flange	ANSI 150 lb. bolt pattern ²		
Available Power Voltage	480 V		
Available Power Phase/Frequency	3-Phase / 60 Hz		
Maximum Noise at 3 Feet (free field) ⁽³⁾	<80 dba		
Allowable vibration level	<1 mm/sec		

¹The discharge pressure (delivered pressure) as measured downstream of the check valve.

²The inlet pipe is the piping between the inlet flange and the compressor inlet filter.

³When measured in accordance with ASME PTC 36, Measurement of Industrial Sound, and operating at the maximum design capacities.

ESWPAF PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL PROCESS AIR COMPRESSOR EQUIPMENT RFP

B. Compressor continuous duty design operating conditions at design service conditions listed below:

Table 2 Continuous Duty Design Operating Conditions (5 Duty, 1 Standby)						
Total Air Rate (scfm) (deg. F)		Relative Humidity (%)				
9,500 to 31,900	-5 to 82	54 to 74				
9,500 to 39,000	15 to 74	54 to 85				
13,000 to 43,600	40 to 104	50 to 86				
	Table 2 esign Operating Cond Total Air Rate (scfm) 9,500 to 31,900 9,500 to 39,000 13,000 to 43,600	Table 2 ssign Operating Conditions (5 Duty, 1 S) Inlet Total Air Rate (scfm) Inlet 9,500 to 31,900 -5 to 82 9,500 to 39,000 15 to 74 13,000 to 43,600 40 to 104				

Notes:

1) Each discharge operating condition shall be considered at a discharge pressure range between 7.7 and 10.25 psig.

- 2) Maximum dewpoint of 84 degrees Fahrenheit.
 - a. Compressors shall be capable of continuously operating on any points on Table 2.
 - b. Total Power Consumption: Manufacturer shall supply Total Power Consumption for all listed operating design points under all service conditions.

2. Compressor Requirements:

- a. The system shall be designed to operate continuously over the entire air requirement range. One standby compressor shall be available at all times over the entire air requirement range.
- b. Individual compressors shall ALL be identical in size.
 - All compressors shall be sequenced through a Master Control Panel (MCP).
 - Manufacturer shall confirm 5 duty units will meet the specified range of operating design points.
- Motor Size (hp): As determined by Supplier, not to exceed 600 hp at 480 volts.

.05 SUBMITTALS

General: Administrative, shop drawings, samples, quality control, and contract closeout submittals shall conform to the requirements of Section 01 30 00, Administrative Requirements. All submittal dimensions, calculations, and other information shall be in English units of measure.

- B. Action Submittals:
 - 1. Proposal Submittal: Submittals provided with the Proposal Documents shall be for the purpose of determining responsiveness and shall be used by the Owner in selecting the successful compressor manufacturer. Proposal Documents must adequately represent the facilities to be constructed. Use the key words at the beginning of each item below for tab labels in the submittal. Submittals required with proposal documents:
 - a. Scope:
 - Identify all items in the Manufacturer's proposal including equipment and manufacturer services provided. Manufacturer shall also clearly state all items specifically not included in the proposal.
 - 2) A manufacturing and delivery schedule for the compressor and all appurtenances specified herein.
 - b. Exceptions:
 - Identify any exceptions to these Proposal Documents. Exceptions will be considered during the evaluation process.
 - 2) Provide any recommendations to make the compressor systems more cost-effective. For each recommendation, identify any sacrifices in terms of operational flexibility, system performance, or operations and maintenance requirements.
 - Identify any components that are not specified but are necessary to provide a fully operational compressor system. Missing items should be included as separate

alternate/options line items on the Form of Quotation. Installation List: Include a comprehensive list of high speed turbo air compressors installed in the United States and Canada. The list must include equipment model, flow, head, horsepower, service application and years in service. Include a reference contact name with phone number and email for each installation.

Service Network: Manufacturer shall describe their current service network by listing the nearest factory authorized service center and /or qualified service representative. Identify service technicians and include pertinent certifications to substantiate their knowledge and expertise. Manufacturer shall list locations of the nearest parts warehouse and the types and quantities of spare parts kept in stock.

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

d.`

- e. Technical:
 - 1) Mechanical:
 - a) Data on the characteristics and performance of the units to indicate ability to meet the system performance specified herein.
 - b) Compressor curves showing package discharge pressure and flow capacity, wire to air efficiency and compressor package total wire power demand over the entire range from shutoff to maximum capacity. Clearly show the surge pressure and surge margin associated with each of the performance speed curves. Provide compressor curves for all design operating conditions specified herein.
 - On the performance curves indicate the pressure (psig), flow capacity (scfm), power demand (hp), and wire to air efficiency at guarantee points as per Table 2 above.
 - (2) Furnish performance curves at full speed and a minimum of four lower speeds to indicate specified volume turndown. Include the capacity line above which the unit should be operated to preclude surging. Include the capacity line below which the unit should be operated to preclude run out.
 - (3) Flow ranges (plus or minus for a given operating condition) will not be acceptable.Manufacturer's catalog information, descriptive

literature, specifications, and identification of materials of construction for the compressor and all appurtenances.

- General Arrangement Drawings: Drawings of the compressor system/equipment and all appurtenances (including plans and elevations) based on the conceptual Process Air Facility drawings provided herein.
- Equipment: Preliminary Equipment list detailing manufacturers, suppliers, and materials of construction for all major components and appurtenances. Also provide the recommended lifting height and horizontal clearances required for removal and maintenance of the equipment.
- E) Estimated compressor sound level data, for both inlet and radiated conditions, and description of sound

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

control measures required to meet the specified sound levels.

- g) Maximum heat dissipation from compressor enclosure to the space and any ventilation requirements.
- h) Provide information about internal and external heat exchangers if applicable. If external heat exchangers are required, provide remote location installation and mounting requirements.
- 2) Instrumentation and Control:
 - a) Process and Instrumentation Diagrams: Provide process and instrumentation diagrams (P&IDs) for the compressor system. Clearly delineate on P&IDs those items, including piping, that are part of the manufacturer's scope of supply and those items to be provided by Contractor.
 - b) Instrumentation: Describe instrumentation, software, hardware, control features, remote system, monitoring, data storage, and alarms. Provide a control system block diagram identifying PLC hardware.
 - c) Provide an instrument list showing make, model number, and process variable range.
 - B) Electrical:
 - a) Provide the total connected and expected electrical demand in kW, kVA, HP, and amperes for each compressor when operating at 100 percent load. Provide the required load information and power requirements for any compressor components that are externally mounted from each compressor enclosure.
 b) List all components that will require a separate power supply other than the 480V power supply that is provided to each dedicated compressor enclosure. Additionally, provide the voltage and ampacity requirements for each power feed to all equipment remotely mounted from each compressor enclosure.
 - c) Provide detailed data on all electrical equipment associated with the proposed compressor system. The literature provided shall, as a minimum, include the following:
 - Catalog cut sheets on the AFD, harmonic mitigating equipment, compressor motor, enclosure disconnecting means, and all other electrical equipment located within each compressor enclosure. The cut sheets provided

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

(7)

(8)

shall include the maximum ampacity and temperature ratings associated with the AFDs and harmonic mitigating equipment proposed.

- (2) Voltage and amperage ratings for the AFD and the associated harmonic mitigating equipment located within each compressor enclosure. Each AFD provided shall be sized at 1.15 X the nameplate rating of the motor.
- (3) One-line diagram for each compressor enclosure that includes the disconnecting means, control power transformer, AFD, harmonic mitigating equipment, and the specific controls associated with each compressor.
- (4) Minimum short circuit ratings of all equipment that is located within each compressor enclosure. All AFDs and associated equipment provided shall be provided with a minimum short circuit ratings of 65KA rms symmetrical.
- (5) Calculations that verify the proposed harmonic mitigating equipment meets the harmonic limits specified under all specified operating conditions.

 (6) Enclosure proposed for all electrical equipment located either within each compressor enclosure or remotely mounted from the compressor enclosure.

Documentation to verify that the compressor and all associated electrical equipment provided is UL certified.

Detailed drawings that includes the front elevation and the internal control panel logic of the Master Control Panel (MCP). Additionally, the associated enclosure ratings and the materials used to construct the Master Control Panel (MCP) shall be included.

(9) Detailed data on the proposed compressor motor. The data provided shall include the manufacturer and the enclosure ratings provided with the motor. The voltage, amperage, frequency, and service factor ratings shall also be included in the literature provided. The data shall include documentation that verifies that the proposed motor is inverter duty rated as specified.

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 10

- (10) Detailed catalog cut sheets on the AFD and the associated harmonic filters proposed. The submitted information shall clearly indicate that the electrical equipment proposed is suitable for installation within the environment in which the compressors will be installed. The maximum allowable temperature ratings for all electrical equipment proposed shall be provided.
- (11) List any special requirements for the compressors or any electrical equipment associated with the compressor system proposed.
- f. Energy Requirements:
 - Provide estimated annual energy requirements for system, in kWh based on the guaranteed power requirements listed in the Specification herein. Describe assumptions for energy calculations: nameplate power, absorbed power, efficiency, etc. Provide estimated maximum demand in kW for the system. Use an electricity cost of \$0.125/kWh.
 - 2) Submit Table 3 under Article 1.10, herein, fully completed by the Manufacturer, showing guaranteed wire power.
 - 3) Engineer to perform 20-year life cycle cost as part of the evaluation process.
- g. Warranties: Provide information on the compressor system equipment warrantees, specific to this Project, including those described herein.

Warranty and Service Agreements: Submit a detailed description of the manufacturer's extended warranty and service agreement options.

- Extended Warranty: Include a detailed description of the manufacturer's extended warranty options, modified as necessary to meet requirements specified herein. Description shall include pricing structure.
- 2) Service Agreements: Include a detailed description of the manufacturer's service options. Description shall include pricing structure.
- Shop Drawings and Product Data (to be provided after Equipment Manufacturers selection):
 - a. Structural: Anchorage and bracing data sheets and Drawings as required.
- b. Bill of Materials: Complete bill of materials of all components and equipment supplied. Bill of materials shall include make and

model number and replacement cost of the primary components including, but not limited to, the following:

- 1) Compressor.
- 2) Motor.
- 3) AFD.
- 4) PLC.
- 5) Harmonic filters.
- 6) Heat exchangers.
- 7) Instruments and Sensors (temp, pressure, magnetic bearing controller, etc.).
- 8) Control transformer.
- 9) Local control panels
- 10) Uninterruptible power supply (UPS)
- 11) Master Control Panel (MCP).
- c. Spare Parts: Include a list of manufacturer-recommended spare parts and nearest supplier (identify supplier's name and address, and other pertinent contact information). Include a statement of availability of all parts.
- d. Documentation of modifications to the manufacturer's standard design to meet the requirements specified in this section and where the manufacturer's standard design does not comply with the specified performance, features, functions, and materials of construction specified herein.

e. Mechanical:

- 1) Complete Specifications, descriptive drawings, catalog cuts, and descriptive literature which shall include make, model, dimensions and weight of the compressors, motors, and accessories. Include weight of largest components requiring removal for maintenance.
-) Number of required units for each operating design point, including one standby unit.

Detailed layout drawings and dimensional data, including minimum clearance distances around equipment required to access equipment for normal service, repair, and removal. Data on the characteristics and performance of the units to indicate ability to meet the system performance specified herein:

a) Compressor curves showing package discharge pressure and flow capacity, wire to air efficiency and compressor package total wire power demand over the entire range from shutoff to maximum capacity. Clearly show the surge pressure and surge margin associated with each of the performance speed curves.

Provide compressor curves for all design operating conditions specified herein.

- On the performance curves indicate the pressure (psig), flow capacity (scfm), power demand (hp), and wire to air efficiency at guarantee points.
- (2) Furnish performance curves at full speed and a at least four lower speeds including minimum speed to indicate specified volume turndown. The capacity line above which the unit should be operated to preclude surging. The capacity line below which the unit should be operated to preclude run out.
- 5) Inlet and discharge flexible connectors.
- 6) Inlet air filter and silencer.
- 7) Heat exchangers if required.
- 8) Air cooling system fans and waste heat exhaust silencer, etc.
- 9) Blow-off valve (and electric actuator) and silencer.
- 10) Check valve.
- 11) Discharge isolation valve and electric actuator and silencer.
- 12) Enclosure details.
- 13) Estimated compressor sound level data, for both inlet and radiated conditions, and description of sound control measures required to meet the specified sound levels.
- 14) Maximum heat dissipation from compressor enclosure to the space and any ventilation requirements.

b) Provide information about internal and external heat exchangers. If external heat exchangers are required, provide remote location installation and mounting requirements.

Electrical: 1) Mot

Motor Data: Complete motor data shall be submitted with the driven machinery shop drawings. Motor data shall include items applicable to this motor, such as:

- a) Descriptive information.
- b) Nameplate data in accordance with NEMA MG 1.
- c) Service factor.
- d) Voltage, phase, and frequency ratings.
- e) Full load current.
- f) Locked rotor current.
- g) No load current.
- h) Full load speed.
- i) Safe stall time.

- j) Insulation class and temperature rise classification. Certification that motors are inverter duty rated.
- k) Multispeed load classification (for example, variable torque).
- Guaranteed maximum full load wire-to-air power. Also provide nominal air-to-airpower at 1/2 and 3/4 load.
- m) Description, rating, and wiring diagram of thermal protection or over temperature protection.
- n) Power factor at 1/2, 3/4, and full design flows and conditions.
- 2) Total wire-to air power consumption per unit for each operating design point.
- 3) System wiring diagrams, with recommended power feeder conductors sizes and feeder breaker sizes.
- 4) Bearing type, lubrication, and life.
- 5) Adjustable Frequency Drive Data:
 - a) Overall drive system operating data, including efficiencies, input currents, and power factors, at driven equipment actual load and rated system input voltage, at 0, 40, 60, 80, 100, and 110 percent of rated speed.
 - b) Information on harmonics generated by the drive, along with descriptive information on all reactors, filters, or other harmonics mitigation equipment.
 - Complete system rating, including all nameplate data, continuous operation load capability throughout speed range of 0 to 120 percent of rated speed.
 - UPS installed in each LCP:
 - a) Estimated load when on UPS.
 - b) Estimated time for UPS to power critical loads.
 - c) Estimated load of Magnetic Bearing on UPS.
- Outline drawings for all items that are shipped loose.
- Quality of Construction and Qualifications:

c)

- Proof of listing for Compressor Package by the Nationally Recognized Testing Laboratory (NRTL) such as UL/CSA certification in accordance with UL 1450 or equivalent TUV certification on the same model and size proposed. Certification must be demonstrated prior to acceptance of proposed equipment.
- b. Statement of conformance letter stating conformance to specifications with all exceptions noted. Statement of conformance must be signed by an individual authorized to make such statements.
- 4. American Iron and Steel Bidders Certification.

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 14

- 5. Manufacturer's Certification that Bidder, if not Manufacturer, is authorized by Manufacturer to submit Proposal and Manufacturer will abide by submitted Proposal.
- 6. Proof of Financial Strength: supply documentation to demonstrate the financial strength of the firm bidding and the Manufacturer.
- Informational Submittals (to be provided after Equipment Manufacturer C. selection):
 - Detailed factory test procedure with complete piping and 1. instrumentation configuration diagram per ASME PTC-13 showing inlet and discharge air test pipe size. The location, type, and quantity of all major instruments necessary for performance data, including those on air, water, and lube oil with corresponding distances from reference points, shall be identified per ASME PTC-13 requirements. As a minimum, the detailed test plan shall include:
 - Quality control procedures. a.
 - Test procedure and method of calculating results. b.
 - Functional testing of entire package, including oil lube system, c. instrumentation, ancillary components, and LCP.
 - d. Insert the actual test report in the Operations and Maintenance Manual.
 - Field Test: Submit a detailed test procedure for complete e.
 - compressor systems. Sound power values when measured in accordance with ASME PTC 36, 2. Measurement of Industrial Sound.
 - Master Control Panel (MCP) Factory Test Results: 3.
 - Submit factory test plan outlining all required testing activities a. within this section for Engineer approval a minimum of 2 weeks prior to testing.
 - Submit factory test results including manufacturer's quality assurance.
 - Include copies of original test data collection forms.
 - Manufacturer's Field Report: Submit manufacturer's field report of inspections, tests, and observations for all items furnished under this section.
 - Operation and maintenance data as specified in Section 01 30 00, Administrative Requirements.
 - 6. Manufacturer's written equipment, material and spare parts storage and safeguard instructions including any special shipping, storage and protection, and handling instructions.
 - Manufacturer's printed installation instructions. 7.
 - 8. Manufacturer's Certificate of Proper Installation, in accordance with Section 01 43 34, Special Services.

1.06 QUALITY ASSURANCE

- A. Single Source Responsibility: All compressors and appurtenances furnished under this Section shall be furnished by a single manufacturer who is fully experienced, reputable and qualified in the manufacture of the equipment to be furnished. Compressor manufacturer shall also provide a written warranty for the compressor and compressor package and shall state that they have reviewed the design and application and that the equipment has not been misapplied.
- B. The manufacturer of the high-speed turbo air compressors shall be completely responsible for the proper design or selection of their system components, including but not limited to; compressors, adjustable frequency drives, harmonic filters, heat exchangers, blow-off valves, and all applicable compressor controls. All equipment shall perform as specified and the completed installation shall operate in accordance with the requirements of the Drawings and Specifications.
- C. Equipment must meet the detailed requirements specified herein. Manufacturers shall not state a "standard product" cannot meet the spec. Such products shall be modified, redesigned from the standard mode for this specific project, and shall be furnished with special features, accessories, materials of construction or finishes as may be necessary to conform to the quality mandated by the technical and performance requirements of the Specification.

1.07 DELIVERY, STORAGE AND HANDLING

A. Shipping:

- 1. Ship equipment, materials and spare parts complete except where partial disassembly is required by transportation regulations or for protection of components.
- 2. Pack spare parts in containers bearing labels clearly designating contents and pieces of equipment for which they are intended.
- B. Deliver spare parts at same time as pertinent equipment.

Receiving:

1.

- The Manufacturer shall provide an authorized representative to witness, inspect and inventory items upon delivery to Site.
- 2. The Contractor shall verify all items on manifest have been off-loaded and are undamaged.
- 3. Confirmation from the Contractor that items have been received.

- 4. The Contractor shall inspect each box to confirm that each spare part has been received.
- 5. The Contractor shall photograph each item off-loaded.
- 6. The Manufacturer shall obtain Contractor's signature on the bill of lading confirming that each item was delivered and provide a copy to the Owner and Engineer.
- C. The Manufacturer shall submit written equipment, material and spare parts storage and safeguard instructions.
- D. The Contractor shall store equipment per Manufacturer's written instructions.

1.08 OPERATING ENVIRONMENT

A. Compressor package will be installed in an indoor, dry, moderately dusty, mildly corrosive, non-hazardous building located at a wastewater treatment plant: Typical building temperatures from 50 to 105 degrees F. The building is a ventilated, industrial space. All equipment, including controls and electronics provided by the Manufacturer shall be suitable for continuous and standby operation in such an environment.

1.09 WARRANTY

- A. The Manufacturer shall provide a standard 1-year warranty for compressors and appurtenances to commence upon Owner's acceptance of partial utilization of equipment.
- B. Provide the additional cost for an extended warranty for Owner's consideration as follows:
 - Additional 4-year warranty (total of five).
 - Compressors and appurtenances shall be warranted to be free from defects in workmanship, design or material. If the equipment should fail during the 5-year warranty period due to a defective part(s), it shall be replaced and the unit(s) restored to service at no expense to the Owner.
 The 5-year warranty shall include cost of parts and labor.
 - This warranty shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and is in addition to and runs concurrent with the warranties made under the general warranty requirements of Contract Documents.
- D. Time and materials required to correct defective equipment shall be provided by the compressor manufacturer at no additional cost to Owner.

E. Compressor manufacturer shall guarantee to ship any parts required for emergency repairs on all compressors within 5 working days of acknowledged receipt of the order, or the parts are free of charge to the Owner.

1.10 POWER GUARANTEE

- A. Guaranteed Performance: The manufacturer shall submit guaranteed compressor package total wire power (kW) values with the proposal and submittal at the listed design points for both 7.7 psig and 10.25 psig discharge pressures as outlined in Table 3 below. The wire power shall include all losses associated with the compressor package at all specified operating points. The completed table shall be submitted by Manufacturer with the proposal and will be considered the basis of the power guarantee and all related requirements as specified herein.
- B. Actual Performance: The actual performance of the compressor package total wire power (kW) will be obtained during the factory performance test as specified herein. Include the results for each compressor package with the factory performance test submittal.

Table 3 Guaranteed Performance Evaluation ¹								
Operating Condition	Total Flow (scfm)	Inlet Tem p. (deg. F)	Relative Humidity (%)	Recommended No. of Compressors Online ³	Flow per Compresso r (scfm) ³	Total Wire Power per Compressor Package (kW) ²	Power Evaluation Factor	Factored Total Wire Power per Compressor Package (kW)
Condition 1	9,500	-5	54	\sim			0.15	
Condition 2	31,900	-5	54	ろ			0.20	
Condition 3	16,000	60	70				0.30	
Condition 4	13,000	40	86				0.20	
Condition 5	43,600	104	50				0.15	

¹ Allowable Deviation: Flow 0%, Pressure 0%, Power + 1 %.

 2 Guaranteed data shall be provided for each compressor package at each discharge operating condition at both discharge pressures of 7.7 and 10.25 psig.

³ Manufacturer to provide recommended number of online compressors at the given operating condition. This shall be used to determine flow per compressor for each test condition.

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. Magnetic bearing turbo air compressors shall be furnished by a single manufacturer who is fully experienced, reputable, and qualified in the manufacture of the equipment to be furnished.
- B. Magnetic bearing turbo air compressors that meet all of the requirements of this Specification.
- C. Alternate compressor and package selections must submit itemized descriptions of how the selection differs from the Specifications.

2.02 MATERIALS

- A. Materials specified are considered the minimum acceptable for the purposes of durability, strength, and resistance to erosion and corrosion. The Manufacturer may propose alternative materials for the purpose of providing greater strength or to meet required stress limitations. However, alternative materials must provide at least the same qualities as those specified for the purpose.
- B. Major compressor components shall be manufactured from the following materials.
 - 1. Casings and Inlet Inducer: High-strength aluminum alloy.
 - 2. Impellers: High-strength forged aluminum alloy.
 - 3. Rotor Shafts: Alloy steel or titanium alloy with permanent magnets.
 - 4. Compressor and Motor Frame: Welded steel.
 - 5. Inlet and Outlet Accessories: Hot dipped galvanized steel.
 - 6. Expansion Joints: AISI Type 316 stainless steel.
 - 7. Check Valve: AISI Type 316 stainless steel/FKM seal.

EQUIPMENT FEATURES

A. General:

2.03

- 1. The compressors shall meet all design, performance and operating criteria listed in the Design Criteria portion of this section.
- 2. The compressors shall be of single-stage centrifugal design utilizing oil free non-contacting magnetic bearing technology with the following design characteristics.
 - a. The compressors shall be designed for heavy, continuous, industrial service, be capable of providing a minimum of 6 starts

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

per hour and have a minimum design life of 20 years before any major rebuild will be needed.

- b. The compressors will withstand up to 5,000 shutdowns under full power failure without damage to the bearings.
- c. Regardless of theoretical bearing life calculations, the bearings shall be sized for a minimum of expected 20,000 on/off cycles between major overhauls. Bearings that fail before 20,000 on/off cycles shall be replaced by the Compressor Manufacturer at no cost to the Owner.
- d. Operate within specified vibration levels without overloading the drive motor.
- e. The rotor shall remain levitated at all times while power is being supplied to the turbo air compressor. Turbo air compressors with rotors that rest on bearings while in the standby mode with power supplied to the compressor shall not be considered as an equal.
- f. Operate without sign of distress when operating at specified operating point and at off design conditions.
- g. Have a pressure-volume curve, which extends from the design system pressure to the upper system surge pressure with a continuously rising pressure characteristic.
- h. Will not surge at or above specified flow rates corresponding to specified differential pressure.
- i. The maximum input motor horsepower should not exceed specified nameplate horsepower when operating at design flows.
- j. The turbo air compressor must deliver oil-free and non-pulsation air at all times to the aeration process.
- 3. Design compressor cooling system to consist of liquid or air cooling. Design liquid cooling system as a closed loop system, requiring no external connections or water supply from the plant. Provide cooling system capable of accommodating range of ambient conditions expected.
 - Supply each compressor with a sound enclosure covering the entire compressor package; fabricated of stainless steel or aluminum. Design sound enclosure to permit easy inspection and maintenance of all compressor package components. Provide quick release panels, each with at least two handle locations and weighing less than 55 pounds (as mandated by OSHA), enabling easy and quick access for routine maintenance of the compressor package components. Should the panels be heavier than 55 pounds, supply hinged doors with the appropriate frame, reinforcements, and supporting elements.

4. Wire to air power must include all motor, thermal, mechanical and electrical losses of the turbo air compressor as well as losses of all auxiliary equipment such as all lubrication systems, cooling systems, etc.

- 5. The compressors shall be capable of variable speed operation with a minimum turndown no higher than 45 percent from its maximum capacity over the entire temperature range and shall use an integral adjustable frequency drive. Turndown of the compressors must be sufficient to ensure that gaps do not occur during transition; overlapping should occur at any continuous duty design operating conditions; refer to Table 2 herein. Each compressor shall be capable of operating continuously and satisfactorily at any point between the minimum and maximum flows without any surge, vibration, hunting, or excessive heating of bearings or motor.
- 6. Rotor critical speed must be a minimum of 20 percent above the operating design speed. Each compressor shall be designed to operate to maximize overall system efficiency over the range of operating conditions.
- 7. Maximum unfiltered peak-to-peak radial or axial displacement of the rotor shaft shall not exceed 1.25 mils at all operating speeds when measured at on the motor or the turbo air compressor base.
- 8. Free field (R=infinity) sound pressure level without accessories shall not exceed 80 dBA at any point 3 feet from the turbo air compressor assembly, including inlet air filter, when operating at specified air flow rates and differential pressure.
- 9. Complete compressor package shall be certified by a NRTL such as UL, CSA, or TUV.

B. Compressors:

- 1. Casing: The spiral volute casing with horizontal intake and vertical discharge connection shall be provided with intake and discharge flanges in accordance with and manufactured to DIN 2576, PN 10 standards. The compressor inlet inducer shall be integral to the compressor volute.
- 2. Impellers: a. The
 - The impeller shall be shaped from a solid forging on a numerical machining center using computer aided manufacturing technology to ensure consistent efficiency.
 - b. Semi-open impeller design with three dimensional shaped blades optimized for the design range of each compressor.
 - c. The impeller shall be attached directly to the motor shaft using an aircraft technology fastener system without a coupling or keyway.
 - d. The impeller shall be a standard design configuration.
- 3. Magnetic Bearing System:
 - a. The motor rotor shaft shall be continuously levitated in a magnetic field by the magnetic bearing system. This system shall consist of two radial and two axial active magnetic bearings, two rotor

position sensors, and a magnetic bearing controller (MBC). Compressors that use bearing systems that contact stationary parts during start up or if power is lost are not an acceptable alternate.

- b. The position sensors shall continuously measure the shaft position and send a signal to the MBC controlling the energy in the active magnetic bearings keeping the motor rotor shaft levitated and centered.
- c. There shall be no mechanical contact at any time between any moving and stationary surfaces during the compressor operation eliminating friction and wearing of all moving parts.
- d. The magnetic bearing system shall not require any oil lubrication.
- e. The magnetic bearing controller shall be powered by a threephase, 60-Hz with a power supply that has the same voltage as the main power supply. The magnetic bearing shall be powered from UPS in LCP to provide power during power interruptions.
- f. The bearings shall be designed to a minimum of 20,000 starts or a minimum of 10 years between replacements.
- g. The compressors shall withstand up to 5,000 shutdowns under full power failure without damage to the bearings.
- 4. Noise Enclosure:
 - a. The high speed unit shall be enclosed in a noise reduction system that reduces the noise levels to less than 80 dBA.
 - b. Enclosure panels shall be easily removable for inspection of the high speed unit.
 - c. For all panels heavier than 50 pounds, hinged doors must be supplied. The compressor package enclosure shall protect against falling water, condensation, and dust.
 - d. Noise enclosure shall be designed for easy inspection and maintenance of all compressor package components.
- C. Each compressor shall be designed with a flanged inlet to introduce air from an outside air source through an inlet filter.

Intake and filter performance losses shall be included by the compressor vendor in the compressor performance calculation. Filters shall be easily serviceable.

Compressors shall not allow heat caused by motor or electrical cooling to be exhausted into compressor room.

Each compressor shall be supplied with built in vibration isolating mounts. Compressor manufacturer shall be responsible for attenuating noise and vibration in the compressor package such that no special installation base shall be required nor shall any vibration from the compressor package be

transmitted to the floor or intake and discharge base or the piping. Manufacturer shall supply acceptable vibration levels for the entire compressor assembly over the entire operational range of the supplied unit.

- G. Each compressor shall be equipped with an integrated, electrically actuated blow-off valve. The valve discharge shall also be supplied with a properly sized blow-off silencer.
- H. Noise criteria: Each compressor enclosure and blow-off valve shall not exceed 80 dBA at 100 percent speed and 9.5 psig discharge pressure. Manufacturer shall supply sound pressure levels (dBA) at 100 percent speed and discharge pressure and for all operating design points outlined in this specification.

2.04 ELECTRICAL COMPONENTS AND ACCESSORIES

- A. Provide all necessary electrical components and wiring on the compressor skid for a complete, functional compressor system. All equipment on the compressor skid shall be prewired.
- B. Wiring: The Drawings and Specifications indicate the anticipated wiring for the equipment provided under this section. All wiring shall meet the requirements of NFPA 70 or nationally recognized testing laboratory. All insulation shall be rated 600 volts, minimum. All low-voltage (24V dc) analog signals shall be run in twisted, shielded pair cable with 600-volt rated insulation.
- C. Power Disconnect: Compressors shall be provided with an externally operable power disconnect located on the enclosure exterior accessible from the front of the compressor enclosure.
- D. Compressor Drive Motor:
 - 1. Each compressor shall be supplied with a Permanent Magnet Synchronous Motor (PMSM) high speed motor that has no physical connection between stator and shaft, therefore eliminating brushes, slip rings, or break resistors. The PMSM must be combined with a Sine-Wave Filter (Sinus Filter) and Input Line Reactor to maintain cool motor operation and constant motor efficiency with motor turndown. Induction or Brushless DC motors shall not be acceptable.
 - 2. Each motor shall operate on 460/480 volts, three-phase, 60-Hz input power. The maximum allowable motor horsepower shall be as specified in the Design Criteria. Motors shall be premium efficiency type.

- 3. The motor shall be able to start under the starting conditions required. Compressor manufacturer shall be responsible for coordinating the starting torque requirement of the compressor and the motor with the AFD to ensure proper operation of the system.
- 4. Motor shall have a guaranteed minimum efficiency of 95 percent.
- 5. The motor rotor shaft shall be supported by magnetic bearings at all times while power is supplied to the turbo-compressor providing a smooth vibration free rotation over the entire speed range. Compressors that use bearing systems that contact stationary parts during start up or if power is lost are not an acceptable alternate.
- 6. The motor shall be air cooled by a cooling fan that is mounted directly to the bottom end of the motor rotor shaft or liquid cooled.
- 7. Additional requirements for the compressor motors are:
 - a. Insulation: Epoxy coated Class H rated to 180 degrees C (356 degrees F).
 - b. Stator Temperature Monitoring: Internal thermocouple embedded in motor windings with triple redundancy.
 - c. Maximum Ambient Temperature: 105 degrees F.
 - d. Minimum Ambient Temperature: 50 degrees F.
- E. Adjustable Frequency Drive:
 - 1. Adjustable frequency drive (AFD) shall be manufacturer's standard design, generally of the pulse-width modulation design, with all necessary components to provide a complete and functioning compressor system capable of meeting the design requirements.
 - 2. A six-pulse AFD shall be acceptable provided that the harmonic mitigating equipment provided with each compressor allows the cumulative number of compressors in operation to meet the specified harmonic limits. Alternatively, higher pulse AFDs can also be provided in lieu of a six-pulse AFD to better mitigate the harmonics generated at the source of the non-linear load provided that the overall harmonic limits specified are met.
 - 3. AFD inverter shall be listed by a National Recognized Testing Laboratory (NRTL).
 - AFD shall have a service and support facility operation in the U.S.A. for supply, support, and the provision of replacement components.
 - 5. Drive shall be integrally mounted within the compressor enclosure.
 - 6. AFD shall have a sinusoidal filter consisting of an inductor and capacitor filter to increase motor life.

7. The adjustable frequency drive shall be integrally mounted within compressor enclosure, the associated harmonic filter for harmonics mitigation shall be mounted in a companion standalone NEMA 12 enclosure or mounted within the compressor enclosure.

- 8. Adjustable frequency drive provided for each compressor shall have a components and design strategy to mitigate the impacts of heat and stress on the PMSM that decrease motor life. Each AFD shall have an integrated user interface that includes field bus connection and support software. Provide control of AFD via Compressor LCP touch screen.
- 9. Harmonic Distortion Limits:
 - a. Normal and Standby Source Harmonic Distortion Limits: Compute the normal and standby source harmonic distortion limits. Using the one-line diagrams, compute the normal and standby source individual and total current and voltage harmonic distortion at the point identified as the PCC. The PCC is the switchgear bus the compressor is connected to. The current and voltage harmonic distortion shall not exceed limits specified herein. Use the values of short circuit current I_{SC} and demand load current I_L specified on diagrams. The harmonic calculations shall be performed with all compressors in operation.
 - b. Percent total voltage harmonic distortion at the PCC shall not exceed 5 percent.
 - c. The short circuit current available at the PCC is 38,500A RMS symmetrical at 480V.
 - 1) Note that the short circuit available depends on equipment procured therefore coordination between the Vendor and Electrical System Analysis provider will be required.
 - d. Compute normal source and the standby source individual and total current harmonic distortion at the PCC in accordance with IEEE Standard 519. Individual current harmonic distortion and the total demand distortion expressed as percent of maximum demand load current I_L for PCC shall not exceed values specified in Table 4 below for both the normal and standby sources.

Table 4				
Individual Harmonic Order (Odd Harmonics)	Harmonic Current Distortion Percent of Max. Demand Load Current IL1			
h < 11	4.0			
$11 \le h < 17$	2.0			
$17 \leq h < 23$	1.5			
$23 \le h < 35$	0.6			
$35 \le h$	0.3			
Total Demand Distortion (TDD)	5.0			

ESWPAF PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL PROCESS AIR COMPRESSOR EQUIPMENT RFP

Table 4				
Individual Harmonic Order (Odd Harmonics)	Harmonic Current Distortion Percent of Max. Demand Load Current IL1			
¹ For harmonic computations, assume all compressors are in operation and that these compressors are operating at full load.				
² Limits specified in Table 1 are for AFDs utilizing six-pulse rectifiers. Supplier may choose to provide higher than six-pulse rectifiers or harmonic filters in order to meet the current distortion limits. For converters higher than six pulses, the limits for characteristic harmonics are increased by a factor of $\sqrt{(q/6)}$, where q is the pulse number, provided that the amplitudes of non-characteristic harmonics are less than 25 percent. Characteristic harmonics are defined as kq±1 where k is an integer and q is the pulse number.				

- F. Passive Harmonic Filter:
 - 1. Ampere rating suitable for driven equipment, de-rated for altitude as required.
 - 2. Open magnetics and capacitor assembly to achieve specified harmonic distortion requirements.
 - 3. Enclosure: NEMA 2.
 - 4. Manufacturer: MTE Matrix AP, or-equal.

2.05 APPURTENANCES

- A. Inlet Filter and Silencer:
 - 1. Each compressor shall be provided with an inlet filter and silencer.
 - 2. Provide inlet filter units that are 98 percent efficient at 10-micron.
 - 3. Inlet filter shall be installed in the plenum as shown on conceptual Process Air Facility drawings provided herein.
 - 4. Inlet silencer shall reduce sound power levels at inlet filter as indicated in Table 1, Design Criteria Summary Table.

Panel Filter Element: Each compressor shall be supplied with a 24-gauge galvanized steel frame, adhesive potted on all four sides. Upstream and downstream, 24-gauge galvanized, flattened, expanded metal screens. Pleat separating glue beads on upstream side, full-face 1/4-inch closed-cell neoprene rubber gasket on downstream side. Includes synthetic medium, 98 percent efficient at 10-micron (nom). Max (clean) initial pressure drop at rated flow 0.5 inch of water. Max (dirty) final pressure drop 6 inches of water.

C. Inlet and Discharge Expansion Joint: Provide each compressor with an inlet and discharge expansion joint capable of withstanding the vacuum, pressure,

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 26

and high discharge air temperature up to 300 degrees F under all operating conditions. The expansion joints shall include carbon steel flanges drilled for standard ANSI 150-pound pattern. The expansion joints shall be stainless steel bellows or EPDM type.

- D. Each compressor package shall include a flexible connector to be installed on the discharge aeration piping prior to the main air header. The flexible connectors shall be sized for a standard pipe diameter and shall prevent the transmission of noise and vibrations from the compressor package into the piping. The flexible connector shall be suitable for the maximum operating temperature and pressure ratings of the equipment in the air stream. Provide stainless steel restraining bolts and hardware.
- E. Each compressor shall be supplied with an electrically actuated butterfly valve for the compressor discharge, which shall be fully closed when the compressor is not in operation and opened when the compressor is called to start. Valves and electric actuators shall be Type V510 as follows:
 - 1. Type V510 Lug Style Butterfly Valve, Resilient Seated, 2 Inches to 20 Inches for Low Pressure Process Air Service:
 - Lug style cast-iron body, aluminum bronze discs, Type 316 stainless steel one-piece stem, self-lubricating sleeve type bushings, EPDM replaceable resilient seat suitable for operating temperatures up to 250 degrees F, 150 psi working pressure rating, bubble-tight at 50 psi differential pressure, valve body to fit between ASME B16.1 Class 125/150 flanges.
 - Manufacturers and Products:
 - 1) Bray Controls; Series 31.
 - 2) Tyco/Keystone; Model AR2.
 - 3) Or-equal.
 - Electric Motor Actuators, 480 Volts:
 - a. General:
 - 1) Comply with latest version of AWWA C542.
 - 2) Size to 1-1/2 times required operating torque. Motor stall torque not to exceed torque capacity of valve.
 - 3) Controls integral with actuator and fully equipped as specified in AWWA C542.
 - 4) Stem protection for rising stem valves.
 - Actuator Operation—General:
 - 1) Suitable for full 90-degree rotation of quarter-turn valves or for use on multiturn valves, as applicable.
 - 2) Manual override handwheel.
 - 3) Valve position indication.

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

b.

- 4) Operate from FULL CLOSED to FULL OPEN positions or the reverse in 60 seconds maximum.
- c. Open-Close(O/C) Service:
 - 1) Size motors for one complete OPEN-CLOSE-OPEN cycle no less than once every 10 minutes.
 - 2) LOCAL-OFF-REMOTE Selector Switch, padlockable in each position:
 - a) Integral OPEN-STOP-CLOSE momentary pushbuttons with seal-in circuits to control valve in LOCAL position.
 - b) Remote OPEN-STOP-CLOSE momentary control dry contact inputs in REMOTE position. Integral seal-in circuits for remote OPEN and CLOSE commands; valve travel stops when remote STOP contact opens.
 - c) Auxiliary contact that closes in REMOTE position.
 - 3) OPEN and CLOSED indicating lights.
 - 4) Integral reversing motor starter with built-in overload protection.
 - 5) Integral or externally mounted power disconnect switch, lockable in the off position.
- d. Limit Switch:
 - 1) Single-pole, double-throw (SPDT) type, field adjustable, with contacts rated for 5 amps at 120V ac.
 - 2) Each valve actuator to have a minimum of two auxiliary transfer contacts at end position, one for valve FULL OPEN and one for valve FULL CLOSED.
 - 3) Housed in actuator control enclosure.
 - e. Valve shall remain in last position upon loss of signal.
 - Manufacturers and Products:
 - 1) Rotork Controls; IQ/IQT Series.
 - 2) Flowserve Limitorque; MX/QX Series.
 - AUMA; SA/SQ Series.
- Blow-off Valve: Provide manufacturer's standard actuated valve. Controls for the valve shall be mounted in each LCP.
- G. Each compressor shall be supplied with one Type 316 stainless steel waferstyle, dual-disc check valve installed on the discharge line. Check valves shall be Type V612 as follows:
 - 1. Type V612 Double Disc Swing Check Valve 2 Inches to 48 Inches:
 - a. Wafer style, spring loaded, Type 316 stainless steel body and discs, EPDM resilient seats, and Type 316 stainless steel spring, hinge pin, and stop pin.

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 28

È.

- b. Valves 2 inches through 12 inches rated 200 psi nonshock working pressure and valves 14 inches through 48 inches rated 150 psi nonshock working pressure.
- c. Temperature Rating: -20 to 300 degrees F.
- d. Maximum Headloss through Valve: 0.2 psi when installed in vertical.
- H. Each compressor shall be equipped with flanged silencers sized to reduce sound power levels as specified herein for blow-off valve discharge and air cooling waste heat exhaust vent.
- I. Each compressor shall be equipped, at a minimum, with the following integrated instrumentation:
 - 1. Inlet differential pressure sensor (before and after each inlet filter).
 - 2. Compressor inlet pressure sensor.
 - 3. Compressor discharge pressure sensor.
 - 4. Compressor inlet temperature sensor.
 - 5. Compressor discharge temperature sensor.
 - 6. Air flow sensor (or method to calculate it).
 - 7. Compressor speed sensor (or method to estimate it).
 - 8. Magnetic bearing controller system.
- J. Equipment identification Plate: 16-gauge Type 304 stainless steel with 3/8 inch die-stamped equipment tag number securely mounted in a readily visible location.
- K. Anchors: Manufacturer shall size and supply anchor bolts.
- L. Provide lifting eyes on the equipment housing for lifting equipment.

2.06 INSTRUMENTATION AND CONTROLS

- A. General:
 - Each compressor shall be supplied with a Rockwell ControlLogix PLC or approved controller local control panel (LCP). LCPs shall be Manufacturer's standard controls.
 - 2. A Rockwell ControlLogix PLC-based master control panel (MCP), used to interface with LCPs and Plant SCADA over Rockwell EtherNet/IP, to sequence compressors ON and OFF, control compressor flow and pressure requirements, and control total air flow as described herein. The manufacturer shall develop and provide the hardware and programming to perform control functions. These functions are identified herein as the MCP control. Note that PLC in MCP shall not

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

be the sole controller for individual compressors. Remote I/O racks in LCP connected to PLC in MCP is not acceptable. Each LCP shall be provided with associated PLC processor.

- 3. The MCP shall be capable of receiving a Header Pressure set-point from Plant SCADA. Plant SCADA shall also be able to designate the Lead, Lag1, Lag2, Lag3, Lag 4, and standby compressor. These can also be set locally at the MCP OIT.
- 4. PLC program shall be clearly annotated defining critical functions. Program shall be ladder or function block.
- B. Local Control Panel (LCP):
 - 1. General:
 - a. The LCP shall provide for control of all components of an individual compressor. The LCP shall provide all control and monitoring functions required for the operation, monitoring, and protection of the compressor including, but not limited to, timing, interlocks, and permissive functions required for safe operation of its specific compressor.
 - b. The LCP shall be factory assembled and wired such that field wiring shall consist only of connection to panel terminals.
 - c. All controls and instruments shall fail into a safe condition. The controls shall be designed such that the compressor cannot operate unless the controls are energized, nor can they operate with any defective controls.
 - d. Communications between LCPs and MCP shall be via Rockwell EtherNet/IP. Provide unmanaged Ethernet switch if required.
 - e. LCP programming and assembly shall support local (manual) stand-alone compressor operation without interface with Main Control Panel (MCP). Interface with MCP required for remote (automatic) start-stop and set-point control and sequencing of compressors.
 - Functional Requirements:
 - The compressors shall start under an automatic sequence initiated by the local start signal at the LCP when in LOCAL control, or the remote start signal from the MCP when in REMOTE control. There shall be three means of shutting down the compressor:
 - Normal Stop: Initiated by pushing the local stop button or remote stop from the plant SCADA. Machine normally stops such that no surging occurs.
 - 2) Soft Stop Initiated by surge.

- 3) Emergency Stop Initiated by:
 - a) Pushing EMERGENCY STOP button on the local OIT screen. Restart shall require manual reset of the EMERGENCY STOP button.
 - b) MCP PLC failure.
- 4) Power Loss: Upon restoration of power, the system shall require manual restart at MCP or SCADA.
- c. The surge detection system shall bypass air through the blow-off valve or shut down the compressor.
- d. The compressor machine control and protection system shall include the following instrumentation, as a minimum:
 - 1) Compressor inlet air temperature transmitter.
 - 2) Compressor discharge air temperature transmitter.
 - 3) Compressor inlet air pressure transmitter.
 - 4) Compressor discharge air pressure transmitter.
 - 5) Inlet air filter differential pressure Transmitter.
 - 6) The temperature monitoring system shall monitor and display actual winding temperatures at the LCP. A high temperature (as determined by the compressor manufacturer) shuts down the compressor and gives an alarm. The alarm/shutdown shall be displayed until reset.
 - 7) Air flow measurement indication (calculated).
 - 8) Compressor speed and indication.
- 3. Panel Construction:

b.

d.

e.

- a. Rated to match compressor enclosure and suitable for indoor installation.
 - Heat rejected by the LCP components shall be cooled by air fans and rejected to the compressor room. Electric motor cooling exhaust shall be rejected to outside of the compressor room.
- c. Power distribution within panel. Circuit breakers only. Fuses considered under specific exceptions.
 - All conductors clearly marked with permanent labels; handwritten labels not acceptable.
 - Provide Panel Mounted Operator Interface Terminal (OIT), incorporating manufacturer's standard functions, controls, alarms, and meters in easy-to-interpret operator interface displays.
- f. An unmanaged Ethernet switch shall be provided at each compressor LCP for connecting a portable computer to access OIT, PLC, or communications to MCP.
- g. Each LCP will be supplied with an uninterruptible power supply (UPS) 120V ac control power source and suitable voltage for magnetic bearings.
 - 1) UPS shall provide power for the magnetic bearings and controlled shutdown during power failure.

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

ESWPAF PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL PROCESS AIR COMPRESSOR EQUIPMENT RFP

- h. Power supply for blowoff valve shall be from the LCP.
- 4. LCP Interfaces with MCP:
 - a. All status, alarms, and compressor process variables monitored at the LCP shall be communicated to the MCP, including but not limited to the following items:
 - 1) Compressor ON.
 - 2) Compressor FAULT.
 - 3) Motor Speed.
 - 4) Inlet Air Temperature.
 - 5) Inlet Air Filter Differential Pressure.
 - 6) Surge Parameters and alarms.
 - 7) Differential Pressure (Inlet/Discharge).
 - 8) Discharge pressure.
 - 9) Discharge Isolation Valve OPEN/CLOSE status. Wired directly to the MCP.
- C. Master Control Panel (MCP):
 - 1. General:
 - a. Provide one MCP capable of controlling all compressors.
 - b. MCP shall incorporate non-redundant PLC arrangement.
 - c. Rockwell PanelView Plus 6 1500 (15-inch display) Operator
 - Interface Terminal (OIT) to control each compressor unit.
 - 2. Functional Requirements:
 - a. The MCP shall bring compressors online and offline, increase/decrease online compressor capacity resulting in a gradual increase/decrease of air throughout the entire range of one to multiple compressors online. In the event of a compressor failure, the next compressor in the preselected start sequence shall come online. Provide control scheme to operate with a minimum number of compressors online while maintaining maximum system efficiency.
 - On return of power, following a loss of plant power, the compressors shall not restart until the SYSTEM START is initiated by the operator from the MCP or from SCADA. On receiving the RUN command, the MCP shall initiate a sequenced re-start of the compressors. During power outage and return of power, the magnetic bearing shall be powered down through the UPS.

c. The MCP shall control compressor operation to ensure one available to run compressor remains in standby.

d. Compressor Control: In Auto Mode, the MCP shall generate commands to the LCPs to start/stop compressors and adjust compressor capacity to maintain the process air flow based on

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 32
either a flow, pressure or DO setpoint (control mode to be operator selectable). Pressure control shall be the primary control mode. The MCP shall provide air header flow control over a range of 5,000 to 50,000 scfm with any of the compressors in service. When the MCP is in LOCAL mode, the sequence selection, discharge mode and setpoint will be manually entered by the operator at the MCP. When the MCP is in REMOTE mode, the sequence selection, discharge mode and setpoint will be received from plant SCADA HMI.

e. The OIT for the MCP shall be configured to display multiple graphic screens for displaying operating variables, valve positions, and other relevant data. Operating screens shall include as a minimum:

- 1) Screen for start sequence selection of compressors, and compressor SYSTEM START initiation. The compressors shall start in the selected sequence when SYSTEM START is initiated from the MCP or from SCADA.
- 2) Discharge pressure setpoint adjustment.
- 3) Displays and controls shall be provided to monitor all process variables related to each compressor including signals from two air header pressure transmitters used for control of the compressors when in pressure control mode.
- 4) Monitor and modify all process related setpoints, as required.
 -) Display all alarm conditions within entire compressor system.
- 5) Control of the compressors and air flow as a manual function.
-) As a minimum, the MCP shall have status indicators for each compressor as follows:
 - a) Compressor in remote.
 - b) Compressor ready for start.
 - c) Compressor on.
 - d) Common alarm.
 - e) Compressor START/STOP signal.
 - f) Calculated air flow.
 - g) AFD speed.
- 3. Panel Construction:
 - a. Enclosure shall be a freestanding NEMA 12 . Enclosure shall be constructed of painted steel or unpainted aluminum, 14 gauge minimum.
 - b. The dimensions of the panel shall be freestanding approximately 24 inches wide, 72 inches tall, and 24 inches deep.
 - c. Full height, fully gasketed access doors.

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

ESWPAF PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL PROCESS AIR COMPRESSOR EQUIPMENT RFP

- d. Latches: Three-point, Southco Type 44.
- e. Handles: Keylock handle.
- f. Hinges: Full length, continuous, piano type, steel hinges with stainless steel pins.
- g. Power distribution within panel. Circuit breakers only. Fuses considered under specific exceptions.
- h. All conductors clearly marked with permanent labels, handwritten labels not acceptable.
- i. The MCP will be supplied with an integral uninterruptible power supply (UPS) 120V ac control power source.
- j. An unmanaged Ethernet switch shall be provided at the MCP for connection to the individual LCPs, the Plant SCADA, and to laptop.
- k. Provide dc power supplies as required for lower voltage device and control requirements.
- 1. Provide the following <u>fully prewired</u> inputs/outputs:
 - 1) 16 digital inputs.
 - 16 digital outputs. Provide interposing relays. Relay shall be provided with mechanical or electrical indication that relay is On. Provide pushbutton or lever on relay to manually test output.
 - 3) 4 analog inputs. Special note: Provide two fused 24V dc circuit to power the two 2-wire discharge pressure transmitters, provided by Contractor under construction contract, to be connected to one of the analog inputs. The pressure transmitters are redundant.
 - 4) 4 analog outputs.
- 4. MCP Interfaces with plant SCADA:
 - All control, monitoring, and alarm signals available to the MCP shall be made available to the plant SCADA via the data Communication system. Data shall be organized within contiguous memory blocks in the MCP PLC to simplify coordination and interface with the plant SCADA.
 - MCP Control Interfaces with the plant SCADA shall include but not be limited to the following:
 - 1) Discharge isolation valve positions.
 - 2) Discharge header pressure.
 - 3) Discharge air flow (Calculated).
 - 4) Air flow setpoint.
 - 5) Compressor status, conditions, and alarms.
 - 6) Sequence selections.
 - 7) MCP ON status.
 - 8) MCP FAIL status.
 - 9) MCP IN REMOTE.

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 34 PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

- 10) MCP READY.
- 11) Header pressure HIGH alarm.
- 12) Header pressure LOW alarm.
- 13) MCP SHUTDOWN command.

2.07 SOURCE QUALITY CONTROL

- A. Factory Testing:
 - 1. All furnished compressors and components supplied within this specification shall be tested. Testing of similar size units and components not actually furnished will not be allowed.
 - 2. The compressor package manufacturer must submit a factory test procedure for approval. Pre-requisite for scheduling the factory test is an approved test procedure at least 2 weeks prior to scheduling the factory test.
 - 3. The test procedure shall include the completed attached supplement, Process and Fluid Components and Electrical Power Related Components – Factory Testing Summary Checklists.
 - 4. The test procedure shall include a sketch of the test setup showing the piping and instrumentation.
 - 5. Upon completion of assembly, the compressor system shall be tested at the place of assembly. Provide 4 weeks' notice, in writing, for the witnessing of the testing.
 - Owner and/or Engineer may witness shop tests, inspect and check testing equipment used, and observe the calibration of pressure gauges and transducers. Pressure measurement devices calibrated at a location remote from the factory will not be acceptable. The use of computer data acquisition systems shall be acceptable. However, all readings must be independently verifiable from certified and/or calibrated instruments.
 Allow proper time for inspection and witnessing of shop testing of material and equipment. Proper time shall be defined as the time required to successfully complete the specified factory test. Each compressor package shall be factory tested for a duration not less than 4 hours under varying operating conditions.
 - Each individual compressor package including blowoff valve and LCP shall be tested before shipment. The LCP shall be connected to all enclosure instruments, and appurtenances. All start/stop and running sequences and all safety alarm systems shall be tested. The witnessing engineer shall sign the test procedures and results, certifying that the assembled compressors, auxiliaries, blowoff valves, and control panel were tested together, as a system, in the compressor manufacturer's shop.
 - Each compressor package shall be tested in accordance with the ASME Wire-to-Air Performance Test Code for Compressor Systems, PTC-13-2018. Tests shall be conducted using the job motor at actual voltage and

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

frequency. Calibrated high-accuracy power analyzers shall measure the package wire power at the package power input terminals and include all auxiliary system electric loads as per Section 4-1 of the ASME PTC-13. The test shall include determination of the surge point and verification of the guarantee points. Power factor for each compressor shall be tested. The manufacturer shall verify the compressor motors operate at a power factor equal to or higher than that specified.

- 10. The compressor delivered flow rate (scfm) and discharge pressure (psi) shall be guaranteed with no negative tolerance. There shall be no other tolerances or measuring uncertainties used in reporting test results. The witnessing Engineer shall sign each copy of the test data log sheet certifying that the required tests were performed in strict accordance with these Specifications and the ASME PTC-13.
 - a. The capacity of the compressor shall be defined as described in the ASME PTC-13.
 - b. The test shall construct operating curves of inlet to discharge pressure plotted against delivered flow rate (SCFM).
 - c. All test equipment shall be calibrated and certified by an independent test agency no more than 12 months prior to the test date. Certificates shall show the stability of calibration over a period of at least 1 year per ISO 9001. All test equipment shall be per Section 4 of ASME PTC-13.
 - d. Velocity vibration versus frequency levels shall be recorded within 10-1,000 and 10-10,000 Hz frequency range.
 - e. Appurtenances, fittings or specially configured piping on the inlet or the outlet of the machine will ONLY be permitted if they were submitted as part of the Shop Drawing review AND that they can be installed with the equipment and preserve the existing building design. Distance that the machine extends into the room and the centerline elevation of the common discharge header shall be maintained.
- 11. The compressor test report shall present computations in exact accordance with Section 5 and 6 of ASME PTC-13 with performance curves showing capacity, pressure, and wire power.
- 2. Provide total power consumption calculations for each compressor for each specified operating conditions.
- 13. Test results of the motors and compressors shall be included in the Operation and Maintenance Manual.
- 14. The manufacturer shall provide copies of the test data and all certifications of Factory Testing for approval by the Engineer prior to shipping equipment.
- 15. The equipment manufacturer shall furnish all air and ground transportation, lodging, miscellaneous travel expenses, and meals for two representatives of Owner and the Engineer for a total of 3 people.

All Factory Tests to be available for the owner and engineer to witness via remote means such as Microsoft Teams or Zoom. The equipment manufacturer shall furnish all air and ground transportation, lodging, miscellaneous travel expenses, and meals for the initial witness testing and any subsequent testing necessitated by failed tests.

- B. Master Control Panel Factory Tests:
 - 1. The Owner and Engineer reserves the right to witness the tests specified herein and to inspect the fabrication procedures at any time during the fabrication of the panel.
 - 2. Witnessed panel factory tests shall be conducted per pre-approved factory test plan procedures.
 - 3. Provide 4 weeks' notice, in writing, for the witnessing of the testing.
 - 4. Perform functional tests as follows:
 - a. Gather and furnish test information necessary to show conformance to specified requirements.
 - b. Manufacturer's Test Representative shall certify test results.
 - c. Perform tests on panel(s) actually furnished after construction is complete and final application software is loaded onto all PLCs and OITs.
 - d. Simulate interlocks and signals from other connected equipment in order to demonstrate specified operator interface functions and controls.
 - e. Provide temporary test software to simulate properly operating motors and valves when actual motors or valves are not connected.
 - 5. Testing shall include, as a minimum:
 - a. Inspection for proper construction.
 - b. Verification of conformance with OIT standards.
 - c. Verification of SCADA remote monitoring and control functions:
 - 1) Provide test screen for simulating outputs from SCADA and display SCADA monitored points.
 - Monitoring and control of all connected devices, included those provided by others including two air discharge header pressure transmitters.
 - e. Compressors Lead and Lag selections.
 - f. Alarm functions.
 - g. Switching logic between available and not available compressors.
 - h. Power recovery.
 - i. All automatic sequences including:
 - 1) Normal start.
 - 2) Normal stop.
 - 3) Controlled shutdown.

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

- 4) Local E-stop.
- 5) Remote E-stop.
- 6) Power recovery.
- j. Obtain acceptance of test reports from Engineer prior to shipment of equipment.

2.08 SHOP PAINTING

- A. The compressor enclosure shall be factory painted per manufacturer's standard system and color for interior installation for all cast iron and carbon steel. Aluminum, stainless steel, and brass shall not be painted.
- B. Manufacturer shall furnish small quantity kits for touchup painting and for painting other small areas identical to factory paint system and color.

2.09 ACCESSORIES

- A. Provide four lifting eyes on the equipment housing and lifting beam as required.
- B. Provide touchup paint for field painting. Coating type and color shall match shop paint coating.
- C. Tools: Manufacturer shall furnish two sets of special tools required for complete assembly or disassembly of compressor system components for each type or size of compressor specified, together with a neat metal box (or boxes) for the same. The tool kit(s) shall be sufficiently complete to permit normal repair and maintenance of all equipment furnished.

PART 3 EXECUTION

3.01 INSTALLATION

Manufacturer shall coordinate the installation, finishing, and the commissioning of the compressors and all appurtenances in accordance with the manufacturer's recommendations and shall furnish written instructions to Engineer. Manufacturer shall inspect installation and provide a certificate of proper installation prior to startup and testing.

The compressor supplier shall supply compressor packages shipped completely pre-assembled. Only accessories, silencers, electrical/control connections, discharge air pipe connections, inlet air connections, etc. shall be installed onsite under separate contract. C. All compressor package deficiencies must be corrected prior to startup or testing.

3.02 STARTUP ASSISTANCE AND TESTING

- A. Functional Testing:
 - 1. After the installation of the units and all appurtenances, each unit shall be subjected to functional testing as defined herein. The functional tests shall be conducted under the installation contract by the Manufacturer's Representative. The functional tests shall demonstrate that under all conditions of operation each unit:
 - a. Has not been damaged by transportation or installation.
 - b. Has been properly installed.
 - c. Has no mechanical defect.
 - d. Is in proper alignment.
 - e. Has been properly connected.
 - f. Has current to all motor electrical leads balanced.
 - g. Has been properly connected.
 - h. Has fully functional instruments that are properly calibrated and set.
 - i. Will start, run, and stop in the prescribed manner.
 - j. Will run through entire range of specified pressure and flow.
 - k. Is free of overheating of any parts.
 - 1. Is free of all objectionable vibration.
 - m. Is free of excessive noise.
 - n. Is free of overloading of any parts.
 - . Shall operate as specified with the control system.

After each blower has passed functional testing outlined above, the blower system shall pass a functional test to prove the blowers and controls will operate as specified herein. The blower system must pass this functional test before proceeding with demonstration testing. Details of the system functional test requirements will be developed during the construction contract.

All labor, and incidentals required to complete the functional tests will be provided by the Contractor under the installation contract. The compressor Manufacturer shall prepare functional testing procedures, assist during functional testing and approve functional testing results. The Contractor shall provide testing equipment including, but not limit to portable power monitoring equipment, recording devices, and pressure sensors to verify field testing results. The compressor Manufacturer shall coordinate all testing requirements with the Engineer prior to commencing functional testing.

- B. Demonstration Testing:
 - 1. Once the Manufacturer confirms compressors are correctly installed and properly functioning, the compressors can be connected to diffuser piping to conduct demonstration testing prior to placing compressors in service,
 - 2. Conduct a demonstration test on each set of compressors including instrumentation, controls, and valves. The test shall demonstrate that the compressors will be operated in the entire range of specified pressure and flow while in remote with control from SCADA. The test shall be conducted with the aeration basins full of plant effluent or mixed liquor at normal operating levels.
 - 3. Conduct demonstration of each compressor's ability to be manually restarted through LCP, MCP and SCADA following a plant wide power failure.
 - 4. A Demonstration Test Log shall be submitted to Engineer on completion of each test which records the compressor model number, compressor serial number, test date, beginning test time, ending test time, motor horsepower, motor speed, amperage draw, and all of the key operating parameters specified in the Design Criteria. In addition to this information, Table 5 must be completed during field startup and testing to demonstrate proper operation. Functional test results shall be certified by the manufacturer/manufacturer's representative and witnessed by Engineer.

	Table 5 Compressor Demonstration Test Results						
	Design Point	Input kW Reading	Discharge Mass Flow (scfm)	Discharge Pressure (psig)	Ambient Temp. (degrees F)	Discharge Temp. (degrees F)	Relative Humidity (%)
2	1 2	8					
\mathcal{O}	3						
	5 6						
	~ 7 8						

5. The Contractor will provide, calibrate, and install all temporary gauges and meters, shall make necessary tapped holes in the pipes and install all

temporary piping and wiring required for the demonstration tests. Written test procedures will be submitted to the Engineer for approval a minimum of 60 days prior to testing.

- 6. For any packages that do not operate properly, corrective measures shall be taken by the Manufacturer at no additional expense to the Owner.
- 7. Demonstration Testing shall verify that the compressors will operate across the entire range of specified pressures and flows while in remote with control from SCADA.
- 8. Conduct a minimum of 8-hour demonstration test on multiple scenarios where various numbers of compressors are operating. The test shall demonstrate that the compressors are able to sequence on and off as lead and lag systems as required to maintain the pressure set point received from SCADA. Demonstration testing shall verify the compressors properly operate across the entire range of specified operating flows.
- C. Harmonic Distortion Tests: The manufacturer shall retain an independent harmonic testing company to conduct a harmonic distortion tests on the new operational compressor system under the installation contract as outlined below:
 - 1. With each new compressor, as well as combinations of each compressor up to the full operating load, measure current harmonic distortion at the PCC for all harmonics up to 35th harmonic.
 - 2. Show that the percent current harmonic distortion is below specified limits.
 - 3. Measure total voltage distortion at the MCC with two new compressors operating at full load.
 - 4. Measured results should approximate Engineer-approved calculations submitted by the compressor manufacturer.
 - 5. Provide distortion analyser, current, and potential transformers required for the test set up.
 - 6. Submit a test plan for Engineer's review and approval prior to implementing the actual test. An approved test plan is mandatory before conducting a test.
 - 7. Provide at least 2 weeks' notice before conducting test.
 - . Submit all test documentation for approval.

 Compressors failing to meet the specifications to the satisfaction of Engineer shall be corrected and re-tested by the Equipment Manufacturer. If a packaged compressor fails the second test, the unit will be rejected and the Equipment Manufacturer shall furnish a unit which shall perform as specified.

3.03 MANUFACTURER'S SERVICES

- A. Contractor will coordinate the work schedule of the manufacturer's service personnel during construction, testing, startup, and acceptance.
- B. Provide services of a factory trained service engineer, specifically trained on the type of equipment specified. Submit qualifications of service engineer for approval.
- C. Manufacturer's field services provided under the installation contract include followings:
 - 1. 1 site visit of 5 person-days for installation assistance.
 - 2. 1 site visit of 5 person-days for functional testing.
 - 3. 1 site visit of 5 person-days for demonstration testing.
 - 4. 1 site visit of 2 person-days for PAC Local Control Panel and instrumentation communicate with MCP prior to startup.
 - 5. 1 site visit of 5 person-days for coordination with SCADA.
 - 6. 1 site visit of 4 person-days for pre-training prior to startup. Training shall not commence until a detailed lesson plan for each training activity has been reviewed and accepted by Engineer.
 - 7. 1 site visit of 8 person-days for Operation and Maintenance Training. Training shall consist of 2 shifts for Operators and 2 shifts for maintenance staff at a minimum. Training shall not commence until a detailed lesson plan for each training activity has been reviewed and accepted by Engineer.
- D. See Section 01 43 34, Special Services.

3.04 SUPPLEMENTS

The supplements listed below, following "End of Section," are a part of this Specification:

- 1. Process and Fluid Components and Electrical Power Related Component – Factory Testing Summary Checklists.
 - Process Air Compressor Facility Preliminary Drawings.

END OF SECTION

ESWPAF PROCESS AIR COMPRESSOR SYSTEM FOR LOW LEVEL NITROGEN REMOVAL PROCESS AIR COMPRESSOR EQUIPMENT RFP

PROCESS AND FLUID COMPONENTS AND ELECTRICAL POWER RELATED COMPONENTS -- FACTORY TESTING CHECKLISTS

		Included in Performance Boundary		
No.	Component	Included in Test	Determine by Calculation	Not Applicable
1	Inlet filter			
2	Inlet silencer			
3	Discharge silencer			
4	Inlet isolation valve			2
5	Throttling valve		\bigcup	
6	After cooler			
7	Misc. pipe and fittings	2		
8	Inlet air cooler		(\land)	
9	Discharge check valve			
10	Discharge isolation valve			
11	Enclosure doors or panel openings	N.		
12	Estimated system inlet press. drop			
13	Blow-off valve			
14	Blow-off silencer			
15	Additional components not listed shall be included as forming the compressor package.			

1. Process and Fluid Components:

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

2. Electric Power Related Components:

		Included in Performance Boundary		
No.	Component	Included in Test	Determine by Calculation	Not Applicable
1	Drive Motor			T
2	Motor Cooling Fan(s)			
3	Magnetic Bearing and Controller			
4	Bearing cooling fan(s)			
5	Coolant Pumps			
6	Lubrication Pumps and Accessories	. (8
7	Heat Exchanger Fans			
8	Package Cooling Fan	~		
9	VFD		(\land)	
10	VFD Line Side Power Conditioning Equipment	1. 4		
11	VFD Load Side Power Conditioning Equipment			
12	Eddy Current or Variable Speed Clutch	\bigcirc		
13	Operation Control Panel(s)			
14	Power/Isolation Transformers and Power Supplies			
15	Power Conditioner			
16	Compressor and Motor Cooling			
17	VFD Cooling			
18	Electronics compartment A/C			
19	Additional components not listed shall be included as forming the compressor package.			

PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

					REVISION BY APVD	DR CHK APVD	KBAIRD SA KORCSMAROS DI LYNCH	CEN, AS AN INSTRUMENT OF PROFESSIONAL SERVICE, IS THE PROPERTY OF
		· · ·	FOR LOW LEVEL NITROGEN REMOVAL	at the FAST SHORE WATER POLITITION	ABATEMENT FACILITY NO. DATE	Greater New Haven Water Pollution Control Authority DSGN	New Haven, CT K	REUSE OF DOCUMENTS: THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEF
			PROCESS AIR FACILITY	PROCESS MECHANICAL	ECTION			
DA PR DV	TE OJ /G EET				.⊢ ON VG. 1" UL1 2X! 55- of 2	/ 20 900 D-3 X	021	DREI IMINAR

6

High Efficiency Air Bearing Turbo Blower

APGN Inc. 1270 Michele Bohec Blainville, Quebec Canada J7C 5S4

Clean Compact Affordable Energy Efficient

Project CWF 2019-04 Process Air Compressor PROPOSAL DOCUMENTS ENCLOSED

Office of Director of Finance and Administration of the Greater New Haven Water Pollution Control Authority located at 260 East Street, New Haven, Connecticut 06511

Proposal Package

Issued: February 2, 2022

Production & Test Facility 160 Banker Road Plattsburgh, NY 12901, USA

Proudly made in the USA

Toll Free: 866 592-9482 Fax: 450 939-2115

Table of Contents

Turbo Blower System Evaluation Summary	. 5
APG-Neuros Confirmation Statements	. 6
Equipment Manufacturer Agreement	. 7
Terms Acceptance	10
Performance Guarantee	12
Shop Drawings	14
Notice of Conflicts	16
Other Conditions	18
Technical Specification	20
Number of Blowers Rerquired	22
Proposal Form: Section 00 41 65-01	24
Proposal Security	25
a. Proposal Security – Bid Bond	26
b. Confirmation Letter for Security retainage	27
Connecticut State Sales and Use Taxes Exemption	29
Proposal Free on Board Confirmation	30
Proposal Submittal Information: Section 44 42 19.05 Article 1.05.B	32
1. Proposal Submittal	33
a. Scope	34
1. Equipment Proposal	35
2. Delivery Schedule	36
b. Exceptions	37
1. No Exceptions Statement	38
2. Recommendations	40
Confidential Information Page	e 1

3. Necessary Components not specified	43
c. Installation List	44
d. Service Network	45
1. Active Service Organizations in the vicinity of the Owner	46
2. Resumes	48
3. Active Parts Stocking Warehouse and Service Facility	49
4. APG-Neuros Stocking Distributors in North America	52
5. APG-Neuros Customer Service and Aftermarket Team Organization	53
e. Technical	54
1) Mechanical	55
a. Performance Data	56
b. Performance Curves	57
1. Wire to Air Efficiency Curves	58
2. Wire Power Curves	59
3. Performance Curves	60
c. Catalog Information	61
d. General Arrangement Drawings	62
e. Dimensional Drawing with Clearances and Materials of Construction	63
1. Preliminary Equipment List	64
2. Recommended Lifting height and Horizontal Clearances	65
f. Compressor Sound Level Data	67
g. Heat Dissipation	68
h. Internal and External Heat Exchangers	69
2) Instrumentation and Control	70
a. Process and Instrumentation Diagrams	71

Confidential Information

	b.	Instrumentation	72
	c.	Instrument List	73
	3) El	ectrical	74
	a.	Expected Electrical demand at 100% load	75
	b.	Components with a separate power supply (Other than 480V)	76
	c.	Electrical Equipment Details	71
	1.	Electrical Cut Sheets	78
		AFD	79
		Harmonic Filter	80
		Compressor Motor	81
		Enclosure Disconnecting means	82
		Electrical Equipment	83
	2.	Voltage and Amperage Ratings	84
	3.	One Line Diagram	85
	4.	Minimum Short Circuit Ratings	86
	5.	Calculations for the proposed Harmonic	87
	6	Enclosure Proposed	88
	7.	Documentation for UL Certification	89
	8	MCP Detailed Drawing	90
	9.	Motor Detailed Data	91
	1	D. AFD Detailed Catalog Cut Sheets	92
	1	1. Special Requirements	93
f.	Ene	gy Requirements	94
	1	Estimated Annual Energy Requirement	95
_	2	Guaranteed wire power: Table 3 Under Article 1.10	96
10			

Confidential Information

g.	Warrar	nties				
h.	Warranty and Service Agreement					
	2.	Extended Warranty				
	3.	Service Agreements				
3.	Quality	of Construction and Qualification				

4.	Americon Iron and Steel Bidders Certification		. 107
5.	Authorization to Bid		. 108
6.	Proof of financial strength		. 109

Confidential Information

Turbo Blower System Evaluation Summary

Confidential Information

February 2, 2022

Greater New Haven Water Pollution Control Authority Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

<u>Reference:</u> Notice of Request for Proposal (RFP) Process Air Compressor Equipment

Subject: Turbo Blower System Evaluation Summary

Dear Gabriel,

We are pleased to submit our Turbo Blower System Evaluation Summary herein for Greater New Haven Water Pollution Control Authority Project in reply to the referenced RFP.

Turbo Blower System Evaluation Summary:

APGN Inc, dba APG-Neuros confirms that our proposal package, for providing six (6) factory assembled APGN500 Magnetic Bearing Single Core High Speed Turbo Blowers (5 Duty + 1 Standby) and Master Control Panel MCP, is in full compliance with the RFP, Addendum 1 and 2 and the Technical Requirements in Section 44 42 19.05, High Speed Turbo Air Compressors, Part 1, Article 1.05 Submittals, paragraph B Action Submittals. "with no exceptions" and exceeds the RFP requirements.

APG-Neuros is offering the following benefits in the proposal package at No Additional Cost to the Greater New Haven Water Pollution Control Authority:

- Extended warranty for an additional nine (9) year warranty for a total of ten (10) years (Comprehensive Warranty).
- Annual Service Contract extended for three (3) years from year 2 through 5.
- Integrated Harmonic Filter inside the blower enclosure to reduce footprint required in the blower room and this will eliminate external electrical cabling requirements and reduce installation complexity.
- Vibration Sensor and Bearing Temperature Sensor to protect the blower, prevent any possible major component damage and to measure and trend blower components health.
- Integrated Inlet Silencer inside the blower enclosure. This will eliminate inlet losses, reduce power consumption, eliminate outside silencer installation. Also, this innovative design will reduce the footprint.

Item 1- Equipment Cost

We are confident that our proposal presents competitive total installed capital costs when taking into consideration the cost of high-quality components, cost of installing the new APGN500 Magnetic Bearing Single Core High Speed Turbo Blowers, necessary to meet the total required system air flow for current and future loading scenarios.

Please refer to Proposal Form: Section 00 41 65-01

Item 2 - Life Cycle Cost

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – f Energy Requirements

Construction

APG-Neuros blowers' configuration of six (6) factory assembled APGN500 Magnetic Bearing Single Core High Speed Turbo Blowers (5 Duty + 1 Standby) and Master Control Panel MCP are easily fitting in the existing blower room as shown on the record drawings without the need of any modifications to accommodate the new blowers.

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – e. Technical – 1) Mechanical – d. General Arrangement Drawings

• Durability

Our High-Speed Turbo Blowers currently achieve the highest installed base of any HSTB manufacture, with over 1500 units installed and over 600 WWTP in North America.

Product availability level is over 99.5% with our installed fleet operating hours exceeding 93 million hours by end of 2021 (Reliability curve is included).

Please refer to **Proposal Submittal Information:** Section 44 42 19.05 Article 1.05B – c. Installation List

Efficiency

APG-Neuros is recognized for its high-efficiency Turbo Blower technology that modernized the water and wastewater treatment market. APG-Neuros introduced highly innovative aeration solutions built around affordable high efficiency Turbo Blowers.

APG-Neuros produced Turbo Blowers are supported with our smart controls and our knowledge of smart aeration systems built with artificial intelligence, controls efficiently with each customer's operating platform, with virtually no scheduled maintenance requirements.

Through application of lessons learned for the past 15 years, several product improvements have been applied since 2006 to extend product reliability, increase availability, increase flow turndown, and improve efficiency. A full technical paper about our product improvements and timeline is attached as part of this proposal.

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – e. Technical – 1) Mechanical – a. Performance Data

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – f. Energy Requirements

Item 3 - Equipment Features and Performance

Our proposal includes a complete Turbo Blower "Plug and Play" package with integrated built-in PLC based Local Control Panel (LCP), and an internal inlet Filter/Silencer eliminating the need of external components, panels, silencers or filtration. Our blower includes all required electrical and mechanical components installed internally in the blower enclosure

We feel confident that our product will operate adequately in the blower room ambient conditions.

Our blower integrated inlet filtration system is designed to maintain an improved inlet pressure loss across the filter.

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B –b. Exceptions – 1. No Exception Statement

Please refer to APG Neuros Confirmation Statements – Technical Specification

Item 4 - Current Equipment Installations / Experience

Fox Metro, IL Testimonial

"The Fox Metro Water Reclamation District has four dual core 700 HP blowers and 3 250 HP blowers. Wondering if this plant and our firm can be highlighted in any publications or marketing materials. I know the client is very happy with APG Neuros." Mark Halm, Project Manager, Deuchler.

Monroe County Water Resource Recovery, NY Testimonial

"With great customer service and 24/7, tailored yearly PM program with your staff working onsite that truly cares, detailed and specific department training program you provide giving us long reliable lasting equipment, every business should consider your company for their next equipment selection."

David Sam Tuccio

Monroe County Water Resource Recovery Rochester, NY

Our APGN500 Magnetic Bearing Blower comes with SKF magnetic bearings and high-speed electric motors which are ideal for applications demanding high speeds and low vibration and offers 130,000 magnetic bearings and high-speed electric motor references in operation across many industries.

We offer a most proven product with more than 1500 blowers installed in the United States and Canada with over 15 years in operation at more than 600 WWTPs. Over 30% of our customers

are repeat customers in the United States and Canada, including 20 installations in 9 WWTPs with Jacob's leadership. Our continuous technological improvements applied successfully lead to our very reliable operation, with measured availability level over 99.7%.

We pride ourselves with our culture of innovation and high customer responsiveness. We innovate and adapt our product to help our customers to solve their challenges and meet their objectives. We do not sell a standard product. We customize our product and aeration systems to meet the need of every customer. To do this successfully, we employ over 50 engineers, including many with wastewater treatment design experience, in designing Turbo Blowers combined with knowledge of wastewater treatment plants, aeration system automation, processes, electrical, mechanical and instrumentation engineering.

We have one unit installation at Metro Denver since December 2019. The product is doing great, and Metro Denver is considering adding more units in the future.

We have a contract with Central Contra Costa SD in California to deliver 3 x 1.1 MW Magnetic Bearing blowers in Q2 2022.

We have a contract with City of Las Vegas with Jacob's leadership to deliver 4 x 1.1 MW Magnetic Bearing blowers, one unit during Q2 2022 and three during Q3 2022.

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – c. Installation List.

Item 5 - Service Location and Parts Availability

We offer Greater New Haven Water Pollution Control Authority a highly responsive product support system including services of our Regional Field Service Managers dedicated to your support, with visits to your facility periodically to monitor the operation, provide educational and refresher training and help resolve any technical or commercial issues.

APG-Neuros has 13 Startup & Field Service Engineers located at the Plattsburgh, NY facility and more than 25 factory certified field service technicians located across the United States that can commission or troubleshoot our Turbo Blowers.

We will provide strong proximity support with our employees located within driving distance from Greater New Haven Water Pollution Control Authority:

- APG-Neuros Aeration Control Manager and I&C, Steven Kestel, who is located in Pennsylvania 4 hours driving time from New Haven, CT
- APG-Neuros Technical Services Manager, Adam Norcross, who is located in Plattsburgh, NY 5 hours driving time from New Haven, CT.
- APG-Neuros Production Manager and Start-up Manager, Brandon Chamberlain, who is located in Plattsburgh, NY 5 hours driving time from New Haven, CT
- APG-Neuros Senior Regional Manager, Chris James, who is located in Plattsburgh, NY 5 hours driving time from New Haven, CT
- APG-Neuros Field Technician, Chris Violette, who is located in Plattsburgh, NY 5 hours driving time from New Haven, CT

- APG-Neuros Field Technician, Brett Carnright, who is located in Plattsburgh, NY
 5 hours driving time from New Haven, CT
- APG-Neuros Field Technician, Jim Green, who is located in Berryville, VA 6 hours driving time from New Haven, CT
- APG-Neuros Field Technician, Scott Dublanyk, who is located in Plattsburgh, NY 5 hours driving time from New Haven, CT
- APG-Neuros Director of Sales and Qualified Service Engineer, Craig Phelps, who is located in Blainville, QC – 7 hours driving time from New Haven, CT

APG-Neuros maintains more than \$12 million worth of components in our Plattsburgh, NY facility supplying new parts within 24 hours with 24/7 customer service. All repairs, parts and technical services will be in the US and provided to Greater New Haven Water Pollution Control Authority from our support facilities in the US.

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – d. Service Network

Item 6 - Warranty and Performance Guarantee

• Warranty

APG-Neuros exceeds the RFP warranty requirement for one (1) year.

Products and parts, when shipped, are free from defects in materials and workmanship and its start-up and maintenance services will be performed in a professional manner, and

APG-Neuros included, <u>at no additional cost</u>, an extended warranty for an additional (Nine) 9-years warranty for a total of ten (10) years.

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – h. Warranty and Service Agreement

Performance Guarantee

APG-Neuros confirms that the proposed blowers' configuration and the equipment provided meets the performance requirements as defined in this Request for Proposal (RFP) and the Manufacturer's completed Guaranteed Wire Power Table.

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – f. Energy Requirements -2. Guaranteed wire power: Table 3 Under Article 1.10

Item 7 - Operational Ease

APG-Neuros High Speed Turbo Blower is an award winning smart connected product package that includes within the enclosure all required Electrical, Mechanical, PLC and Harmonic Filter. There is no requirement for external installation or connections of stand-alone harmonic filters, air filters and silencers.

APG-Neuros provides high-quality electrical and mechanical components that are UL listed. We include Allen Bradley PLC in each blower package and the Master Control Panel MCP; considered essential for seamless integration with the plant SCADA and offers protection, control, and monitoring.

APG-Neuros turbo blowers provides a possibility for blower heat exhaust system which is completely integral to the blower enclosure. This facilitates the discharge of discharge heat to outside blower room

- APG-Neuros turbo blower can run in local or remote mode. Blower parameters and control can be sent to SCADA/MCP via Ethernet
- No electric starters required
- Low Noise no hearing protection required. Blowers operate at 80 dBa +/- 2dBa
- No inlet flume required. APG-Neuros filters are integral to turbo blower housing. No external mounting of filters or silencers required
- No vibration transmitted to floor or room. APG-Neuros has internal vibration isolation mounts on the blower core frame
- Zero heat gain to blower room (upon the client's request).

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – 3. Electrical

Item 8 - Maintenance Ease

Our blower is designed for "condition-based maintenance (CBM)" and does not require periodic scheduled maintenance/repair/overhauling. Our blower includes remote monitoring and diagnostics and has all the sensors required for continuous monitoring and diagnostics. Cleaning / changing air filters is the only required maintenance of APG-Neuros High Speed Turbo Blowers to ensure continuous operation and optimum performance for its life span. Depending on the cleanliness of the blower room and influent air, filter cleanings/replacement may be required only once a year.

Item 9 – Constructability (General Blower Room Layout is included).

APG-Neuros provides high-quality electrical and mechanical components that are UL listed. We include a PLC in each blower package with no limitation on number of analog and digital Inputs and Outputs; considered essential for seamless integration with the plant SCADA and offers protection, control, and monitoring.

APG-Neuros Blowers do not require any specific foundation. Thanks to the blower's compact size and limited vibration, the turbo blower requires no special foundation work.

- Low Installation Cost

- No external control panel required. All panels, VFD, harmonics filters, sinus filter, and cooling system are integral to the blower
- Easy electrical wiring only incoming power and ethernet communication cable required
- Smaller discharge pipe and fittings
- No concrete pads required. APG-Neuros blowers have leveling or anchoring feet

- Easy blower installation time. Estimated at two-four hours per blower, if piping and electrical are stubbed up and ready
- Allen Bradley PLC based with PanelView Plus 7 HMI.
- APG-Neuros turbo blowers provides a possibility for blower heat exhaust system which is completely integral to the blower enclosure. This facilitates the discharge of discharge heat to outside blower room.
- Harmonic Filter is included in our scope and can be integrally installed inside the blower enclosure, which will reduce footprint required in the blower room and will eliminate the external electrical cabling requirements and reduce installation costs.

Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – e. Technical – 1) Mechanical – d. General Arrangement Drawing

Please refer to Proposal Submittal Information: Section 44 42 19.05 Article 1.05B – e. Technical – 1) Mechanical - c. Catalog Information.

We trust that you will find our proposal complete and product offering to be innovative, high quality and competitive. APG-Neuros is committed to supplying and supporting the Turbo Blowers for Greater New Haven Water Pollution Control Authority.

Project and look forward to your favorable review of our offer, and a successful conclusion of our proposal efforts.

Yours truly,

APG-Neuros Sales Department sales@apg-neuros.com

E

2

CAUTION

APG-Neuros Company Profile

E

CAUTION

Manufacturer of High Efficiency Turbo Blowers & Aeration Systems

Advanced aerospace technology, energy efficiency and quality are the driving forces behind our products. Reliable and low maintenance, APG-Neuros Turbo Blowers and Aeration Systems provide our customers with environmentally sustainable solutions in a variety of different wastewater treatment applications. APG-Neuros has been leading the way through innovation and education in the turbo blower market, modernizing an aging industry.

ABOUT US

APG-Neuros is recognized as the force behind the successful introduction of the high speed turbo blower technology in the wastewater treatment markets in North America, Western Europe and the Middle East.

APG-Neuros is a privately-owned company with headquarters located in Quebec, Canada and production facility in Plattsburgh, NY. Engineers and owners recognize our company as the force behind the successful market introduction of the high-speed turbo blower technology in the wastewater treatment market. We are an awardwinning company that strives for continuous technological developments and innovations. We own our technological foundation, conducting in-house R&D programs to keep innovating and improving our products and services. Since 2005, we have followed a focused approach, based on aerospace models, for product introduction. Our approach highlights our technical competency, proven design, high quality components, and UL & CSA certification.

This focused approach has led to the success of our products and the wide acceptance of the High Speed blower technology in the wastewater treatment and industrial sectors in North America. We have achieved over 1.000% growth in our sales revenue, exceeding \$200 million in cumulative sales between 2006 and 2019. Our blowers currently achieve the highest installed base of any High Speed Turbo Blower manufacturer, with over 1,350 units installed and more than 100 units on order in North America and Europe. Combined with deliveries from our partner Neuros, worldwide installations exceed 5,000 units.

Industry leading experts and think-tanks have awarded APG-Neuros on numerous occasions. In 2011 and 2012. APG-Neuros received the Artemis Project and APEX

awards for most promising companies in the water industry for applying innovative and sustainable product to address water industry challenges. In 2012, the company also received the Product Innovation Award from Frost & Sullivan in the aeration technology market in North America. Frost & Sullivan evaluated APG-Neuros blowers against key competitors based on criteria such as the innovative element of the product that leverages leading edge technologies, the value added features, customer benefits of the product, the increased customer Return on Investment leading to decision on acquisition. In 2013, 2015, and 2016 PROFIT 500 Magazine listed APG-Neuros on the top 500 of Canada's Fastest-Growing Companies. In July 2016, the company was honored by the Canadian Business Executive with 2016 "Best of Canada" award. Finally, in July 2017 APG-Neuros CEO was awarded as "Best Turbo Blower Manufacturer CEO - North America" by CEO Monthly.

Our Facilities

PRODUCTION & TESTING HEADQUARTERS

APG-Neuros Production & Testing Facility Plattsburgh, NY, United States

APG-Neuros Production & Testing plant is located in a 60,000 square foot facility in Plattsburgh, NY, approximately 75 miles south of Montreal, QC where all the high speed turbo blowers are assembled, tested and inspected. It houses engineering, testing, assembly, field service, administrative, quality control and support personnel. The facility's warehouse has a large spare parts inventory for quick response time to support its operational fleet.

The production plant has two state of the art test cells for conducting acceptance testing. The test cells and associated equipment are fully ISO 5389 and ASME PTC-10 compliant and can test cores as well as complete packages. Each test cell has a Data Acquisition System to monitor pressure, flow, vibration, power and temperature. Top of the line equipment is used for data verification and all equipment is calibrated to national and international standards. Every test cell has its own control room where customers can witness test. APG-Neuros has 12 test technicians in this production facility dedicated to high speed turbo blowers.

APG-Neuros Headquarters Blainville, QC, Canada

The Headquarters of APG-Neuros is located in a 32,000 square foot facility in Blainville, QC Canada where the supply of blowers is managed and engineered. It houses the executive, finance, administrative, engineering, support, research and development, customer service, quality control, repair/overhaul, and assembly/ testing personnel.

> There are currently over 70 employees in the two facilities.

COMPANY OVERVIEW

OUR VISION

To be recognized as the reference technology company for producing innovative products, including the Turbo Blowers, Turbo Compressors, and other efficient and affordable technology products.

OUR MISSION

their preformance.

OUR VALUES

Innovation

We strive for continuous technological development and innovation. We conduct inhouse R&D programs to keep innovating and improving our

Team

Ensure employee empowerment and fulfillment through continued skills development

and career advancement.

products and services.

APG-Neuros is committed to achieving customer satisfaction by providing quality products and services delivered on time. To establish close presence to our customers and build local relationships to help them use our product more effectively and optimize

Integrity

Promote a culture of transparency, continuous improvements and strive for a sustainable business model.

Environment

We strive to limit the impact of our activities and our product on the environment.

Today, APG-Neuros provides its customers with turn-key solutions including blowers, aeration control systems, diffusers, pipework, instrumentation and

Our Services

APG-Neuros provides turn-key solutions for its customers - from study phase to after-sale support, monitoring and maintenance.

APG-Neuros is a privately owned high growth company. Its corporate structure is based on business models of successful industrial and aeronautic companies. APG-Neuros Senior Management, Sales, Operations Management and Finance teams are located in Montreal, Quebec, Canada. APG-Neuros also employs Sales, Technical Service and Support staff located in the US, Canada and Europe, in close proximity to its customers. Additionally, APG-Neuros has developed a highly efficient Field Service Network comprised of internal commercial and technical service teams and Field Service Engineers as well as Third-Party service providers located within proximity to its customers. In addition

to its local resources in North America, APG-Neuros has direct access to Neuros technical resources with high level technical competencies in the areas of compressor, air bearing, permanent magnet synchronous motor and controls technologies. The technical resources from Neuros have been relocated to APG-Neuros in a systematic manner consistent with its operations growth in the western world. Through obtaining/developing the internal resources required to design, produce and test the equipment in-house, APG-Neuros is able to successfully meet accelerated submittal and delivery schedules without compromising quality or customer satisfaction.

STUDY & AUDIT ASSESSMENT

We assist our customers with comprehensive assessment and audits to determine the best possible solutions for each of their needs including multidisciplinary engineering support.

Complete in-house engineering & design of aeration systems. Process simulation, mechanical/electrical design, layout & drawings. PLC/SCADA controls and communications.

COMMISSIONING

Testing, Start-Up and Complete integration of the supplied equipment & material. In-depth on-site training.

WHAT WE CAN DO

We help our customers every step of the way

AERATION SYSTEM DESIGN

EQUIPMENT SUPPLY & INSTALLATION

Manufacture of Turbo Blowers, Control Systems, Supply of Diffusers, Pipework, Instrumentation, etc. We also take care of construction and installation for you.

CONTROL SYSTEMS

Comprehensive Control Strategy for Maximum Optimization & Efficiency designed by APG-Neuros in-house.

MONITORING & MAINTENANCE

Local engineering support. Remote Monitoring & Troubleshooting System - reduced maintenance costs, historical data trends and preventive maintenance.

OUR INSTALLATIONS

OVER 5,000 TURBO BLOWERS WORLDWIDE

- 1. New York City, NY
- 2. Washington D.C.
- 3. Abu Dhabi, UAE
- 4. London, UK
- 5. King County, WA
- 6. Cincinnati, OH

OUR INSTALLATIONS

OVER 5,000 TURBO BLOWERS WORLDWIDE

- 1. Bend, OR
- 2. Brembate, Italy
- 3. Pumpkinvine, GA
- 4. Las Vegas Valley, NV
- 5. Hollister, CA

🔀 Contact

info@apg-neuros.com sales@apg-neuros.com www.apg-neuros.com

Phone

Ľ.

T: + 1-450-939-0799 TF: +1-866-592-9482 UK: + 0800-3689-274

• Address

1270 Michele-Bohec Blainville, QC J7C 5S4 Canada

APG-Neuros Confirmation Statements

Confidential Information

Equipment Manufacturer Agreement

Confidential Information

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Equipment Manufacturer Agreement

This is to confirm that APGN Inc. proposed package is in compliance with Section 00 41 65: Article 4 – Project.

"4.1. The selected Equipment Manufacturer will be named as the preselected supplier of the process air compressors and ancillary equipment in the project specifications for the general construction of the Project. The Contractor will be responsible for the purchase of the Manufacturers Equipment from the Equipment Manufacturer as described herein and in Proposal. In return, Equipment Manufacturer must agree to enter into an agreement with the Contractor who is selected by the Owner to construct the Project, to provide the bonds, equipment and services as established in the Proposal. Equipment Manufacturer must also agree to:

4.1.1. Honor the equipment, materials, and services costs for an expected Project bid opening and Notice to Proceed18 months from the proposal due date.

4.1.2. In the event that the Notice to Proceed date for the General Contract occurs later than 18 months after the proposal due date, Equipment Manufacturer agrees to provide the equipment, materials, and services at a price negotiated with the Owner.

4.1.3. Provide assistance to Engineer in the preparation of the detailed construction documents related to the goods and serviced provided by Equipment Manufacturer.

4.1.4. The Owner reserves the right to delete optional items from the scope of supply and deduct the cost of these optional items from the price.

4.1.5. Agree to the following Payment and Retainage Terms:

4.1.5.1. Payments are subject to the 5 percent retainage imposed upon the General Contractor as part of the larger Project.

Confidential Information

4.1.5.2. 10 percent of total price payment upon approval of all shop drawing submittals submitted through the Contractor.

4.1.5.3. 5 percent of total price payment upon approval of Operation and Maintenance manuals.

4.1.5.4. 70 percent of total price payment upon delivery of equipment to the Project site specified in Section 44 42 19.05, High Speed Turbo Air Compressors.

4.1.5.5. 5 percent of total price payment upon completion of installation, O&M training, startup assistance and testing, and successful demonstration testing. 4.1.5.6. 10 percent of total price payment upon completion of all services described in Section 44 42 19.05, High Speed Turbo Air Compressors, including acceptance of the installation by the Owner.

4.1.6. All retainage shall be released upon the Final Completion of the larger project. It is anticipated that the Project will have an 18-month Project duration."

hanfanmout

Omar Hammoud

President & CEO

Confidential Information

Terms Acceptance

Confidential Information

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Equipment Manufacturer Terms Acceptance

This is to confirm that APGN Inc accepts all of the terms and conditions of the Request for Proposal (Process Air Compressor Equipment) documents, including without limitation those dealing with consumption guarantees, performance guarantee, and liquidated damages.

Man Hennowd

Omar Hammoud President & CEO

Confidential Information

Performance Guarantee

Confidential Information

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Equipment Manufacturer Performance Guarantee

This is to confirm that APGN Inc. proposed blowers' configuration and the equipment provided shall meet the performance requirements as defined in this Request for Proposal (RFP), Addendum No.1 & 2 and the Manufacturer's completed Guaranteed Wire Power Table.

Additionnally, APGN Inc. guarantees that the Process Air Compressor equipment offered in the Proposal will continuously meet the following Guarantees:

4.1.1. See Guaranteed Performance under Section 44 42 19.05, High Speed Turbo Air Compressors.

Omar Hammoud

President & CEO

Confidential Information

Shop Drawings

Confidential Information

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Equipment Manufacturer Shop Drawings

This is to confirm that APGN Inc. acknowledges that upon acceptance of proposal, Equipment Manufacturer shall prepare preliminary shop drawings for Engineer to use in completing the construction bid documents. The successful proposal will be included in the bid documents to be advertised for bidding by Contractors who will subsequently provide and install this material as part of the Contract. Payment to the Equipment Manufacturer will be by the Contractor. Bid documents for the Contractor are anticipated to be in 2022 with an 18 months project duration.

Omar Hammoud

President & CEO

Confidential Information

Notice of Conflicts

Confidential Information

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Equipment Manufacturer Conflicts Notice

This is to confirm that APGN Inc. did not find any conflicts, errors, ambiguities, or discrepancies that Equipment Manufacturer has discovered in Proposal Documents, and written resolution thereof by Engineer is acceptable to equipment Manufacturer.

Omar Hammoud

President & CEO

Confidential Information

Other Conditions

Confidential Information

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Equipment Manufacturer Other Conditions

This is to confirm that APGN Inc. accepts the following:

"3.1. Equipment Manufacturer agrees to honor the equipment, materials, and services costs in the Proposal for a Notice to Proceed date to the Contractor within 18 months from the proposal due date.

3.2. In the event that the Notice to Proceed date for the Project occurs later than 18 months after the proposal due date, Equipment Manufacturer agrees to provide the equipment, materials, and services at an adjusted selling price negotiated with the Owner.

3.3. The Authority reserves the right to delete alternate items from the scope of supply and deduct the cost of these optional items from the price.

3.4. If for any reason the Authority does not award the Project, the Authority is under no obligation to purchase the equipment, materials, and services in the Proposal. 3.5. The selected Equipment Manufacturer shall be required to provide Performance

and Payment Bonds to the Owner and Contractor as part of their agreement with Contractor. Performance and Payment Bond, each in an amount equal to one hundred percent (100%) of the Lump Sum Cost as security for the faithful performance of this Proposal and as security for the payment of all persons performing Labor and furnishing Materials under this Contract. The surety shall be such surety company or companies that are acceptable to the Owner and Contractor and that are authorized to transact business in the State of Connecticut.

Mar Hannor

Omar Hammoud

President & CEO

Confidential Information

Technical Specification

Confidential Information

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Compliance with Blowers Technical Specification

This is to confirm that APGN Inc. submittal package is in full compliance with the technical specification and confirms that the proposed blowers' configuration and the equipment provided shall meet the performance requirements as defined in this Request for Proposal (RFP), Addendum No.1 & 2 and the Manufacturer's completed Guaranteed Wire Power Table.

Hannoud

Omar Hammoud

President & CEO

Confidential Information

Number of Blowers Rerquired

Confidential Information

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Compliance with 5 duty blower to achieve the requested flow

This is to confirm that APGN Inc. submittal package is in full compliance with the technical specification and confirms that the proposed blowers' configuration and the equipment provided shall meet the performance requirements with 5 duty blowers as defined in this Request for Proposal (RFP), Addendum No.1 & 2 and the Manufacturer's completed Guaranteed Wire Power Table.

har fammauf

Omar Hammoud President & CEO

Confidential Information

Proposal Form: Section 00 41 65-01

Confidential Information

REQUEST FOR PROPOSAL PROPOSAL FORM

Bidder: APGN Inc. dba APG Neuros

1. PROPOSAL RECIPIENT.

1.1. This proposal is submitted to:

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511 Reference: Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

2. EQUIPMENT MANUFACTURER'S ACKNOWLEDGEMENTS.

2.1. Equipment Manufacturer accepts all of the terms and conditions of the Request for Proposal (Process Air Compressor Equipment) documents, including without limitation those dealing with consumption guarantees, performance guarantee, and liquidated damages.

2.2. Equipment Manufacturer acknowledges that upon acceptance of proposal, Equipment Manufacturer shall prepare preliminary shop drawings for Engineer to use in completing the construction bid documents. The successful proposal will be included in the bid documents to be advertised for bidding by Contractors who will subsequently provide and install this material as part of the Contract. Payment to the Equipment Manufacturer will be by the Contractor. Bid documents for the Contractor are anticipated to be in 2022 with an 18 month Project duration.

2.3. Equipment Manufacturer has given Engineer written notice of all conflicts, errors, ambiguities, or discrepancies that Equipment Manufacturer has discovered in Proposal Documents, and written resolution thereof by Engineer is acceptable to Equipment Manufacturer.

3. OTHER CONDITIONS.

3.1. Equipment Manufacturer agrees to honor the equipment, materials, and services costs in the Proposal for a Notice to Proceed date to the Contractor within 18 months from the proposal due date.

3.2. In the event that the Notice to Proceed date for the Project occurs later than 18 months after the proposal due date, Equipment Manufacturer agrees to provide the equipment, materials, and services at an adjusted selling price negotiated with the Owner.

3.3. The Authority reserves the right to delete alternate items from the scope of supply and deduct the cost of these optional items from the price.

3.4. If for any reason the Authority does not award the Project, the Authority is under no obligation to purchase the equipment, materials, and services in the Proposal.

3.5. The selected Equipment Manufacturer shall be required to provide Performance and Payment Bonds to the Owner and Contractor as part of their agreement with Contractor. Performance and Payment Bond, each in an amount equal to one hundred percent (100%) of the Lump Sum Cost as security for the faithful performance of this Proposal and as security for the payment of all persons performing Labor and furnishing Materials under this Contract. The surety shall be such surety company or companies that are acceptable to the Owner and Contractor and that are authorized to transact business in the State of Connecticut.

4. CONSUMPTION GUARANTEES.

4.1. The Proposer guarantees that the Process Air Compressor equipment offered in the Proposal will continuously meet the following Guarantees:

4.1.1. See Guaranteed Performance under Section 44 42 19.05, High Speed Turbo Air Compressors.

5. PROPOSAL SUBMISSION.

5.1. Completely fill and submit the attached, Proposal Form.

APG Neuros confirms full compliance with Specification Section 44 42 19 and Addendum No.1 & 2. The equipment model proposed by APG Neuros complies with the attached Technical Specifications. Each technical feature required by the Technical Specification is provided. No exceptions to the technical specifications or general

requirements are taken by APG Neuros, as stated on the Proposal Form

PROPOSAL FORM

Bidder: APGN Inc. dba APG Neuros

Project CWF 2019-4: Purchase of Process Air Compressor for Low Level Nitrogen Removal Equipment

Item	Description	Lump Sum Cost USD	
1	Process Air Compressor System, as specified in section 44 42 19.05 High Speed Turbo Air Compressors.	\$1,356,343	5

Lump Sum Cost (words)

USD One Million Three Hundred Fifty Six Thousand Three Hundred Forty Three

Manufacturer's Extended Warranty:

10 years Cost of extension of specified 1 year warranty to 5 years. USD_Extended Warranty to Ten Years is offered at NO ADDITIONAL COST

Annual Service Contract amount for Years 2 Through 5 of annual recommended maintenance.

USD Annual Service Contract extended for three (3) years from year 2 through 5.

at NO ADDITIONAL COST Equipment Manufacture's Options/Alternates:

The following Options or Alternate Prices are offered in addition to the Base Proposal:

Alternate / Option	Description	Unit Cost USD Add (Deduct)	
1	Integrated Harmonic Filter inside the blower enclosure	Included at at NO ADDITIO	NAL COST
2	Vibration Sensor & Bearing Temperature Sensor	Included at at NO ADDITIO	ONAL COST
3	Upgrade to Stainless Steel Body Check Valve	Included at at NO ADDITI	DNAL COST
4 dondo Rocoji	MCP ControlLogix Upgrade	\$9,950.00	

Receipt of the following RFP Addenda is hereby acknowledged:

Addendum No.	1	Date:	January 14, 2022
Addendum No.	2	Date:	January 26, 2022
Addendum No.		Date:	-

Agreement to Accept the Terms and Provisions of the RFP Documents:

We have reviewed the provisions of the RFP, the RFP Documents attached to the RFP, and the Addenda received and *agree to accept the provisions without exception* on any Order resulting from this RFP.

NO

If NO, our exceptions are listed below a detailed on a separate document attached hereto. We understand that exceptions may be grounds for rejection of the Proposal:

Technical Exceptions:

APGN Inc, dba APG-Neuros confirms that our proposal is in full compliance "with no exceptions" with RFP requirements and Addendum No.1 & 2 with the highest quality, performance, durability, and longevity of the equipment.

Authorization:

The undersigned, having carefully examined the RFP Documents hereby offers and agrees to furnish all goods and services for the proposal sums proposed above and in accordance with the provisions set forth in the RFP Documents and the Proposal Form.

This Proposal submitted by:

Company Name: Email Address: Address: APGN Inc. dba APG Neuros sales@apg-neuros.com 1270 Michele-Bohec, Blainville, QC J7C 5S4 Canada 160 Banker Road, Plattsburgh NY 12901 United States

Authorized Agent:

Omar Hammoud (name)

Authorized Agent:

(Signature)

0

Title:

President & CEO

For example: President, Vice-President

PW\DEN003\E290000\.SPECS\.RFP PAC OCTOBER 15, 2021

REQUEST FOR PROPOSAL 00 41 65 PROPOSAL FORM - 4

Submitted with this Proposal Form per Specification 00 41 65, Section 2:

- 1. Proposal Submittal Information
- 2. Proposal Security

Corporate seal

End of Section

APGN INC. Hamaoui 1270 Michele-Bohee Blainville, Quebec J7C 5S4 Canada 450-939-0799, www.apg-neuros.com

PW\DEN003\E290000\.SPECS\.RFP PAC OCTOBER 15, 2021 REQUEST FOR PROPOSAL 00 41 65 PROPOSAL FORM - 5

Proposal Security

Confidential Information

a. Proposal Security - Bid Bond

Confidential Information

No. 500003044-01

BID BOND

1270 Michele-Bohec

Travelers Casualty and Surety Company of America Hartford, CT 06183

CONTRACTOR: (Name, legal status and address)

SURETY:

(Name, legal status and principal place of business)

Travelers Casualty and Surety Company of America Travelers Bond & FP -One Tower Square S203A Hartford, Connecticut 06183

Blainville, Quebec J7C 5S4 Hartford, Conn OWNER: (Name, legal status and address) GREATER NEW HAVEN WATER POLLUTION CONTROL AUTHORITY 260 East Street New Haven, CT 06511

BOND AMOUNT: Ten percent of tender price-----(10%)

PROJECT:

APGN Inc.

(Name, location or address, and Project number, if any) CWF 2019-04 - Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility

The Contractor and Surety are bound to the Owner in the amount set forth above, for the payment of which the Contractor and Surety bind themselves, their heirs, executors, administrators, successors and assigns, jointly and severally, as provided herein. The conditions of this Bond are such that if the Owner accepts the bid of the Contractor within the time specified in the bid documents, or within such time period as may be agreed to by the Owner and Contractor, and the Contractor either (1) enters into a contract with the Owner in accordance with the terms of such bid, and gives such bond or bonds as may be specified in the bidding or Contract Documents, with a surety admitted in the jurisdiction of the Project and otherwise acceptable to the Owner, for the faithful performance of such Contract and for the prompt payment of labor and material furnished in the prosecution thereof; or (2) pays to the Owner the difference, not to exceed the amount of this Bond, between the amount specified in said bid and such larger amount for which the Owner may in good faith contract with another party to perform the work covered by said bid, then this obligation shall be null and void, otherwise to remain in full force and effect. The Surety hereby waives any notice of an agreement between the Owner and Contractor to extend the time in which the Owner may accept the bid. Waiver of notice by the Surety shall not apply to any extension exceeding sixty (60) days in the aggregate beyond the time for acceptance of bids specified in the bid documents, and the Owner and Contractor shall obtain the Surety's consent for an extension beyond sixty (60) days.

If this Bond is issued in connection with a subcontractor's bid to a Contractor, the term Contractor in this Bond shall be deemed to be Subcontractor and the term Owner shall be deemed to be Contractor.

When this Bond has been furnished to comply with a statutory or other legal requirement in the location of the Project, any provision in this Bond conflicting with said statutory or legal requirement shall be deemed deleted herefrom and provisions conforming to such statutory or other legal requirement shall be deemed incorporated herein. When so furnished, the intent is that this Bond shall be construed as a statutory bond and not as a common law bond.

Notwithstanding the terms and conditions of this Bond and of the Contract, the Surety shall be liable under this Bond only for the physical carrying out of the construction work and for the supply of the equipment specified in the Contract; furthermore and without limiting the generality of the foregoing, the Surety shall not be liable under this Bond for any liquidated damages, nor for any obligation to procure or maintain any insurance policy, nor for any obligation, claim or damages relating, directly or indirectly, to design, Performance Tests, warranties or guarantees, Performance Guarantees and Corrective Action as a result of failure to meet Performance Guarantees (capitalised terms having the meanings set forth in the Contract). Any such real or implied damages, obligations or claims provided for in the Contract are excluded from this Bond.

The Company executing this bond vouches that this document conforms to American Institute of Architects Document A310, 2010 edition

Notwithstanding the terms and conditions of this bond and the Contract, the guarantee(s) stated as well as maintenance and maintenance related will be covered by this bond for a period not exceeding two (2) years after the completion of the work. The Bond will be renewable at the option of the Surety, if required. It is understood that the renewal will not modify nor cumulate the amount of the bond. The non-renewal of this bond shall not constitute an event of default of this bond.

Signed and sealed this <u>12th</u> day of <u>January</u>	,2022
	APGN Inc. VIO MUSSA
May 1 21, 1	(Principal) (Seal)
Wich a med coler 105	DIRECTOR OF FINIANCE
(witness)	(1111e)
	Travelers Casualty and Surety Company of America

Juerette Tiane &

(Witness) Diane Guerette

(Surety) Diane Poulin

(Seal)

Attorney-in-fact (Title)

The Company executing this bond vouches that this document conforms to American Institute of Architects Document A310, 2010 edition

2

Travelers Casualty and Surety Company of America Travelers Casualty and Surety Company St. Paul Fire and Marine Insurance Company

POWER OF ATTORNEY

KNOW ALL MEN BY THESE PRESENTS: That Travelers Casualty and Surety Company of America, Travelers Casualty and Surety Company, and St. Paul Fire and Marine Insurance Company are corporations duly organized under the laws of the State of Connecticut (herein collectively called the "Companies"), and that the Companies do hereby make, constitute and appoint Diane Poulin of Montreal , their true and lawful Attorney(s)-in-Fact to sign, execute, seal and

acknowledge any and all bonds, recognizances, conditional undertakings and other writings obligatory in the nature thereof on behalf of the Companies in their business of guaranteeing the fidelity of persons, guaranteeing the performance of contracts and executing or guaranteeing bonds and undertakings required or permitted in any actions or proceedings allowed by law.

IN WITNESS WHEREOF, the Companies have caused this instrument to be signed, and their corporate seals to be hereto affixed, this 21st day of April, 2021.

State of Connecticut

City of Hartford ss.

By:

Robert L. Raney, Senior Vice President

On this the 21st day of April, 2021, before me personally appeared Robert L. Raney, who acknowledged himself to be the Senior Vice President of each of the Companies, and that he, as such, being authorized so to do, executed the foregoing instrument for the purposes therein contained by signing on behalf of said Companies by himself as a duly authorized officer.

IN WITNESS WHEREOF, I hereunto set my hand and official seal.

My Commission expires the 30th day of June, 2026

NOTAR -140 PUBLIC Notary Public

This Power of Attorney is granted under and by the authority of the following resolutions adopted by the Boards of Directors of each of the Companies, which resolutions are now in full force and effect, reading as follows:

RESOLVED, that the Chairman, the President, any Vice Chairman, any Executive Vice President, any Senior Vice President, any Vice President, any Senior Vice President, any Vice President, any Senior Vice President, the Treasurer, any Assistant Treasurer, the Corporate Secretary or any Assistant Secretary may appoint Attorneys-in-Fact and Agents to act for and on behalf of the Company and may give such appointee such authority as his or her certificate of authority may prescribe to sign with the Company's name and seal with the Company's seal bonds, recognizances, contracts of indemnity, and other writings obligatory in the nature of a bond, recognizance, or conditional undertaking, and any of said officers or the Board of Directors at any time may remove any such appointee and revoke the power given him or her; and it is

FURTHER RESOLVED, that the Chairman, the President, any Vice Chairman, any Executive Vice President, any Senior Vice President or any Vice President may delegate all or any part of the foregoing authority to one or more officers or employees of this Company, provided that each such delegation is in writing and a copy thereof is filed in the office of the Secretary; and it is

FURTHER RESOLVED, that any bond, recognizance, contract of indemnity, or writing obligatory in the nature of a bond, recognizance, or conditional undertaking shall be valid and binding upon the Company when (a) signed by the President, any Vice Chairman, any Executive Vice President, any Senior Vice President or any Vice President, any Second Vice President, the Treasurer, any Assistant Treasurer, the Corporate Secretary or any Assistant Secretary and duly attested and sealed with the Company's seal by a Secretary or Assistant Secretary; or (b) duly executed (under seal, if required) by one or more Attorneys-in-Fact and Agents pursuant to the power prescribed in his or her certificate or their certificates of authority or by one or more Company officers pursuant to a written delegation of authority; and it is

FURTHER RESOLVED, that the signature of each of the following officers: President, any Executive Vice President, any Senior Vice President, any Vice President, any Assistant Vice President, any Secretary, any Assistant Secretary, and the seal of the Company may be affixed by facsimile to any Power of Attorney or to any certificate relating thereto appointing Resident Vice Presidents, Resident Assistant Secretaries or Attorneys-in-Fact for purposes only of executing and attesting bonds and undertakings and other writings obligatory in the nature thereof, and any such Power of Attorney or certificate bearing such facsimile signature or facsimile seal shall be valid and binding upon the Company and any such power so executed and certified by such facsimile signature and facsimile seal shall be valid and binding on the future with respect to any bond or understanding to which it is attached.

I, Kevin E. Hughes, the undersigned, Assistant Secretary of each of the Companies, do hereby certify that the above and foregoing is a true and correct copy of the Power of Attorney executed by said Companies, which remains in full force and effect.

Dated this 12th day of January 2022

Kevin E. Hughes, Assistant Secretary

To verify the authenticity of this Power of Attorney, please call us at 1-800-421-3880. Please refer to the above-named Attorney(s)-in-Fact and the details of the bond to which this Power of Attorney is attached.

b. Confirmation Letter for Security retainage

Confidential Information

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Confirmation Letter for Security Retainage

This is to confirm that APGN Inc. accepts the following:

"2.3.3.2. Each Bidder's proposal Security will be retained until the selected Equipment Manufacturer has a signed agreement with the Contractor for installation of the Equipment Manufacturer's equipment at the East Shore Water Pollution Abatement Facility."

President & CEO

Confidential Information

Connecticut State Sales and Use Taxes Exemption

"The proposal is exempted from Connecticut State sales and use taxes on permanently installed materials and equipment supplied under this proposal"

Confidential Information

Form	N-8BEN-E	Certifica United States	te of Status Tax Withhol	of Beneficial ding and Rep	Owner for orting (Entities)	OMB No. 1545-1621
Depart	ment of the Treasury	 For use by entities. Individuals Go to www.irs. Give this form 	must use Form W-8BE gov/FormW8BENE for to the withholding	N. ► Section reference or instructions and th agent or payer. Do no	es are to the Internal Revenue Code. ne latest information. ot send to the IRS.	
Do No	OT use this form fo	r:	to the transmis	-3		Instead use Form:
• U.S.	entity or U.S. citize	n or resident				W-9
• A fo	reign individual .				W-8BE	V (Individual) or Form 8233
• A to	reign individual or ei	ntity claiming that income is en enefits) .	fectively connecte	a with the conduct o	of trade or business within the C	W-8ECI
 A for gove 501(A ny 	reign partnership, a reign government, ir ornment of a U.S. po c), 892, 895, or 1443 person acting as an	foreign simple trust, or a forei nternational organization, forei ossession claiming that income 3(b) (unless claiming treaty be intermediary (including a qua	gn grantor trust (ur gn central bank of e is effectively com nefits) (see instruct lified intermediary	nless claiming treaty issue, foreign tax-ex nected U.S. income ions for other excep acting as a qualified	v benefits) (see instructions for e xempt organization, foreign priv or that is claiming the applicab otions)	xceptions) W-8IMY ate foundation, or lity of section(s) 115(2), . W-8ECI or W-8EXF W-8IMY
Pa	rt I Identifi	cation of Beneficial Ow	vner			
1 APGN	Name of organiza	tion that is the beneficial owne	er		2 Country of incorporation Canada	or organization
3	Name of disregard	ded entity receiving the payme	ent (if applicable, se	ee instructions)		
4	Chapter 3 Status	(entity type) (Must check one Grantor trust	box only):	Corporation Complex trust	Disregarded entity Estate	Partnership Government
	If you entered dis	regarded entity, partnership, s	simple trust, or gran	ntor trust above, is t	the entity a hybrid making a trea	ity
_	claim? If "Yes" co	mplete Part III.				Yes No
	FFI other than exempt benef Participating I Reporting Mo Registered de FFI, sponsore See instructio Sponsored FF Certified deen Part V. Certified deen Complete Part Certified deen complete Part Certified deen complete Part Certified deen complete Part Certified deen complete Part Certified deen complete Part Certified deen complete Part	a deemed-compliant FFI, par icial owner). FFI. del 1 FFI. del 2 FFI. eemed-compliant FFI (other the d FFI, or nonreporting IGA FFI ns. FI. Complete Part IV. ned-compliant nonregistering ned-compliant FFI with only lo t VI. ned-compliant sponsored, clo blete Part VII. red-compliant limited life debt in VIII. nent entities that do not mainta IX. nented FFI. Complete Part X. tributor. Complete Part XI.	ticipating FFI, or an a reporting Mod l covered in Part XI local bank. Comple ow-value accounts. sely held investme nvestment entity. in financial accounts	Foreign g central b Internatio Exempt r Entity wh lel 1 Territory Excepted Excepted Excepted 501(c) or Nonprofit Publicly f corporati Excepted Active Ni Passive f S. Excepted Direct rep Sponsore Account	government, government of a U, ank of issue. Complete Part XIII onal organization. Complete Part retirement plans. Complete Part olly owned by exempt beneficial of financial institution. Complete F d nonfinancial group entity. Com d nonfinancial start-up company d nonfinancial entity in liquidatio e Part XX. ganization. Complete Part XXI. t organization. Complete Part XXI. t organization. Complete Part XXI. t raded NFFE or NFFE affiliate of ion. Complete Part XXIII. d territory NFFE. Complete Part FFE. Complete Part XXV. NFFE. Complete Part XXV.	S. possession, or foreign t XIV. XV. powners, Complete Part XVI. Part XVII. plete Part XVIII. c. Complete Part XIX. n or bankruptcy. XII. a publicly traded XXIV. rt XXVII. lete Part XXVIII.
6 1270	Permanent residen Michele-Bohec	ce address (street, apt. or suite	no., or rural route).	Do not use a P.O. bo	ox or in-care-of address (other th	an a registered address).
	City or town, state	or province. Include postal c	ode where appropr	riate.	Country	
Blain 7	Mailing address (if	different from above)			Canada	
1270	viichele-Bohec City or town, state	or province. Include postal c	ode where approp	riate.	Country	
Blainville, QC				Canada		
8	U.S. taxpayer identif	ication number (TIN), if required	9a GIIN		b Foreig	n TIN 98-1049944
10	Reference number(s	s) (see instructions)				
Note:	Please complete re	mainder of the form including	signing the form in	Part XXX.		

For Paperwork Reduction Act Notice, see separate instructions.

Form W-	8BEN-E (Rev. 7-2017)		Page 2	
Part	Disregarded Entity or Branch F branch of an FFI in a country oth	eceiving Payment. (Complete contrast the contrast of the contrast of the test of test	only if a disregarded entity with a GIIN or a lence. See instructions.)	
11	Chapter 4 Status (FATCA status) of disregarded e	entily or branch receiving payment		
	Branch treated as nonparticipating FFI.	Reporting Model 1 FFI.	U.S. Branch.	
	Participating FFI.	Reporting Model 2 FFI.		
12	Address of disregarded entity or branch (street, registered address).	apt. or suite no., or rural route). Do not	t use a P.O. box or in-care-of address (other than a	
	City or town, state or province. Include postal co	de where appropriate.		
	Country			
13	GIIN (if any)			
Par	IIII _ Claim of Tax Treaty Benefits (if	applicable). (For chapter 3 purp	loses only.)	
14	I certify that (check all that apply):			
а	The beneficial owner is a resident of Cana	da	within the meaning of the income tax	
1.1	treaty between the United States and that co	ountry.		
ЪĮ	_IX The beneficial owner derives the item (or item requirements of the treaty provision dealing be included in an applicable tax treaty (chec	is) of income for which the treaty benefit with limitation on benefits. The following k only one; see instructions):	s are claimed, and, if applicable, meets the are types of limitation on benefits provisions that may	
	Government	Company that meets the ownersh	ip and base erosion test	
	Tax exempt pension trust or pension fund	Company that meets the derivativ	e benefits test	
	Other tax exempt organization	Company with an item of income	that meets active trade or business test	
	Publicly traded corporation	Favorable discretionary determina	ation by the U.S. competent authority received	
	Subsidiary of a publicly traded corporation	Other (specify Article and paragram	ph):	
C	The beneficial owner is claiming treaty bene or business of a foreign corporation and me	fits for U.S. source dividends received f ets qualified resident status (see instruct	from a foreign corporation or interest from a U.S. trade ions).	
15	Special rates and conditions (if applicable-se	e instructions):		
	The beneficial owner is claiming the provisions of	of Article and paragraph	ARTICLES V&VII	
	of the treaty identified on line 14a above to clain	a0% rate of withhol	ding on (specify type of income): Business profit	
	Explain the additional conditions in the Article th	e beneficial owner meets to be eligible for	or the rate of withholding: The taxpayer is a resident	
	of Canada and does not carry on business in	the U.S. through a permanet establish	hment. Consequently, under Articles V&VII of the	
	Canada-US Tax treaty, the taxpayer is exemp	t from U.S. Federal Income Tax on any	y profits derived from sales in the U.S	
Par	IV Sponsored FFI			
16	Name of sponsoring entity:			
17	Check whichever box applies.			
	I certify that the entity identified in Part I:			
	 Is an investment entity; 			
	. Is not a QI, WP (except to the extent permittee	in the withholding foreign partnership a	greement), or WT; and	
	 Has agreed with the entity identified above (th 	at is not a nonparticipating FFI) to act as	the sponsoring entity for this entity.	
	I certify that the entity identified in Part I:			
	 Is a controlled foreign corporation as defined in section 957(a); 			
	• Is not a QI, WP, or WT;			
	 Is wholly owned, directly or indirectly, by the U.3 	Inancial institution identified above that	agrees to act as the sponsoring entity for this entity; and	
	 Shares a common electronic account system account holders and payees of the entity and limited to, customer identification information, payees. 	with the sponsoring entity (Identified a to access all account and customer in customer documentation, account ba	above) that enables the sponsoring entity to identify all nformation maintained by the entity including, but not lance, and all payments made to account holders or	

Part V Certified Deemed-Compliant Nonregistering Local Bank

18 I certify that the FFI Identified in Part I:

 Operates and is licensed solely as a bank or credit union (or similar cooperative credit organization operated without profit) in its country of incorporation or organization;

• Engages primarily in the business of receiving deposits from and making loans to, with respect to a bank, retail customers unrelated to such bank and, with respect to a credit union or similar cooperative credit organization, members, provided that no member has a greater than 5% interest in such credit union or cooperative credit organization;

· Does not solicit account holders outside its country of organization;

• Has no fixed place of business outside such country (for this purpose, a fixed place of business does not include a location that is not advertised to the public and from which the FFI performs solely administrative support functions);

 Has no more than \$175 million in assets on its balance sheet and, if it is a member of an expanded affiliated group, the group has no more than \$500 million in total assets on its consolidated or combined balance sheets; and

• Does not have any member of its expanded affiliated group that is a foreign financial institution, other than a foreign financial institution that is incorporated or organized in the same country as the FFI identified in Part I and that meets the requirements set forth in this part.

Part VI Certified Deemed-Compliant FFI with Only Low-Value Accounts

19 I certify that the FFI Identified In Part I:

• Is not engaged primarily in the business of investing, reinvesting, or trading in securities, partnership interests, commodilies, notional principal contracts, insurance or annulty contracts, or any interest (including a futures or forward contract or option) in such security, partnership interest, commodily, notional principal contract, insurance contract or annulty contract;

 No financial account maintained by the FFI or any member of its expanded affiliated group, if any, has a balance or value in excess of \$50,000 (as determined after applying applicable account aggregation rules); and

 Neither the FFI nor the entire expanded affiliated group, if any, of the FFI, have more than \$50 million in assets on its consolidated or combined balance sheet as of the end of its most recent accounting year.

Part VII Certified Deemed-Compliant Sponsored, Closely Held Investment Vehicle

20 Name of sponsoring entity:

21

22

23

- I certify that the entity identified in Part I:
 - Is an FFI solely because it is an investment entity described in Regulations section 1.1471-5(e)(4);
 - Is not a QI, WP, or WT;

 Will have all of its due diligence, withholding, and reporting responsibilities (determined as if the FFI were a participating FFI) fulfilled by the sponsoring entity identified on line 20; and

• 20 or fewer individuals own all of the debt and equily interests in the entity (disregarding debt interests owned by U.S. financial institutions, participating FFIs, registered deemed-compliant FFIs, and certified deemed-compliant FFIs and equity interests owned by an entity if that entity owns 100% of the equily interests in the FFI and is itself a sponsored FFI).

Par: VIII Certified Deemed-Compliant Limited Life Debt Investment Entity

I certify that the entity identified in Part I:

. Was In existence as of January 17, 2013;

Issued all classes of its debt or equity interests to investors on or before January 17, 2013, pursuant to a trust indenture or similar agreement; and
 Is certified deemed-compliant because it satisfies the requirements to be treated as a limited life debt investment entity (such as the restrictions with respect to its assets and other requirements under Regulations section 1.1471-6(0(2)(iv)).

Parl IX Certain Investment Entities that Do Not Maintain Financial Accounts

I certify that the entity identified in Part I:

• Is a financial Institution solely because it is an investment entity described in Regulations section 1.1471-5(e)(4)(i)(A), and

Does not maintain financial accounts. Owner-Documented FFI

Note: This status only applies if the U.S. financial institution, participating FFI, or reporting Model 1 FFI to which this form is given has agreed that it will treat the FFI as an owner-documented FFI (see instructions for eligibility requirements). In addition, the FFI must make the certifications below.

- 24a (All owner-documented FFIs check here) I certify that the FFI Identified In Part I:
 - · Does not act as an Intermediary;
 - Does not accept deposits in the ordinary course of a banking or similar business;
 - · Does not hold, as a substantial portion of its business, financial assets for the account of others;

 Is not an Insurance company (or the holding company of an Insurance company) that issues or is obligated to make payments with respect to a linancial account;

 Is not owned by or in an expanded affiliated group with an entity that accepts deposits in the ordinary course of a banking or similar business, holds, as a substantial portion of its business, financial assets for the account of others, or is an insurance company (or the holding company of an insurance company) that issues or is obligated to make payments with respect to a financial account;

· Does not maintain a financial account for any nonparticipating FFI; and

• Does not have any specified U.S. persons that own an equity interest or debt interest (other than a debt interest that is not a financial account or that has a balance or value not exceeding \$50,000) in the FFI other than those identified on the FFI owner reporting statement.

đ

PartX Owner-Documented FFI (continued)

Check box 24b or 24o, whichever applies.

b I certify that the FFI Identified in Part I:

. Has provided, or will provide, an FFI owner reporting statement that contains:

- The name, address, TIN (if any), chapter 4 status, and type of documentation provided (if required) of every individual and specified U.S. person that owns a direct or indirect equily interest in the owner-documented FFI (looking through all entitles other than specified U.S. persons);
- (II) The name, address, TIN (If any), and chapter 4 status of every individual and specified U.S. person that owns a debt interest in the owner-documented FFI (including any indirect debt interest, which includes debt interests in any entity that directly or indirectly owns the payse or any direct or indirect equity interest in a debt holder of the payse) that constitutes a financial account in excess of \$50,000 (disregarding all such debt interests owned by participating FFIs, registered deemed-compliant FFIs, certified deercedcompilant FFIs, excepted NFFEs, exempt beneficial owners, or U.S. persons other than specified U.S. persons); and
- (III) Any additional information the withholding agent requests in order to fulfill its obligations with respect to the entity.

 Has provided, or will provide, valid documentation meeting the requirements of Regulations section 1.1471-3(d)(6)(iii) for each person Identified in the FFI owner reporting statement.

L certify that the FFI identified in Part I has provided, or will provide, an auditor's letter, signed within 4 years of the date of payment, C from an independent accounting firm or legal representative with a location in the United States stating that the firm or representative has reviewed the FFI's documentation with respect to all of its owners and debt holders identified in Regulations section 1.1471-3(d)(6)((v)(A)(2), and that the FFI meats all the requirements to be an owner-documented FFI. The FFI identified in Part I has also provided, or will provide, an FFI owner reporting statement of its owners that are specified U.S. persons and Form(s) W-9, with applicable waivers.

Check box 24d if applicable (optional, see instructions).

1 centify that the entity identified on line 1 is a trust that does not have any contingent beneficiaries or designated classes with unidentified beneficiaries.

Pari	XI Restricted Distributor
25a	(All restricted distributors check here) I certify that the entity identified in Part I:
	 Operates as a distributor with respect to debt or equily interests of the restricted fund with respect to which this form is furnished;
	· Provides investment services to at least 30 customers unrelated to each other and less than half of its customers are related to each other;
	 Is required to perform AML due diligence procedures under the anti-money laundering laws of its country of organization (which is an FATF- compliant jurisdiction);

· Operates solely in its country of incorporation or organization, has no fixed place of business outside of that country, and has the same country of incorporation or organization as all members of its affiliated group, if any;

Does not solicit customere outside ils country of incorporation or organization;

. Has no more than \$175 million in total assets under management and no more than \$7 million in gross revenue on its income statement for the most recent accounting year;

. Is not a member of an expanded affiliated group that has more than \$500 million in total assets under management or more than \$20 million in gross revenue for its most recent accounting year on a combined or consolidated income statement; and

 Does not distribute any debt or securities of the restricted fund to specified U.S. persons, passive NFFEs with one or more substantial U.S. owners, or nonparticipating FFIs.

Check box 25b or 25c, whichever applies.

I further certify that with respect to all sales of debt or equily interests in the restricted fund with respect to which this form is furnished that are made after December 31, 2011, the entity identified in Part I:

- Has been bound by a distribution agreement that contained a general prohibition on the sale of debt or securities to U.S. entities and U.S. resident individuals and is currently bound by a distribution agreement that contains a prohibition of the sale of debt or securities to any specified U.S. person, passive NFFE with one or more substantial U.S. owners, or nonparticipating FFI.
- L Is currently bound by a distribution agreement that contains a prohibition on the sale of debt or securities to any specified U.S. person, 0 passive NFFE with one or more substantial U.S. owners, or nonparticipating FFI and, for all sales made prior to the time that such a restriction was included in its distribution agreement, has reviewed all accounts related to such sales in accordance with the procedures identified in Regulations section 1.1471-4(o) applicable to preexisting accounts and has redeemed or retired any, or oaused the restricted fund to transfer the securities to a distributor that is a participating FFI or reporting Model 1 FFI securities which were sold to specified U.S. persons, passive NFFEs with one or more substantial U.S. owners, or nonparticipating FF(s,

Part XII Nonreporting IGA FFI 26

I certify that the entity identified in Part I:

· Meets the requirements to be considered a nonreporting financial institution pursuant to an applicable IGA between the United States and

is treated as a

(if applicable, see instructions);

. If you are a trustee documented trust or a sponsored entity, provide the name of the trustee or sponsor

The trustee is: U.S. Foreign

Part XIII Foreign Government, Government of a U.S. Possession, or Foreign Central Bank of Issue

27 I certify that the entity identified in Part I is the beneficial owner of the payment, and is not engaged in commercial financial activities of a type engaged in by an insurance company, custodial institution, or depository institution with respect to the payments, accounts, or obligations for which this form is submitted (except as permitted in Regulations section 1.1471-6(h)(2)).

Part XIV International Organization

Check box 28a or 28b, whichever applies,

- 28a I certify that the entity identified in Part I is an international organization described in section 7701(a)(18).
 - b I certify that the entity identified in Part I:
 - Is comprised primarily of foreign governments;

. Is recognized as an intergovernmental or supranational organization under a foreign law similar to the international Organizations immunities Act or that has in effect a headquarters agreement with a foreign government;

. The benefit of the entity's income does not inure to any private person; and

Is the beneficial owner of the payment and is not engaged in commercial financial activities of a type engaged in by an insurance company. custodial institution, or depository institution with respect to the payments, accounts, or obligations for which this form is submitted (except as permitted in Regulations section 1.1471-6(h)(2)).

Part XV **Exempt Retirement Plans**

Check box 29a, b, c, d, e, or f, whichever applies.

- 29a I certify that the entity identified in Part I:
 - . Is established in a country with which the United States has an income tax treaty in force (see Part III if claiming treaty benefits);
 - . Is operated principally to administer or provide pension or retirement benefits; and

. Is entitled to treaty benefits on income that the fund derives from U.S. sources (or would be entitled to benefits if it derived any such income) as a resident of the other country which satisfies any applicable limitation on benefits requirement.

I certify that the entity identified in Part I: b

. Is organized for the provision of retirement, disability, or death benefits (or any combination thereof) to beneficiaries that are former employees of one or more employers in consideration for services rendered;

No single beneficiary has a right to more than 5% of the FFI's assets;

· Is subject to government regulation and provides annual information reporting about its beneficiaries to the relevant tax authorities in the country in which the fund is established or operated; and

- Is generally exempt from tax on investment income under the laws of the country in which it is established or operates due to its status (l)as a retirement or pension plan;
- (II) Receives at least 50% of its total contributions from sponsoring employers (disregarding transfers of assets from other plans described in this part, retirement and pension accounts described in an applicable Model 1 or Model 2 IGA, other retirement funds described in an applicable Model 1 or Model 2 IGA, or accounts described in Regulations section 1.1471-5(b)(2)(i)(A));
- (iii) Either does not permit or penalizes distributions or withdrawals made before the occurrence of specified events related to retirement, disability, or death (except rollover distributions to accounts described in Regulations section 1.1471-5(b)(2)(i)(A) (referring to retirement and pension accounts), to retirement and pension accounts described in an applicable Model 1 or Model 2 IGA, or to other retirement funds described in this part or in an applicable Model 1 or Model 2 IGA); or
- (iv) Limits contributions by employees to the fund by reference to earned income of the employee or may not exceed \$50,000 annually.
- C) certify that the entity identified in Part I:

. Is organized for the provision of retirement, disability, or death benefits (or any combination thereof) to beneficiaries that are former employees of one or more employers in consideration for services rendered;

- Has fewer than 50 participants;
- Is sponsored by one or more employers each of which is not an investment entity or passive NFFE;

• Employee and employer contributions to the fund (disregarding transfers of assets from other plans described in this part, retirement and pension accounts described in an applicable Model 1 or Model 2 IGA, or accounts described in Regulations section 1.1471-5(b)(2)(i)(A)) are limited by reference to earned income and compensation of the employee, respectively;

· Participants that are not residents of the country in which the fund is established or operated are not entitled to more than 20% of the fund's assets; and

Is subject to government regulation and provides annual information reporting about its beneficiaries to the relevant tax authorities in the country in which the fund is established or operates.

. The applicable IGA is a Model 1 IGA or a Model 2 IGA; and

under the provisions of the applicable IGA or Treasury regulations
Pant XV Exempt Retirement Plans (continued)

d I certify that the entity identified in Part I is formed pursuant to a pension plan that would meet the requirements of section 401(a), other than the requirement that the plan be funded by a trust created or organized in the United States.

e I certify that the entity identified in Part I is established exclusively to earn income for the benefit of one or more retirement funds described in this part or in an applicable Model 1 or Model 2 IGA, or accounts described in Regulations section 1.1471-5(b)(2)(i)(A) (referring to retirement and pension accounts), or retirement and pension accounts described in an applicable Model 1 or Model 2 IGA.

f l certify that the entity identified in Part I:

 Is established and sponsored by a foreign government, international organization, central bank of issue, or government of a U.S. possession (each as defined in Regulations section 1.1471-6) or an exempt beneficial owner described in an applicable Model 1 or Model 2 IGA to provide retirement, disability, or death benefits to beneficiaries or participants that are current or former employees of the sponsor (or persons designated by such employees); or

 Is established and sponsored by a foreign government, international organization, central bank of issue, or government of a U.S. possession (each as defined in Regulations section 1.1471-6) or an exempt beneficial owner described in an applicable Model 1 or Model 2 IGA to provide retirement, disability, or death benefits to beneficiales or participants that are not current or former employees of such sponsor, but are in consideration of personal services performed for the sponsor.

RETUXED Entity Wholly Owned by Exempt Beneficial Owners

30 I certify that the entity identified in Part I:

· Is an FFI solely because it is an investment entity;

• Each direct holder of an equity interest in the investment entity is an exempt beneficial owner described in Regulations section 1.1471-6 or in an applicable Model 1 or Model 2 IGA;

Each direct holder of a debt interest in the investment entity is either a depository institution (with respect to a loan made to such entity) or an
exempt beneficial owner described in Regulations section 1.1471-6 or an applicable Model 1 or Model 2 IGA.

Has provided an owner reporting statement that contains the name, address, TiN (if any), chapter 4 status, and a description of the type of
documentation provided to the withholding agent for every person that owns a debt interest constituting a financial account or direct equily
interest in the entity; and

• Has provided documentation establishing that every owner of the entity is an entity described in Regulations section 1,1471-6(b), (c), (d), (e), (f) and/or (g) without regard to whether such owners are beneficial owners.

RartXVIII Territory Financial Institution

31 I certify that the entity identified in Part I is a financial institution (other than an investment entity) that is incorporated or organized under the laws of a possession of the United States.

RantXVIII Excepted Nonfinancial Group Entity

32 I certify that the entity identified in Part I:

• Is a holding company, treasury center, or captive linance company and substantially all of the entity's activities are functions described in Regulations section 1.1471-5(a)(6)(I)(C) through (E);

Is a member of a non(inancial group described in Regulations section 1.1471-5(e)(6)(I)(B);

. Is not a depository or custodial institution (other than for members of the entity's expanded affiliated group); and

• Does not function (or hold itself out) as an Investment fund, such as a private equily fund, venture capital fund, leveraged buyout fund, or any investment vehicle with an investment strategy to acquire or fund companies and then hold interests in those companies as capital assets for investment purposes.

PartXIX Excepted Nonfinancial Start-Up Company

33 I certify that the entity identified in Part I:

• Was formed on (or, in the case of a new line of business, the date of board resolution approving the new line of business)

(date must be less than 24 months prior to date of payment);

 Is not yet operating a business and has no prior operating history or is investing capital in assets with the intent to operate a new line of business other than that of a financial institution or passive NFFE;

. Is investing capital into assets with the intent to operate a business other than that of a financial institution; and

 Does not function (or hold liself out) as an investment fund, such as a private equity fund, venture capital fund, leveraged buyout fund, or any investment vehicle whose purpose is to acquire or fund companies and then hold interests in those companies as capital assets for investment purposes.

Part XX Excepted Nonfinancial Entity in Liquidation or Bankruptcy

34 I certify that the entity identified in Part I:

- . Filed a plan of liquidation, filed a plan of reorganization, or filed for bankruptoy on
- During the past 5 years has not been engaged in business as a financial institution or acted as a passive NFFE;

 Is either liquidating or emerging from a reorganization or bankruptcy with the intent to continue or recommence operations as a nonfinancial entity; and

 Has, or will provide, documentary evidence such as a bankruptcy filling or other public documentation that supports its claim if it remains in bankruptcy or liquidation for more than 3 years. 36

Part XXI 501(c) Organization

35 I certify that the entity Identified in Part I is a 501(c) organization that:

• Has been issued a determination letter from the IRS that is currently in effect concluding that the payee is a section 501(c) organization that is dated ______; or

• Has provided a copy of an opinion from U.S. counsel certifying that the payee is a section 501(c) organization (without regard to whether the payee is a foreign private foundation).

Part XXII Nonprofit Organization

I certify that the entity identified in Part I is a nonprofit organization that meets the following requirements.

- . The entity is established and maintained in its country of residence exclusively for religious, charitable, scientific, artistic, cultural or educational purposes;
- The entity is exempt from income tax in its country of residence;
- . The entity has no shareholders or membars who have a proprietary or beneficial interest in its income or assets;

 Neither the applicable laws of the entity's country of residence nor the entity's formation documents permit any income or assets of the entity to be distributed to, or applied for the benefit of, a private person or noncharitable entity other than pursuant to the conduct of the entity's charitable activities or as payment of reasonable compensation for services rendered or payment representing the fair market value of property which the entity has purchased; and

• The applicable laws of the entity's country of residence or the entity's formation documents require that, upon the entity's liquidation or dissolution, all of its assets be distributed to an entity that is a foreign government, an integral part of a foreign government, a controlled entity of a foreign government, or another organization that is described in this part or escheats to the government of the entity's country of residence or any political subdivision thereof.

Part XXIII Publicly Traded NFFE or NFFE Affiliate of a Publicly Traded Corporation

Check box 37a or 37b, whichever applies.

37a 🗌 I certify that:

• The entity identified in Part I is a foreign corporation that is not a financial institution; and

- b I certify that:
 - . The entity identified in Part I is a foreign corporation that is not a financial institution;

• The entity identified in Part I is a member of the same expanded affiliated group as an entity the stock of which is regularly traded on an established securities market;

• The name of the entity, the stock of which is regularly traded on an established securities market, is ; and

. The name of the securities market on which the stock is regularly traded is

Part XXIV Excepted Territory NFFE

38 🗌 I certify that:

- . The entity identified in Part I is an entity that is organized in a possession of the United States;
- . The entity identified in Part I:
 - (I) Does not accept deposits in the ordinary course of a banking or similar business;
 - (ii) Does not hold, as a substantial portion of its business, financial assets for the account of others; or
 - (iii) Is not an insurance company (or the holding company of an insurance company) that issues or is obligated to make payments with respect to a financial account; and
- All of the owners of the entity identified in Part I are bona fide residents of the possession in which the NFFE is organized or incorporated.

Part XXV Active NFFE

39 I certify that:

- . The entity identified in Part I is a foreign entity that is not a financial institution;
- . Less than 50% of such entity's gross income for the preceding calendar year is passive income; and
- Less than 50% of the assets held by such entity are assets that produce or are held for the production of passive income (calculated as a weighted average of the percentage of passive assets measured quarterly) (see instructions for the definition of passive income).

Part XXV Passive NFFE

40a I certify that the entity identified in Part I is a foreign entity that is not a financial institution (other than an investment entity organized in a possession of the United States) and is not certifying its status as a publicly traded NFFE (or affiliate), excepted territory NFFE, active NFFE, direct reporting NFFE, or sponsored direct reporting NFFE.

Check box 40b or 40c, whichever applies.

- b 🔲 I further certify that the entity identified in Part I has no substantial U.S. owners (or, if applicable, no controlling U.S. persons); or
- c I further certify that the entity identified in Part I has provided the name, address, and TIN of each substantial U.S. owner (or, if applicable, controlling U.S. person) of the NFFE in Part XXIX.

A1 I certify that the entity identified in Part I:

- . Is a member of an expanded affiliated group;
- · Does not maintain financial accounts (other than accounts maintained for members of its expanded affiliated group);
- Does not make withholdable payments to any person other than to members of its expanded alillated group;

Does not hold an account (other than depository accounts in the country in which the entity is operating to pay for expenses) with or receive
payments from any withholding agent other than a member of its expanded affiliated group; and

• Has not agreed to report under Regulations section 1.1471-4(d)(2)(i)(C) or otherwise act as an agent for chapter 4 purposes on behalf of any financial institution, including a member of its expanded affiliated group.

Part XXVIII Sponsored Direct Reporting NFFE (see instructions for when this is permitted)

42 Name of sponsoring entity:

43 I certify that the entity identified in Part I is a direct reporting NFFE that is sponsored by the entity identified on line 42.

Part XXIX Substantial U.S. Owners of Passive NFFE

As required by Part XXVI, provide the name, address, and TIN of each substantial U.S. owner of the NFFE. Please see the instructions for a definition of substantial U.S. owner. If providing the form to an FFI treated as a reporting Model 1 FFI or reporting Model 2 FFI, an NFFE may also use this part for reporting its controlling U.S. persons under an applicable IGA.

Name	Address	TIN
	······································	

Part XXX Certification

Under penalties of perjury, I declare that I have examined the information on this form and to the best of my knowledge and belief it is true, correct, and complete. I further certify under penalties of perjury that:

- The entity identified on line 1 of this form is the beneficial owner of all the income to which this form relates, is using this form to certify its status for chapter 4 purposes, or is a merchant submitting this form for purposes of section 6050W;
- · The entity identified on line 1 of this form is not a U.S. person;
- The income to which this form relates is: (a) not effectively connected with the conduct of a trade or business in the United States, (b) effectively connected but is not subject to tax under an income tax treaty, or (c) the partner's share of a partnership's effectively connected income; and
- · For broker transactions or barter exchanges, the benelicial owner is an exempt foreign person as defined in the instructions.
- Furthermore, I authorize this form to be provided to any withholding agent that has control, receipt, or custody of the income of which the entity on line 1 is the beneficial owner or any withholding agent that can disburse or make payments of the income of which the entity on line 1 is the beneficial owner.

I agree that I will submit a new form within 30 days if any certification on this form becomes incorrect.

Sign Here

ignature of malvidual authorized to sign for beneficial owner

Omar Hammoud Print Name

04-15-2021

Date (MM-DD-YYYY)

I certify that I have the capacity to sign for the entity identified on line 1 of this form.

Proposal Free on Board Confirmation

Confidential Information

Project CWF 2019-04 Process Air Compressor

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Confirmation Letter for Free on board

This is to confirm that APGN Inc. accepts the following:

"2.5. All pricing in the proposal shall be free on board the project site, located at 345 East Shore Parkway, New Haven, CT 06405"

rend Omar Hammoud

President & CEO

Confidential Information

Confidential Information

1. Proposal Submittal

Confidential Information

a. Scope **Confidential Information** Page 34

1. Equipment Proposal

Confidential Information

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

High Speed Turbo Blower

Bid Scope of Supply Proposal # 11395

Submitted by:

APGN Inc. dba APG - Neuros

Neuros Turbo Blower Core

APGN Inc. dba APG-Neuros

1270 Michèle-Bohec, Blainville, Québec J7C 5S4, Canada, Tel : (450) 939-0799 www.apg-neuros.com

APGN Revision Date:July-11-2019

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Reference: Section 44 42 19.05– High Speed Turbo Air Compressors – Addendum 1 & 2

Subject: Request for Proposal - Supply of Process Aeration Equipment

Dear Gabriel,

APG-Neuros is pleased to submit the following proposal in response to the above referenced inquiry.

APG-Neuros Turbo Blower Scope of Supply:

- A. APGN Inc, dba APG-Neuros confirms that our proposal package, for providing Six (6) factory assembled APGN500 Single Core High Speed Turbo Blowers, is in full compliance with the RFP, and the Technical Requirements in Section 44 42 19.05 "with no exceptions" and exceeds the RFP requirements, to be installed *indoors*, rated for conditions as shown on the specification, complete with <u>integrated components</u> as follows:
 - Blower Core;
 - o High Efficiency Forged Aluminum Impeller
 - Permanent Magnet Synchronous Motor
 - Magnetic Bearing
 - o Titanium Shaft
 - Internal vibration and dynamic effect Absorption Mounts
 - Internal Expansion Joint
 - Blower Local Control Panel;
 - o 10" HMI Touch Screen
 - PLC Based Controller
 - Uninterruptible Power Supply for PLC Industrial grade (10 minutes)
 - Provisions for Remote Control capability via Ethernet, LAN or Hard wiring
 - Vacon Variable Frequency Drive and Inverter
 - UL, CE & CSA certified
 - o Built in Speed measurement
 - o 3ph/60Hz/480 Volts
 - Harmonic Filter
 - o Passive type meets IEEE 519 Total Harmonic Distortion
 - o Integrated inside the blower enclosure (Optional At no additional cost)

APG-Neuros Proprietary Information Provided in Strict Confidence

APGN Publication: APGN-SP-FORM-194-E.05 Bid Scope of Supply	APGN Revision Date: July-11-2019
---	----------------------------------

- Equipment Sensors & Instruments;
 - Temperature sensors for motor, bearing, inlet and discharge air flow
 - o Pressure sensors for inlet and discharge conditions
 - Pressure sensor and alert for air filter condition
 - o Built in Flow Indication
 - o Built in vibration sensor and transmitter (Optional At no additional cost)
- All above components within a sound attenuating enclosure with;
 - o 24" Flanged Inlet
 - 16" Discharge Expansion Cone
 - o Inlet air filters
- **B.** Each blower is complete with following ship-loose items:
 - One (1) Blow-off bypass valve to blow off air flow during start/shutdown sequence
 - One (1) Flanged Blow-off silencer to silence air flow during start/shutdown sequence
 - One (1) Discharge Check Valve Wafer, 16" (Cast Iron Body)
 - One (1) Electrically Actuated Butterfly Valve Lugged, 16" (Carbon Steel Body)
 - One (1) Flexible connector for discharge (w/retaining rings and control rods), 16"
 - One (1) Flexible connector for discharge aeration piping prior to the main air header (w/retaining rings and control rods), 16"
 - One (1) Flexible connector for inlet (w/retaining rings and control rods), 24"
- **C.** Master Control Panel
 - One (1) Master Control Panel Allen Bradley PLC CompactLogix L7 series to control the blowers.
- D. Submittal Information: Copies as required
 - Qualifications of APG-Neuros
 - Quality of construction
 - Power Guarantee
 - Product Data
 - Detailed Drawings
 - Quality Control
 - Certified Blower test
 - Operation and Maintenance Manuals
- E. Payment Terms:

As per Section 00 41 65 – 4. Project – 4.1.5: Payment and Retainage Terms.

- F. Proposal Validity and Seller Terms and Conditions
 - This proposal, unless otherwise specified herein this document, is subject to the Seller's General Terms and Conditions of Sales available upon request.
 - Final price is subject to change contingent on final conformed specification review, if applicable.

APGN Publication: APGN-SP-FORM-194-E.05 Bid Scope of Supply	APGN Revision Date: July-11-2019
---	----------------------------------

G. Factory Inspection and Tests

- Factory Acceptance Performance Test (As per Section 44 42 19 2.07 Source Quality Control – A. Factory Testing)
- All air and ground transportation, lodging, miscellaneous travel expenses, and meals for two representatives of Owner and the Engineer for a total of 3 people are included.

H. Warranty

(As per Section 44 42 19 – 1.09 Warranty)

- Extended warranty for an additional nine (9) year warranty for a total of ten (10) years (Comprehensive Warranty) at No Additional Cost to the Greater New Haven Water Pollution Control Authority
- Annual Service Contract extended for three (3) years from year 2 through 5 at No Additional Cost to the Greater New Haven Water Pollution Control Authority
- I. Technical Support

(As per Section 44 42 19 – 3.03 Manufacturer's services)

- 1 site visit of 5 person-days for installation assistance.
- 1 site visit of 5 person-days for functional testing.
- 1 site visit of 5 person-days for demonstration testing.
- 1 site visit of 2 person-days for PAC Local Control Panel and instrumentation communicate with MCP prior to startup.
- 1 site visit of 5 person-days for coordination with SCADA.
- 1 site visit of 4 person-days for pre-training prior to startup. Training shall not commence until a detailed lesson plan for each training activity has been reviewed and accepted by Engineer.
- 1 site visit of 8 person-days for Operation and Maintenance Training.
- Training shall consist of 2 shifts for Operators and 2 shifts for maintenance staff at a minimum. Training shall not commence until a detailed lesson plan for each training activity has been reviewed and accepted by Engineer.

J. Spare parts

One (1) spare set of inlet filters for each blower provided

Two (2) sets of all special tools required for operation and maintenance, and complete assembly or disassembly of the Turbo Blower Equipment.

K. Quality Assurance / Certifications

- APG-Neuros Turbo Blower is UL1450/CSA & CE certified
- APG-Neuros production system is certified to ISO 9001

L. Freight

• F.O.B. Jobsite

APG-Neuros Proprietary Information Provided in Strict Confidence

M. Delivery Lead time

- Submittals shall be issued two (2) weeks from manufacturers acceptance of PO
- Blowers shall be shipped eight (8) to ten (10) weeks from approval of shop drawings.
- N. Exclusions

The following items are not included in this scope of supply and shall be the responsibility of others.

- Blower Installation
- Piping for suction, discharge, gauge, vent, seal, etc. and miscellaneous fittings
- External Air filter not included

We appreciate the opportunity to quote APG-Neuros Turbo Blowers and look forward to a successful project.

For any questions regarding Sales, Procurement, Service and Warranty information, please contact:

APG-Neuros Sales Department 1270 Michèle-Bohec Blainville, Québec J7C 5S4 Phone 450-939-0799 Fax 450-939-2115 sales@apg-neuros.com

APG-Neuros Proprietary Information Provided in Strict Confidence

2. Delivery Schedule

- Submittals shall be issued Two (2) weeks from manufacturers acceptance of PO
- Blowers shall be shipped Eight (8) to Ten (10) weeks from approval of shop drawings.

Confidential Information

b. Exceptions

APGN Inc, dba APG-Neuros confirms that our proposal is in full compliance <u>"with</u> <u>no exceptions"</u> with RFP requirements and Addendum No.1 & 2 with the highest quality, performance, durability, and longevity of the equipment.

Confidential Information

1. No Exceptions Statement

Confidential Information

Project CWF 2019-04 Process Air Compressor

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: "No Exceptions" Statement

This is to confirm that APGN Inc. submittal package are in full compliance with the technical specification and confirms that the proposed blowers' configuration and the equipment provided shall meet the performance requirements as defined in this Request for Proposal (RFP), Addendum No.1 & 2 and the Manufacturer's completed Guaranteed Wire Power Table.

noul

Omar Hammoud

President & CEO

Confidential Information

2. Recommendations

Confidential Information

The proposed equipment from APG Neuros exceeds the specifications and offers higher performing options which would reduce the cost of installation and reduce the footprint of the blower. The following items are not required for the APGN500 proper functioning:

- Harmonic Filter: APG-Neuros provides the option to have the harmonic filter internal to the blower (at no additional cost) required to reduce harmonics negative effect on the plant electrical system. Our harmonic filters internally installed in our enclosure will reduce footprint required in the blower room and will eliminate external electrical cabling requirements and reduce installation costs. The other manufacturers do not include a harmonic filter in their product. Externally mounted harmonic filters increase the required footprint and involves external cabling and additional installation cost.
- External Filter/Silencer: APG-Neuros High Speed Turbo Blower, does not require external inlet filter, external inlet silencer or external discharge silencer in addition to an external inlet silencer.
 Providing external components increases the installation and maintenance costs and requires more footprint. Ourproposed equipment meets the 80 dbA sound level without the need for the inlet silencer.
- Programmable Logic Control (PLC) : APG-Neuros utilizes a true dedicated high capability PLC with HMI color touch screen. It is known that the other manufacturers substitutes the PLC with proprietary basic microcommunicator CPU based controls. CPU controller board is a manufacturer purpose design microprocessor with limited processing capability, internal inputs, outputs and memory. These outputs and inputs are very limiting from a program perspective with no possibility to set up the control system to adapt and respond to changing operating requirements and cannot process

Confidential Information

individual error messages or warnings and dynamically adjust and continue uninterrupted operation. The basic issue with the CPU control is that there is not enough programming and communication capability to adapt with the facilty control aricheture for a reliable operation around the year with the changing operating conditions. APG-Neuros dedicated PLC for each blower provides all the above services.

- Vibration Sensor and Bearing Temperature Sensor : APG-Neuros provides bearing temperature sensor and a Vibration sensor in each of the turbo blowers at no additional cost. Unlike the Other manufacturers, APG-Neuros Turbo Blowers continuously monitor core vibration and bearing temperature to protect the blower and prevent any possible major component damage. APG-Neuros Blower includes a vibration sensor and transmitter to protect the core and continuously monitor the vibration level of the blower core which is recommended as a method to measure and trend blower components health.
- Heat Load Rejection : APG-Neuros turbo blowers provides an air cooling system completely integral to the blower enclosure with no external connection. Ithe heat can be discharged to the blower room or to an external pipe. Other manufacturer are know to exhaust hot air to the blower room creating major losses in the blower efficiency and remarkably raising the room temperature which may affect the blowers and other electrical components in the blower room. or require external piping arrangement to exhaust hot air to the outside which require more pipework, time and maintenance.

Confidential Information

3. Necessary Components not specified

The proposed Equipment exceeds the specifications and requires less items as explained in the Recommandation section. No other components are required for proper functioning of the equipment as it is a plug and play equipment.

We are offering the following items that are not listed in the specifications:

- Vibration Sensor and Bearing Temperature at no additional cost
- Integrated Harmonic Filter at no additional cost
- 10 years warranty at no additional cost
- No heat rejection to the blower room

Confidential Information

c. Installation List

We offer a most proven product with more than 1500 blowers with over 15 years in operation at more than 600 WWTPs in North America. Over 30% of our customers are repeat customers in the United States and Canada. Our continuous technological improvements applied successfully lead to our very reliable operation, with measured availability level over 99.7%.

We have more than 20 blowers installed with Jacobs in 9 WWTPS, some of which have been running for the last 12 years.

Our installation in West Haven, CT is an example of successful experience as it has been running for the last 10 years with over 99.7% reliability.

Confidential Information

Fox Metro, IL Testimonial

"The Fox Metro Water Reclamation District has four dual core 700 HP blowers and 3 250 HP blowers. Wondering if this plant and our firm can be highlighted in any publications or marketing materials. I know the client is very happy with APG Neuros." Mark Halm,

Project Manager,

Deuchler.

Monroe County Water Resource Recovery, NY Testimonial

"With great customer service and 24/7, tailored yearly PM program with your staff working on site that truly cares, detailed and specific department training program you provide giving us long reliable lasting equipment, every business should consider your company for their next equipment selection."

David Sam Tuccio,

Monroe County Water Resource Recovery,

Rochester, NY

Confidential Information

Our APGN500 Magnetic Bearing Blower comes with SKF magnetic bearings and highspeed electric motors which are ideal for applications demanding high speeds and low vibration and offers 130,000 magnetic bearings and high-speed electric motor references in operation across many industries.

We have one unit 1 MW Magnetic Bearing installation at Metro Denver since December 2019. The product is doing great and Metro Denver is considering adding more units in the future.

We have a contract with Central Contra Costa SD in California to deliver 3 x 1.1 MW Magnetic Bearing blowers in Q2 2022.

We have a contract with City of Las Vegas with Jacob's leadership to deliver 4 x 1.1 MW Magnetic Bearing blowers, one unit during Q2 2022 and three during Q3 2022.

Confidential Information

Market Leader

Over 1,500 units in North America

More than 600 installations

Fleet Reliability Improvement over 10 years

Percentage of Unscheduled Maintenance Incident Rate per 100,000 Operating Hours

eures Proprietary Information

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
06-0001	SNC Lavalin, QC	15-Jul-06	Quebec	1 x NX75-C060					Activated Sludge	Mickael Labrie	Project manager	450-772-0952	mecano@ctbm.ca
06-0002	Hollister, CA	1-Nov-09	California	5 x NX100-C050 4 x NX150-C080	2599	SCFM	11.6	PSIG	GE MBR + Aeration	James Heitzman Jose J. Rodriguez	Project Manager II Operations Supervisor	831-206-0065 831-637-7100	james.heitzman@veolia.co m jose.rodriguez@veoliawater na.com
07-0002	Lynden, WA	4-Jan-07	Washington	2 x NX50-C070	22.6	m3/min	0.62	BarG	Aerobic Digester / Blower not size properly	Michael Kim Robert Patrick	Water/Wastewater Superintendent Maintenance Electrician	360-354-0633 360_815-5769	Kinm@lyndenwa.org patrickr@lyndenwa.org
07-0003	Rupert, ID	26-Feb-08	Idaho	4 x NX300-C060					Extended Aeration Basin	David Joyce	Water Superintendent	208-434-2432	David.Joyce@rupert.id.us
07-0004	Tooele, UT	12-Aug-08	Utah	3 x NX75-C070	37.1	m3/min	0.43	BarG	aerate an oxidation ditch with fine bubble diffusers	Ray Henninger	Superintendent	435-882-1952	rayh@TooeleCity.org
07-0006	SanFelipe, NM	15-Feb-09	New Mexico	2 x NX100-C070	1515	SCFM	8	PSIG	MBS + Aeraion	Larry Hall Marvin Martinez Paul Kennedy	Superintendent Water & Wastewater Specialist EXT Engineer	505-927-9605 505.231.2262	larryh@aquaenviron.com marvin.martinez@soudermil ler.com paul.kennedy@soudermiller .com
07-0007	Roseburgh, OR	2-Jan-08	Oregon	1 x NX75-C050					Activated Sludge	Kevin Bruton	Plant Manager	541-530-7557	Kevin.Bruton@CH2M.com
07-0008	Orangeville, ON	20-Jun-09	Ontario	1 x NX75-C080					extended aeration cells	Jeff Hardy	Wastewater supervisor	519-941-0440 #4701	jhardy@orangeville.ca
07-0009	James River HRSD Lease and buy	1-Aug-07	Virginia	1 x NX200-C070					Activated Sludge	Rob Luma	Superintendent	757-833-1740	rluma@hrsd.com
07-0010	Clark County-Lease and buy	28-Oct-10	Nevada	1 x NX100-C070				\bigcirc		Will Smith David A. Pearce	Plant Operations Supervisor Maintenance & Lift Station Supervisor	702-668-8441/ cell: 702-210- 3399 702)622-2942	wsmith@cleanwaterteam.c om dpearce@cleanwaterteam.c om
07-0012	Kingston Ravenview, ON	1-Jun-08	Ontario	4 x NX150-C100					BAF plant	Stephen King	Maintenance Supervisor	613-546-1181 #2166	sking@utilitieskingston.com
08-0001	Boisbriand, QC	7-Jul-09	Quebec	3 x NX125-C100				ľ	Biofiltration	Eric Faubert	Superviseur unsine traitement des eaux	450-435-1954 # 346	efaubert@ville.boisbriand.q c.ca
08-0002	Eloy, AZ	18-Aug-08	Arizona	3 x NX75-C070				l	2 x Plant Package	Jack Cook Jr.	Superintendent	520-483-4465	jack.cookjr@corecivic.com
08-0004	Brightwater, WA	27-Oct-10	Washington	7 x NX300-C080	5000	SCFM	12	PSIG	GE MBR	Blaine Rambough	Wastewater Maintenance Supervisor	206-579-2000	blaine.rambough@kingcoun ty.gov
08-0005	City of Benicia, CA	1-Nov-08	California	3 x NX75-C070	1300	SCFM	8	PSIG	Activated Sludge	Jeff Gregory	WWTP Superintendent	707-590-3322	Jeff.Gregory@ci.benicia.ca. us
08-0006	Richmond, UT	28-Jun-09	Utah	2 x NX150-C070	2180	SCFM	8.4	PSIG	MBR	Troy Hooley Jeremy Kimpton	Plant Manager City Administrator	435-764-5454 435-994-1572	thooley@richmondutah.org jkimpton@richmondutah.org
08-0007	Pumpkinvine, GA	17-Feb-10	Georgia	3 x NX100-C070 2 x NX75-C070	1356	SCFM	9.11	PSIG		Russell Kelly Mark Filer	Wastewater Division Manager Plant Superintendent	C:404-536-0966 O:678-224-4082 C:678-207-8582	rkelly@paulding.gov mfiler@paulding.gov
8000-80	Blaine Lighthouse	13-May-10	Washington	4 x NX75-C080	893	SCFM	10.22	PSIG	Activated Sludge	Matt Luttrell	Lead Operator	360-332-3718	MLutrell@cityofblaine.com

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
08-0009	United Oil Recovery, CT	19-Nov-09	Connecticut	1 x NX100-C070						Joe Renkiewicz Eric Congdon	Manager	203-627-6190 203-631-0343	joe.renkiewicz@tradebe.co m eric.congdon@tradebe.com
08-0010	West Travis	14-Jul-09	Texas	2 x NX50-C040	1395	SCFM	5	PSIG		Michael Sarot	General Manager	512-897-7898	msarot@wtcpua.org
08-0011	Alderwood-Picnic Point	21-Jul-09	Washington	4 x NX100-C060 4 x NX75-C080	2100	SCFM	8	PSIG	5	Joe Carter Manuel Semana Kevin Sykes Corey Ott	WWTF Manager Senior Facilities Mechanic SCADA / Electrical Manager SCADA Systems Lead	425-787-1940 Ext. 8311 425-787-3271 425-248-0029	jcarter@awwd.com MSemana@awwd.com KSykes@awwd.com cott@awwd.com
08-0012	King County South Point WWTP	1-Aug-09	Washington	2 x NX100-C060	2200	SCFM	8.11	PSIG	\bigvee	Lester Van Gerlder Bill Bailey	Maintenance Supervisor Mechanical Lead	206-263-1827 206-263-1739	Lester.vangelder@kingcoun ty.gov william.bailey@kingcounty.g ov
08-0013	NAPA Sanitation district	1-Mar-09	California	2 x NX300-C080					Activated Sludge	Mark C. Egan Steve Palko	Plant Maintenance Supervisor Equipment Maintenance Specialist	707-258- 6020#607 707-312-1774	MEgan@napasan.com spalko@napasan.com
08-0014	Rock Creek, OR	5-Oct-09	Oregon	1 x NX300-C070	6000	SCFM	8.7	PSIG	Activated Sludge	Chad King			kingc@cleanwaterservices.
08-0015	Lake Haven, WA	29-Jan-09	Washington	1 x NX300-C080	5512	SCFM	11.41	PSIG	Activated Sludge	John Barton Brian Richardson John Kercher	Wastewater Operations Manager Wastewater Operations Supervisor	253-945-1642 253-945-1660 253-561-1357	jbarton@lakehaven.org jbarton@lakehaven.org brichardson@lakehaven.org jkercher@lakehaven.org
08-0016	Eagle Mountain, UT	9-Jun-09	Utah	1 x NX75-C070		D				Mach Straw Brody Kinder	Plant Manager Waste Water Supervisor	801-789-6678 801-789-6691	mstraw@emcity.org bkinder@emcity.org
08-0017	Las Vegas Valley Phase 1. NV	1-Jun-10	Nevada	2 x NX300-C080						Joseph Lin	Engineer	702-875-7062	joseph.lin@lvvwd.com
08-0018	EMWD-Moreno Valley-SCATT	1-Jan-10	California	1 x NX300-C060	6000	SCFM	8.8	PSIG		Matthew Melendrez Greg Henson	Director of Water Reclamation Plant Manager	951-928-3777 #4303 951-928-3777 #7200	melendrm@emwd.org
08-0019	Granby, QC	1-Apr-13	Quebec	1 x NX300-C060						Claude Ouimette	Coordonateur divison des eaux	450-776-8363	couimette@ville.granby.qc.c a
08-0020	Pinellas County Utilities, FL	8-Jul-09	Florida	2 x NX300-C070	$\langle \langle \rangle$				Aeration	lvy Drexler Mike McRorey Chuck Fry	Plant Manager Assistant Plant Manager Maintenance Manager	P:727-582-7023 C:774-991-2009 P:727-582-7009 C:806-778-2129	idrexler@pinellascounty.org mmcrorey@pinellascounty. org cfry@co.pinellas.fl.us
08-0021	Gig Harbour	30-Oct-09	Washington	2 x NX50-C070 2 x NX75-C070 1 x NX100-C070			<u>.</u>			Darrell Winans	Plant Supervisor	253-851-8999	winansd@cityofgigharbor.n et
08-0022	City of Bremerton WWTP	26-Jan-09	Washington	1 x NX100-C050					Activated Sludge	Rick Zimburean	Maintenance Supervisor	360-473-5449	rick.zimburean@ci.bremerto n.wa.us
08-0023	Kingston West WWTP-Cataraqui	23-Sep-09	Ontario	2 NX150-C070	3000	SCFM	10	PSIG	Activated Sludge	Wayne MacKenize	Subforeperson	613-546-1181	wmackenize@utilitieskingst on.com
09-0001	Rockland(Buy America)	23-Sep-10	Maine	3 x NX100-C070	1900	SCFM	9.5	PSIG	Activated Sludge	Terry Pinto	Plant Director	207-594-0324	tpinto@ci.rockland.me.us
		7	2										

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
09-0002	Throops(Buy America), PA	14-Dec-11	Pennsylvani a	1 x NX200-C070 3 x NX100-C070	4000	SCFM	9.1	PSIG		Michael Matechak Robert Davis	Executive Director Plant Superintendent	570-489-7563 570-489-7563	DIRECTOR@LRBSA.COM superintendent@lrbsa.com
09-0003	East Windsor-MUA, NJ	15-Jun-10	New Jersey	2 x NX200-C070					Activated Sludge	Darren Zuikowski	East Windsor MUA Utilities O&M Manager	609-443-7611 # 6612	dzujkowski@eastwindsorm ua.com
09-0004	Webster, MA	24-May-11	Massachuse tts	2 x NX150-C070- 125						William G. Burke	Superintendent	508-949-3865	wburke@webster-ma.gov
09-0005	Franklin, NH	28-Sep-10	New Hampshire	2 x NX150-C060 2 x NX100-C0?0					Activated Sludge	Anthony Brown Ken Noyes	2	603-934-2809 603-528-6746	anthony.brown@des.nh.gov ken.noyes@des.nh.gov
09-0006	Mesquite, NV	28-Jan-11	Nevada	2 x NX150-C070- 125	2000	SCFM	8.8	PSIG	Digester	Randon Potter Randy Woods	Plant Manager Plant Lead operator	702-346-5124 702-232-5001	rpotter@mesquitenv.gov rwoods@mesquitenv.gov
09-0007	Ironhouse, CA	1-Feb-11	California	3 x NX200-C050 3 x NX300-C060	5568	ICFM	5.12	PSIG	GE MBR	Chris Christean	Plant Manager	925-625-2279	christean@isd.us.com
09-0008	South Windsor, CT	7-Sep-10	Connecticut	3 x NX100-C050	2700	SCFM	7.46	PSIG	MLE process	Tim Friend	Plant Supervisor	860-289-0185	Timothy.Friend@southwind sor.org
09-0009	Stafford, CT	1-Jan-11	Connecticut	2 x NX50-C050	1400	CFM	6.4	PSIG		Rick Hartenstein	Superintendent	860-684-4914	hartenstein@staffordct.org
09-0010	Stuart Draft, VA	21-Aug-10	Virginia	2 x NX150-C080	2336	SCFM	9.8	PSIG	Activated Sludge	Tony Morse Doug Ayres	Director of Treatment Operations Plant Supervisor	540-245-5229 P-540-337-1880 C-540-490-2425	tmorse@co.augusta.va.us dayres@co.augusta.va.us
09-0011	American Bottom, IL	28-Sep-10	Illinois	1 x NX600-C080	9600	SCFM	12.5	PSIG		Kelly R. Smith	Operations Manager	618-337-1710 Ext 209	kellys@americanbottoms.co m
09-0012	West Haven, CT	19-Aug-11	Connecticut	5 x NX200-C050	4855	SCFM	7.5	PSIG	Activated Sludge	Jack Crosby	Superintendent	203- 937-3637	JCrosby@westhaven- ct.gov
09-0013	Proctors Creek, VA	30-Jul-12	Virginia	6 x NX300-C080 4 x NX300-C060	6100	SCFM	8.2	PSIG	IFAS process	Scott Morris Scott Hall	Plant Manager	804-768-7557 804-892-7808	morrissc@chesterfield.gov halljs@chesterfield.gov
09-0014	New Milford, CT	11-Jan-11	Connecticut	1 x NX50-C070						Ken Cook	Instrumentation	860-355-2805 860-488-1810	kcook@nmwpca.org
09-0015	Picton, ON	1-Oct-10	Ontario	4 x NX100-C060	60.9	m3/min	8.8	PSIG	aerate digesters, Storage tanks, Aeration tanks	Landon Wiltshire	Supervisor	613-476-2148	lwiltshire@pecounty.on.ca
09-0016	Plover(#1 assembly in PL), WI	25-Mar-11	Wisconsin	3 x NX150-C070					Activated Sludge	Rich Boden Lyle Lutz	Superintendent Asst Wasterwater Manager	715-345-5259 715-340-2953	rboden@ploverwi.gov llutz@ploverwi.gov
09-0017	Valdosta, GA	25-Feb-11	Georgia	3 x NX75-C070 4 x NX75-C060	J				Activated Sludge	Kenneth Lowe Keith Martin Tom Hess Randy Jones	Assistant Superintendent Plant Superintendent Maintenance Superintendent Maintenance Supervisor	229-333-1855 229-333-1855 229-333-1855 229-333-1855 229-333-1855	klowe@valdostacity.com skmartin@valdostacity.com thess@valdostacity.com rjones@valdostacity.com
09-0018	Parsippany, NJ	12-Jul-11	New Jersey	3 x NX300-C060 2 x NX150-C050	2708	SCFM	6.7	PSIG	BNR Plant	Steven Vetrero Phil Bober Frank Lorito	Maintenance Superintendent Assistant Superintendent	973-428-7593 973-428-7593 973-428-7416	svetrero@parsippany.net pbober@parsippany.net florito@parsippany.net

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
09-0019	EMWD-Phase II APAD	1-Aug-11	California	1 x NX300-C060 1 x NX300-C060	6000	SCFM	8.8	PSIG		Matthew Melendrez Greg Henson	Director of Water Reclamation Plant Manager	951-928-3777 #4303 951-928-3777 #7201	melendrm@emwd.org
09-0020	Jacksonville Beach, FL	9-Oct-09	Florida	3 x NX50-C080 3 x NX200-C080	3200	SCFM	12.5	PSIG	SBR	Chuck Saunders Will Rivers	Maintenance Supervisor Maintenance	904-270-1608 904-333-9535	csaunders@jaxbchfl.net wrivers@jaxbchfl.net
09-0021	James River, VA	18-Oct-10	Virginia	3 x NX300-C060	8400	SCFM	7.5	PSIG		Rob Luma Dean Lowery	Superintendent Electrical & Instrumentation Superintendent	757-833-1740 757-274-4947	rluma@hrsd.com dlowery@hrsd.com
09-0022	Falling Creek, VA	9-Aug-10	Virginia	6 x NX300 -C070	5800	SCFM	8.4	PSIG	IFAS process	Scott Morris Austin French	Plant Manager Chief Plant Operator	804-768-7557 804-717-6093	morrissc@chesterfield.gov FrenchA@chesterfield.gov
09-0024	Moores Creek WWTP, VA	1-Dec-12	Virginia	3 x NX300-C060 2 x NX200-C060	4390	CFM	9.33	PSIG	Activated Sludge	Greg Morris Tim Castillo	Maintenance Manager Operations	434-977- 2970#120	gmorris@rivanna.org
09-0025	Sherbrooke, QC	12-Apr-10	Quebec	1 x NX100-C060						Andre Lacharite		819-564-6241 819-571-6469	Andre.lacharite@ville.sherb rooke.qc.ca
09-0026	South Kingstown, RI	11-Feb-10	Rhode Island	2 x NX100-C050	2768	SCFM	5.25	PSIG	Mix liquor Aeration	Katy Perez	Superintendent	401-788-9772	kperez@southkingstownri.c om
10-0001	Ogdensburg, NY	28-Jul-10	New York	4 x NX50-C050	1050	SCFM	6.8	PSIG		Christian Fout	Water Quality Supervisor	518-578-5677	cfout@danc.org
10-0002	SKF, CA	10-Jun-10	California	2 x NX200-C080 4 x NX300-C070	6300	SCFM	9.17	PSIG	Activated Sludge	Gabriel Jimenez		559-647-1625	gjimenez@skfcsd.org
10-0003	Durham, NH	14-Dec-10	New Hampshire	2 x NX75-C070					Activated Sludge	Dan Peterson	Superintendent	603-868-2274	fax: 603-868-5005
10-0004	Brockville, ON	1-Feb-12	Ontario	3 x NX150-C070						Phil Wood	Chief Operator	613-342-8772	pwood@brockville.com
10-0006	Richland (ARRA), WA	18-Oct-10	Washington	2 x NX300-C080- 250						Steve Brewer	Wastewater Manager	509-942-7481	sbrewer@ci.richland.wa.us
10-0007	Linda County, CA	7-Feb-12	California	2 x NX300-C080	4400	SCFM	11.69	PSIG		Brian Davis John Harvey	Engineer Superintendent	530-743-2482 530-743-2756	bdavis@lindawater.com jharvey@lindawater.com
10-0008	Long Branch, NJ	31-Aug-11	New Jersey	3 x NX125-C070- 125			\mathbf{D}			Joseph Martone	Executive Director	732-222-0500 #116	lbsamartone@comcast.net
10-0009	Boat Harbor-HRSD,	1-Feb-12	Virginia	1 x NX150-C060-			+		Activated Sludge	Ken Sands	Chief Operator	757-244-1670	ksands@hrsd.com
10-0010	Crossville, TN	2-Mar-11	Tennessee	2 x NX150-C070	2950	SCFM	8.56	PSIG	Activated Sludge	Darian Dykes	Manager for Veolia Water	931-484-6257	darian.dykes@veolia.com
10-0011	Modesto Siemens, CA	18-Aug-15	California	4 x NX150-C070	0,				MBR & Aeration Basins	Laura Anhalt, Ben Koehler, Noland Harris, Michael Martin, Randy Loflin,	Wastewater Treatment Plant Manager Utilities Plant Supervisor Maintenance Supervisor Utilities Electrical Supervisor PLC Specialist	209-342-4502 209-577-6288 209-471-0387 209-577-6235 209-577-6200	lanhalt@modestogov.com bkoehler@modestogov.com nharris@modestogov.com mmartin@modestogov.com rloflin@modestogov.com
10-0015	Shelton, WA	17-Aug-11	Washington	5 x NX50-C060					Activated Sludge	Brent Armstrong		360-229-6767	brent.armstrong@shetlonw

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
10-0016	McAllen-North Plant, TX	29-Jun-12	Texas	3 x NX100-C050 5 x NX300-C070	2700	SCFM	5.4	PSIG	Aerobic Digester and Sludge Thickener Aeration	Jose L. Moreno Ramon Trevino	Plant Manager Supervisor	956-681-1780 956-681-1785	jomoreno@mcallen.net Ramon.trevino@mcallen.ne t
10-0017	Ballanger-McKinney, MD	26-Sep-12	Maryland	2 x NX200-C060 2 x NX200-C080 7 x NX300-C050 5 x NX300-C060	5800	SCFM	8.7	PSIG	GE MBR	Robert Money Leo Miller Mike Carlson	Superintendent Maintenance Supervisor Operator	301-600-3417	BMoney@FrederickCounty MD.gov Imiller@frederickcountymd. gov mcarlson@frederickmd.gov
10-0018	Arnprior, ON	15-Feb-11	Ontario	1 x NX50-C060- 30 1 x NX75-C050	1300	AM3/HR	55	KPAG	Activated Sludge	Mike Trumble	Waterworks Supervisor	613-623-4231# 1834	mtrumble@arnprior.ca
10-0019	Garland, TX	29-Mar-11	Texas	1 x NX300-C060 1 x NX300-C070	5800	SCFM	7.8	PSIG		Sherry Hartsock	Maintenance Scheduler	972-205-2717	shartsock@garlandtx.gov
10-0020	Marlborough, MA	17-Jun-11	Massachuse tts	2 x NX100-C060 2 x NX075-C060					diffused aeration in our secondary aeration tanks	Dennis L'Homme	Head Treatment Plant Operator	508-624-6919	dlhomme@marlborough- ma.gov
10-0021	Clark County, NV	28-Oct-10	Nevada	1 x NX300-C070	5800	SCFM	8.4	PSIG	X	Will Smith David A. Pearce	Plant Operations Supervisor Maintenance & Lift Station Supervisor	702-668-8441/ cell: 702-210- 3399 702)622-2942	wsmith@cleanwaterteam.c om dpearce@cleanwaterteam.c om
10-0022	Dryden,NY	28-Feb-12	New York	2 x NX50-C080 2 x NX50-C070 1 x NX50-C060- 30	635	SCFM	10.5	PSIg		David Coish	Chief 3A Operator	607-427-2850	boxerlovers1673@gmail.co m
10-0023	Kimberly Clark, WI	16-Oct-10	Wisconsin	1 x NX500-C100	6500	SCFM	14	PSIG	nonwovens manufacturing process	Michael Born	Supervisor	920-721-4521	mborn@kcc.com
10-0024	Deux-Montagnes, QC	8-Nov-10	Quebec	3 x NX150-C050- 125	3200	ACFM	462	mbarg	Activated Sludge	Benjamin Crampond	Directeur General Adjoint	514-208-5161	benjamin.crampond@aquat ech-inc.com
10-0025	Harris County, TX	8-Dec-10	Texas	3 x NX75-C060						Jose Alfarenga	Lead Operator	832-731-1673	texas@consolidated.net
10-0026	HRSD ARMY BASE, VA	4-Aug-15	Virginia	2 x NX150-C060 5 x NX300-C080	4750	SCFM	11.7	PSIG		Brian McNamara Jeff Powell	Plant Manager Superintendent	757-440-2521 757-440-2523	bmcnamara@hrsd.com jpowell@hrsd.com
10-0028	Gresham, OR	3-Aug-11	Oregon	2 x NX100-C060	1750	SCFM	7.4	PSIG	Activated Sludge	Jeff Egan Adam McClymont	Maintenance Supervisor Plant Manager	503-307-3258	jeff.egan@jacobs.com Adam.McClymont@jacobs. com
10-0029	Granite City, IL	1-Mar-11	Illinois	2 x NX300-C050 1 x NX100-C050	2200	SCFM	6.7	PSIG	a pre-aeration basin upstream	William Jones Jeff Hamilton Keith Watson	Assistant Superintendent Superintendent General Foreman of Maintenance	616-452-6229 618-910-9191 618-447-6809	bjones@granitecity.illinois.g ov jhamilton@granitecity.illinois .gov kwatson@granitecity.illinois. gov
10-0030	City of Florence, SC	1-Jan-13	South Carolina	3 x NX50-C060 5 x NX300-C070	5537	SCFM	10.5	PSIG	Activated Sludge	Michael Hemingway	Superintendent	843-665-3236	mhemingway@cityofflorenc e.com
10-0032	OCWA Carleton Place, ON	1-Dec-10	Ontario	1 x NX50-C060	1000	SCFM	8	PSIG	Activated Sludge	Mandi Larose	Operations & Maintenance Team Lead	613-257-9430	mlarose@ocwa.com

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
10-0033	Campbell River, BC	14-Dec-11	British Columbia	3 x NX150-C060	3300	SCFM	8	PSIG		Steve Roehr	Wastewater and Drainage Supervisor	250-203-3973	steve.roehr@campbellriver. ca
10-0034	OCWA Matheson, ON	19-Nov-10	Ontario	1 x NX50-C080	620	SCFM	8.4	PSIG	stab tank, aeration tank, digester and return sludge	Dale Waghorn	Supervisor	705-642-5341	DWaghorn@ocwa.com
10-0036	St-Joseph WWTP, IL	16-Jun-11	Illinois	1 x NX50-C050					Digester	Mike Peters	Superintendent	214-840-4412	mike.peters@stjosephillinoi s.org
10-0037	Athatbasca, AB	23-Feb-11	Alberta	2 x NX100-C060						Terry Kosinski	Outside superintendent	780-689-8621	wtp@athabaska.ca
10-0038	Wheaton, IL	6-Jun-11	Illinois	1 x NX200-C060					Activated Sludge	Matthew A. Larson P.E. Sue Baert Dave Bullard	Executive Director Plant Superintendent Maintenance Supervisor	312-292-1609 630-740-6792 630-740-6654	larson@wsd.dst.il.us baert@wsd.dst.il.us Bullard@wsd.dst.il.us
10-0039	Bull Hide Creek WWTP. TX	28-Sep-11	Texas	2 x NX150-C100					Activated Sludge & BNR	Scott Espen	Plant Manager	254-379-4391	scotte@wacotx.gov
10- 0040A	Scottsdale, AZ (Gainey Ranch)	23-May-11	Arizona	3 x NX50-C060	1340	SCFM	7.5	PSIG		Art Nunez	Director of Wastewater	480 263 1240 480-312-8771	anunez@scottsdaleaz.gov
							\$			Chris LoMonaco	Operator IV	(Office) 480-721-1165	CLOMONACO@SCOTTSD ALEAZ.GOV
10- 0040B	Scottsdale, AZ (Water Campus)	23-May-11	Arizona	3 x NX300-C080- 250	4980	SCFM	9.8	PSIG	LC C	Art Nunez Michael Hecox Tim West	Director of Wastewater Operator IV Maintenance Tech III	480 263 1240 480-312-8771 (Office) 480-312-8767 480-349-5628	anunez@scottsdaleaz.gov mhecox@scottsdaleaz.gov atewst@scottsdaleaz.gov
10-0041	Lott Alliance, WA	6-Jun-11	Washington	1 x NX400-C100	6000	SCFM	12	PSIG	BNR process	Gabe Brannon	Instrumentation	360-580-9780	GabeBrannon@lottcleanwat
10-0042	Fairfield, CT	18-Mar-11	Connecticut	1 x NX300-C070	6750	SCFM	7.41	PSIG		Joseph Michelangelo	Director of Public Works	203-256-3010	jmichelangelo@town.fairfiel d.ct.us
10-0043	Woonsocket, RI	7-Dec-10	Rhode Island	3 x NX300-C050					Activated Sludge	Jim Lauzon			jlauzon1@ch2m.com
10-0045	City of Vancouver, WA	25-Feb-11	Washington	1 x NX300-C060	6100	SCFM	8.1	PSIG		Matt McCallum Eric Schadler	Wastewater Utility Asset Manager Chief Operator	360-608-3447, 360-695-0092	Matt.McCallum@jacobs.co m Eric.Schadler@cityofvanco uver.us
10-0046	EMWD-San Jacinto , CA	24-Mar-14	California	2 x NX350-C070	6400	SCFM	8.5	PSIG		Matthew Melendrez Matt Verosik Chuck Norberg	Director of Water Reclamation Plant Manager Electrical	951-928-3777 #4303 951-928-3777 #7100 602-501-5394	melendrm@emwd.org verosikm@emwd.org norbergc@emwd.org
10-0047	Sugarland, TX	10-Jun-11	Texas	1 x NX50-C050 1 x NX100-C050	1400	SCFM	6.8	PSIG	Aeration	Greg Graf	Plant Maintenance Crew Leader	281-980-2183 x 7502	greg.graf@brazos.org
10-0048	City of Bryan, TX	7-Jul-11	Texas	1 x NX150-C060	3000	SCFM	8	PSIG		Mark Jurica Victor Harris	Treatment & Compliance Manager Treatment Supervisor	979-209-5900 979-229-7259	mjurica@bryantx.gov vharris@bryantx.gov
10-0049	Monroe County (Phase I, II & III), NY	7-Nov-11	New York	10 X NX350-C080	5250	SCFM	12.5	PSIG		David Tuccio	project manager for FEV Aeration	585-753-7695	DTuccio@monroecounty.go v
10-0050	Erie WWTP, PA	5-Oct-11	Pennsylvani a	6 x NX300-C070	6000	SCFM	8	PSIG	Typical Aeration	Len Malinowski	Maintenance Superintendent	814-870-1360	Imalinowski@erie.pa.us
		~	5)									

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
10-0051	Heinz, OR	11-Jan-11	Oregon	1 x NX300-C070	5200	SCFM	10.2	PSIG	Typical Aeration	Bob Pharmer Jess Farrow	Stover Group ENG Maintenance	405-385-2439 208-447-7131	rpharmer@stovergroupeng. com jess.farrow@kraftheinz.com
10-0052	Daphne, AL	20-Apr-11	Alabama	3 x NX150-C060	3500	CFM	9	PSIG	Activated Sludge	Sharon Surra	Water Reclamation Manager	251-753-6726	sharon@daphneutilities.co m
10-0053	Longview, TX	23-Aug-11	Texas	1 x NX150-C070 1 x NX150-C070- 125	2200	SCFM	11	PSIG		Scott Baggett Chris Snapp	Plant Manager Utility Maintenance & Technology Manager	903-291-5220 903-291-5243	sbaggett@longviewtexas.go v csnapp@longviewtexas.gov
10-0054	City of Dryden, ON	12-Jul-12	Ontario	2 x NX100-C100			1	1	Digesters and SBR's	Dean Walker	Plant Manager	807-223-2367	dwalker@dryden.ca
10-0055	Dannon, UT	5-Apr-11	Utah	3 X NX75-C070 3 x NX150-C080	1200	SCFM	11.7	PSIG		Steve Sandquist Craig Dinehart	Utility Supervisor	801-301-7407 801-618-9822	steve.sandquist@dannon.c om craig.dinehart@dannon.co m
10-0056	Orange Park, FL	1-Aug-11	Florida	2 x NX50-C080	615	SCFM	7.9	PSIG	SBR wastewater	Roger Rich	Superintendent of	904-264-7411	rrich@townop.com
10-0057	Ellsworth, ME	1-Oct-12	Maine	3 x NX75-C080	1170	SCFM	8.75	PSIG	plants	Michael Harris	Wastewater Superintendent	207-667-7315	mharris@cityofellsworthme.
10-0058	Shelton Phase II, WA	17-Apr-12	Washington	1 x NX50-C070- 30 1 x NX50-C080- 30	800	SCFM	6.5	PSIG		Brent Armstrong	Lead Operator	360-229-6767	brent.armstrong@shetlonw a.gov
10-0059	OCWA Port Elgin, ON	17-Jun-11	Ontario	1 x NX75-C050	6100	SCFM	9.1	PSIG		Adam Stanley	Operations Manager	519-385-2799	adam.stanley@saugeensho res.ca
10-0060	Glendale Heights, IL	7-May-10	Illinois	1 x NX150-C070 2 x NX150-C070	3050	SCFM	9	PSIG	Aerobic Digester Typical Aeration	Brian Maritato Jeff McCumber Chuck Fonte	Manager WPCF	630-909-5131 630-909-5131 630-942-1963	brian_maritato@glendalehei ghts.org jeff_mccumber@glendalehe ights.org cfonte@glendaleheights.org
11-0001	Jackson Miller, TN	2-Feb-12	Tennessee	3 x NX200-C060 3 x NX200-C060	4550	SCFM	5.4	PSIG		Edmond O'Neill David Hale	Plant Engineer Plant Maintenance Supervisor	731-422-7214 731-422-7525 731-267-3403	eoneill@jaxenergy.com dhale@jaxenergy.com
11-0002	Brantford, ON	6-Oct-11	Ontario	1 x NX200-C050	7428	nm3/h	52	kPaG	fine bubble aeration	Ron Lynes John Smith	Plant Manager Maintenance	519-759-4150 ext 5825 519-732-3937	RLynes@brantford.ca smithj@brantford.ca
11-0003	Vancouver Marin Park, WA	1-May-11	Washington	1 x NX300-C070	6100	SCFM	9.1	PSIG	Activated Sludge	Matt McCallum	Wastewater Utility Asset Manager	360-608-3447	Matt.McCallum@jacobs.co m
11-0004	Azle Creek, TX	8-Jan-13	Texas	1 x NX75-C080 3 x NX150-C080	2200	SCFM	11	PSIG	BNR system and to aerate our Sludge Holding Tank	Kenneth Richards	Wastewater Plant Superintendent	817-444-2678	krichards@cityofazle.org
11-0005	Delta Diablo, CA	27-Feb-12	California	3 x NX300-C060				1		Joaquin Gonzalez	Operations Manager	925-756-1967ext 1971	joaquing@deltadiablo.org
11-0007	Hattisburg, MS	21-Dec-11	Mississippi	1 x NX600-C060	13000	SCFM	6.6	PSIG		Alan Howe Arnold Landrun Mike Hill	Director General Manager WWTP Contractor	601-408-0586 601-545-4530 601-319-8560	ahowe@hattiesburgms.com alandrum@hattiesburgms.c om
11- 0008A	Cincinnati, OH-Little Miami	18-Mar-13	Ohio	4 x NX500-C070	8165	SCFM	8.8	PSIG		David Bauer Kevin Cunningham	Operations Maintenance	513-352-4921 513-368-1566	david.bauer@cincinnati- oh.gov kevin.cunningham@cincinn ati-oh.gov

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
11- 0008B	Cincinnati, OH - Mud Creek	14-May-12	Ohio	4 x NX300-C070- 250	4770	SCFM	8.3	PSIG		Tim Hauck Tommy Goodman	Operations Maintenance	513-352-4923	Timothy.hauck@cincinnati- oh.gov tom.goodman@cincinnati- oh.gov
11-0009	City of Warsaw, IN	28-Sep-11	Indiana	1 x NX200-C060	3900	SCFM	8	PSIG	aerobic digester	Larry Hyden Brian Davison	Assistant Utility Manager Utility Manager	574-372-9562 574-372-9562	lhyden@warsaw.in.gov bdavison@warsaw.in.gov
11-0010	Spokane, WA	16-Jun-11	Washington	2 x NX100-C060 3 x NX200-C050 3 x NX300-C070	4550	SCFM	5.4	PSIG	GE MBR	Nathen Dahl Valerie Garcia Tony Benavidez	Project Manager Operations Supervisor	509-389-5894 951-883-4030 509-688-3862	nathan.dahl@jacobs.com valerie.garcia@jacobs.com anthony.benavidezl@jacobs .com
11-0011	Repentigny, QC	17-May-12	Quebec	3 x NX300-C050	7886	SCFM	7.11	PSIG		Christian Boulanger	Directeur de l'usine	450-470-3001 ext 3883	boulanger.christian@ville.re pentigny.gc.ca
11-0012	Pima County, AZ	1-Aug-13	Arizona	5 x NX600-C100	8000	SCFM	14.5	PSIG		Patrick J. Padilla John Sherlock	Maintenance Supervisor Deputy Director of Treatement	520-405-3168 520-443-6100	patrick.padilla@jacobs.com john.sherlock@pima.gov
11-0013	Fox River Grove, IL	12-Jan-12	Illinois	1 x NX30-C050	650	SCFM	6.5	PSIG	Digesters	Tim Zintl	Superintendent	847-639-8360	t.zintl@foxrivergrove.org
11-0014	Richmond, VA	10-Jul-12	Virginia	2 x NX200-C060	4000	SCFM	9	PSIG		Donald Carter	Environmental Compliance Officer	804-646-8266	Donald.Carter@richmond.g ov
11-0015	Goleta, CA	24-Oct-12	California	3 x NX150-C070	3000	SCFM	9.3	PSIG		Chuck Smonikar	Facilities Maintenance Supervisor	805-967-4519	<u>csmolnikar@goletasanitary.</u> org
11-0016	lowa City, IA	9-Nov-11	lowa	1 x NX200-C070	4000	SCFM	7.5	PSIG		Brad Herrig	Senior Maintenance Worker	319-631-1137	Brad-Herrig@iowa-city.org
11-0017	Hackesttown-Huma, NJ	19-Jan-12	New Jersey	2 x NX075-C050	1700	SCFM	7.5	PSIG		Kathleen Corcoran Pete Tynan	Executive Director Sewer Utility Superintendent	908-852-3622 908-852-3622	kcorcoran@hmua.com ptynan@hmua.com
11-0018	College Place, WA	24-Feb-12	Washington	3 x NX75-C060	1400	SCFM	8	PSIG	2 blowers to SBR and 1 to Holding tank	Paul Olson	ESD environmental Director	509-386-3852	Paul.Olson1@jacobs.com
11-0019	Vacaville, CA	26-Jun-12	California	2 x NX300-C070	6200	SCFM	9	PSIG	Aeration 3 trains	Jeff Cooley Jeremy Clarke	Utilities Operations Manager	C: 707-469-6413 C: 707-249-2834	jcooley@cityofvacaville.com jeremy.clarke@cityofvacavil le.com
11-0020	City of Millbrae, CA	27-Jul-12	California	3 x NX75-C050	1725	SCFM	8	PSIG		Craig Centis Doug Bacchi	Superintendent-WPCP Sr. Maintenance Mechanic	650-259-2388 650-784-8540	ccentis@ci.millbrae.ca.us dbacchi@ci.millbrae.ca.us
11-0021	City of Barstow, CA	6-Aug-12	California	2 x NX200-C060	3500	SCFM	7.5	PSIG	Activated Sludge & Aerobic Digester	Kody Tompkins	Chief Plant Operator	760-252-2538	ktompkins@barstowca.org
11-0022	Trento, IT	13-Dec-11	Italy	3 x NX150-C060					Nitrification/Denitrifi	Croce Matteo	Application Engineer	011 39 02 89257 1	mcroce@dda.ascopompe.c
11-0023	Rutland, VT	3-Apr-12	Vermont	1 x NX150-C070	2000	SCFM	10	PSIG		David Joyce Robert Protivanski	Superintendent Chief Wastewater Operator	208-434-2432 802-773-1851	davidj@rutlandcity.com bobp@rutlandcity.org
11-0024	Grand Rapids, MI	3-Jul-12	Michigan	2 x NX50-C070	1000	SCFM	6	PSIG		Dave Harris Bill Smith	O & M Supervisor Maintenance Supervisor	616-456-3639 616-456-3915	dharris@grand-rapids.mi.us bsmith@grand-rapids.mi.us
11-0025	Warren Township, NJ	12-Mar-12	New Jersey	2 x NX50-C060	1100	SCFM	9.25	PSIG		Pete Kavalus	Senior Operator	908-963-6651	pkavalus@nsuwater.com

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
11-0026	Thompson's Creek, TX	2-Jul-13	Texas	1 x NX200-C070	3600	SCFM	10	PSIG		Mark Jurica	Superivsor	979-209-5030	mjurica@bryantx.gov
11-0027	Pagosa Spring, CO	15-May-12	Colorado	2 x NX150-C100	1250	SCFM	10	PSIG	Aeraion- Digesters	Jimmy Jameson	WWTP Supervisor	970-731-2691	
11-0028	OCWA Port Elgin phase II. ON	19-Dec-11	Ontario	1 x NX50-C060	1320	SCFM	6.5	PSIG		Cory McNeil	OCWA Operations Manager	1 866 716 6292 x223	CMcNeil@ocwa.com
11-0029	Williamsport, PA	5-Nov-12	Pennsylvani a	3 x NX200-C070					Activated Sludge	Steve Benner Vernon D. Wykoff	Waste Water Manager Plant Superintendent	570-323-5528 570-323-5528	sbenner@wmwa-wsa.org vwykoff@wmwa-wsa.org
11-0030	Lyons, NY	8-Dec-11	New York	1 x NX50-C060	800	SCFM	6	PSIG	Activated Sludge	Marc Chadwick	Chief Operator	315-945-1099	mchadwick@wcwsa.org
11-0031	Alexandria, VA	20-Aug-13	Virginia	1 x NX30-C080 2 x NX75-C080 2 x NX150-C080- 125	2200	SCFM	10.3	PSIG		Grace Richardson	Sustainability Coordinator	703-549-3381	grace.richardson@alexrene w.com
11-0032	Seneca, MD	12-Dec-14	Maryland	2 x NX300-C060	7000	SCFM	7.8	PSIG		Sam Amad Larry Cline Larry Lewis	Superintendent Materials Planner Maintenance Unit Coordinator	301-206-7900 301-206-7926 301-206-7921	Sam Amad@wsscwater.com Larry.Cline@wsscwater.co m Larry.Lewis@wsscwater.co m
11-0033	Fox Lake, IL	20-Jun-12	Illinois	2 x NX200-C070	3500	SCFM	9.5	PSIG	MLE Bio-N Removal	John Tomson		847-587-3694 847-815-7576	thompsoj@foxlake.org
11-0034	City of Joliet, IL	15-May-12	Illinois	2 x NX350-C070	8000	SCFM	7.5	PSIG	Conventional aeration basins	Nicholas Gornick	Plant Supervisor	815-405-3666	ngornick@jolietcity.org
11-0035	Stansbury Park, UT	1-Oct-12	Utah	2 x NX200-C070	3500	SCFM	7.5	PSIG		Brett Palmer	Manager	435-882-7922	spid@trilobyte.net
11-0036	Oak Lodge, OR	13-Sep-12	Oregon	2 x NX50-C080- 30	280	SCFM	11.2	PSIG		John Krogstad Davis Hawkings	Supervisor of the Division Interim Superintendant	503-786-7615 503-353-4211	johnk@olwsd.org david@olwsd.org
11-0038	Deux-Montagne Phase II. QC	31-May-12	Quebec	1 x NX150-C050- 125	3200	ACFM	462	MBARG		Stephane Giguere	Directeur General Adioint	450-623-1072 Ext. 227	sgiguere@sjdl.qc.ca
11-0039	Camp Pendleton, CA-SRTTP-SBR	22-Feb-13	California	7 x NX150-C100	2240	SCFM	12	PSIG		Troy Prewett EJ Colia	Maintenance Supervisor Chief Plant Operator	C:760-834-1882 C:760-834-1082	tprewett@percwater.com ecolia@percwater.com
11-0040	Westerly, RI	22-Mar-12	Rhode Island	2 x NX200-C060	4300	SCFM	7.7	PSIG		De Gemmis, Nicholas	Utilities Superintendent	860-510-8301	Nicholas.DeGemmis@ch2 m.com
11-0041	Crystal Beach, ON	16-Oct-12	Ontario	3 x NX75-C070	1133	SCFM	8.5	PSIG		Frank Vasko	Plant Manager	289-668-0698	frank.vasko@niagararegion. ca
11-0042	Penetaguishene WPCP. ON	13-Apr-16	Ontario	2 x NX75-C050	1638	SCFM	6.7	PSIG	not install	Mark Charlebois	Chief Wastewater Operator	705-549-8784	mcharlebois@penetanguish ene.ca
11-0043	Patuxent WRF, MD	12-Feb-13	Maryland	2 x NX150-C060	3217	SCFM	7.8	PSIG		Dave Miller Robert Kraus	Project Superintendent Utilities Team Manager	443-292-8236 443-685-5172	pwkrau18@aacounty.org
11-0044	West Warwick, RI	22-Feb-12	Rhode Island	2 x NX150-C060	3000	SCFM	9	PSIG		Harrison Songolo	Assistant Superintendent	401-822-9228	hsongolo@westwarwickri.or q
11-0045	MESA, AZ	7-Feb-12	Arizona	3 x NX200-C070	3200	SCFM	10.5	PSIG	Extended Aeration BRN process	Al Hickok	Supervisor	480-644-3541	alan.hickok@mesaaz.gov
1

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
11-0046	Holston IWTP, TN	4-Jan-12	Tennessee	1 x NX100-C070	2000	ICFM	10.7	PSIG		Aaron Marshall Chris Smith Larry Reynolds	Maintenance Operations Engineering	423-444-3697 423-278-0615	aaron.marshall@baesystem s.com chris.smith15@baesystems .com larry.reynolds@baesystems .com
11-0047	Decatur, IL	11-May-12	Illinois	2 x NX350-C070	8000	SCFM	9	PSIG	5	David Collard Don Miller JD Malone	Director of Operations and Compliance Engineer Operations Manager	217-422-6931 ext. 214 217-620-1433 217-422-6931 ext. 226	davidc@sddcleanwater.org DonM@sddcleanwater.org JamesM@sddcleanwater.or g
11-0048	Hudson, WI Try & Buy	15-Nov-11	Wisconsin	1 x NX50-C060	1200	ICFM	6.6	PSIG		Jim Schreiber	Engineer	715-386-4769	DonM@sddcleanwater.org
11-0049	Western Lake Superior SD, MN	12-Apr-12	Minnesota	1 x NX200-C060	4680	SCFM	6.5	PSIG	The low pressure air in the final contact tank can also add dissolved oxygen to the effluent if needed	Al Parrella Joseph Schleret Jim Simmons Nathan Hartman Andy Klingsporn Lee McInnes	Operations Manager	218-740-4769 218-591-9027 218-740-4767 218-740-4762 218-740-4803 218-740-4854	JamesM@sddcleanwater.or g
11-0050	Lockport, NY	15-Aug-12	New York	2 x NX200-C060	4200	SCFM	8	PSIG	fine air diffusers	James Nunnari	Superintendent Chief Operator	716-433-1612	jnunnari@lockportny.gov
11-0051	Pepper's Ferry, VA	12-Dec-11	Virginia	1 x NX200-C080	3900	SCFM	9.35	PSIG		R. Clarke Wallcraft Ryan L. Hendrix Michael H. Hutchison Dickie R. Turner	Executive Director Deputy Executive Director Plant Superintendent Maintenance Manager	P:540-639-3947 C:540-257-0241	cwallcraft@pfrwta.com rhendrix@pfrwta.com mhutchison@pfrwta.com dturner@pfrwta.com
11-0052	Orlando WRT Conserv II WRF, FL	30-Jan-13	Florida	5 x NX300-C050	6630	SCFM	8.3	PSIG	Modified Extended Aeration	Luis Ramos Keith Jordan Steve Shelnutt Aaron Green	Maintenance Supervisor Chief Operator Plant Manager IT	C:407-709-3778 C:407-325-5653 C:407-509-5597 P: 407-246-4085	luis.ramos@cityoforlando.n et keith.jordan@cityoforlando. net steve.shelnutt@cityoforland o.net aaron.green@cityoforlando. net
11-0053	Town of Cary, NC	3-May-12	North Carolina	1 x NX350-C070	7486	SCFM	8	PSIG	Aeration	Jarrod A. Buchanan Larry James Josh Cummings	Plant Manager Maintenance Supervisor Plant Engineer	919-633-9016 919-580-3798 919-810-1505	jarrod.buchanan@townofca ry.org larry.james@townofcary.org Josh.Cummings@townofca ry.org
11-0054	Western Wake, NC	5-May-14	North Carolina	2 x NX300-C080 2 x NX350-C070	5534	SCFM	10.2	PSIG		Damon Forney Tim Thomas Chris Andres	Plant Manager Team Leader, WWWRF Operational Supervisor	O:919-535-5649 C:919-824-2715 O:919-535-5642 C:919-337-8757 O:919-535-5641 C:812-786-4947	damon.forney@townofcary. org tim.thomas@townofcary.org chris.andres@townofcary.or g

1

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
11-0055	Alderwood-Picnic Point, WA	28-Aug-12	Washington	1 x NX50-C080	744	SCFM	12.4	PSIG	MBR	Joe Carter Manuel Semana Kevin Sykes Corey Ott	WWTF Manager Sentor Facilities Mechanic SCADA / Electrical Manager SCADA Systems Lead	425-787-1940 Ext. 8311 425-787-3271 425-248-0029	jcarter@awwd.com MSemana@awwd.com KSykes@awwd.com cott@awwd.com
11-0056	Linden Roselle, NJ	8-Apr-13	New Jersey	3 x NX600-C060	14000	SCFM	8	PSIG		Gary G. Fare Robert Matlaga	Executive Director	908-862-7100	gfare@lrsanj.org rmatlaga@lrsanj.org
11-0057	Orange Cove, CA	3-Nov-12	California	1 x NX75-C050	1800	SCFM	5.8	PSIG		David Del Bosque	WWT Operator	559-626-4801	ddelbosque@cityoforangec ove.com
11-0058	Ellenville, NY	13-Nov-12	New York	3 x NX30-C060 1 x NX50-C060	515	SCFM	9.3	PSIG	Digestors	Michel Ryman	Chief Operator	845-647-9080	mryman@villageofellenville. com
11-0059	Lott Alliance Phase II, WA	14-Aug-13	Washington	2 x NX50-C080					Scum Reactor	Gabe Brannon	Instrumentation	360-580-9780	GabeBrannon@lottcleanwat er.org
12-0001	C.M.S.A	30-Jul-12	California	2 x NX150-C060	3000	SCFM	8.5	PSIG		Paul Bruemmer Kevin Lewis	Treatement Plant Manager	O: 415-459- 1455,133C:415- 720-0785	<u>pbruemmer@cmsa.us</u> <u>klewis@cmsa.us</u>
12-0002	Kimberly Clark- Lexington, NC	14-Jan-13	North Carolina	1 x NX700-C100	10,800	SCFM	13.8	PSIG	nonwovens manufacturing process	Timothy Thompson	Lex 1 Maintenance Planner	336-218-6625	timothy.thompson@hyh.co m
12-0003	JEA Talleyrand, FL	5-Mar-13	Florida	4 x NX700-C070	15,980	SCFM	10	PSIG	Aeration	Todd Gilbert Chris Howard	Electrician & Instrumentation Tech Operation Coordinator	P:904-665-7199 C:904-903-6332 P:904-665-7941 C:904-477-5358	gilbta2@jea.com howacj@jea.com
12-0004	Village of Manteno, IL	7-May-12	Illinois	3 x NX75-C050	2215	SCFM	14.22	PSIG		Terry		815-954-1199	information@villageofmante no.com
12-0005	American Falls WWTP, ID	8-Oct-13	ldaho	3 x NX75-C080	1019	SCFM	9.4	PSIG		Peter Cortez	Superintendent	208-226-2827	pcortez@co.power.id.us
12-0006	Wheaton SD, IL phase II	4-Sep-12	illinois	1 x NX200-C050	5760	SCFM	7	PSIG		Bruce W. Tunaitis	Maintenance Supervisor	630-668-1515 ext 109,	Tunaitis@wsd.dst.il.us
12-0008	Peoria, AZ	9-Oct-10	Arizona	1 x NX75-C070	1268	SCFM	9.57	PSIG		Tom Jessing	Lead Utility Plant Operator	623-764-8618	thomas.jessing@peoriaaz.g ov
12-0009	Bucklin Point, RI	18-Mar-13	Rhode Island	2 x NX300-C070	6000	SCFM	9.3	PSIG		Dominic De Chiara		401-461-6540 #7 �	cs@narrabay.com
12-0010	City of Camden, SC	4-Aug-14	South Carolina	3 x NX100-C070 5 x NX50-C070	1820	SCFM	10	PSIG	Aeration, Sludge Holding & Digester	Kyle Smith	Plant Manager	803-424-4036 #2	ksmith@camdensc.org
12-0011	UOSA, VA	25-Jun-13	Virginia	2 x NX600-C060	6700	CFM	8.8	PSIG		Bob Canham Stephen Myers	Manager	703-227-0235	robert.canham@uosa.org stephen.myers@uosa.org
12-0012	South San Francisco, CA	5-Feb-13	California	1 x NX300-C070	5500	SCFM	8.4	PSIG	Activated Sludge	Brian Schumaker Arran Gordon	Superintendent Maintenance Supervisor	650-829-3844 650 829 3850	Brian.Schumacker@ssf.net Arran.Gordon@ssf.net
12-0013	Canada Malting, AB	26-Mar-13	Alberta	1 x NX200-C100	2300	SCFM	13	PSIG		Rick Armstrong	Plant Manager	403-571-7020	rick.armstrong@canadamalt ing.com
12-0014	Midwest City, OK	3-Sep-13	Oklahoma	3 x NX300-C100- 250						Chris Thomas Thomas West	Plant Manager Maintenance Manager	405-424-3363 405-739-1534	cthomas@midwestcityok.or g twest@midwestcityok.org

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
12-0015	Ajinomoto, NC	6-Jan-12	North Carolina	1 x NX100-C060	2251	SCFM	8.54	PSIG		Kevin Adams Jeff Robertson Allen Weathington Mike Thompson	Utilities Manager Maintenance Manager Utilities Forman Maintenance Planner	919-255-0040 919-255-0128 843-425-2806	adamsk@ajiusa.com robertsonj@ajiusa.com weathingtona@ajiusa.com ThompsonM@ajiusa.com
12-0016	Linda County Phase II, CA	6-Aug-12	California	1 x NX75-C080	1220	SCFM	11.23	PSIG	•	Brian Davis John Harvey	Engineer Superintendent	530-743-2482 530-743-2756	bdavis@lindawater.com jharvey@lindawater.com
12-0017	Harry Still SR. WWTP, AL	3-Jan-13	Alabama	4 x NX50-C070	780	SCFM	8	PSIG		James Dean	Plant Manager	251-580-1853	JDean@NBUMAIL.COM
12- 0018A	City of Bryan, TX Phase II	6-Oct-13	Texas	1 x NX150-C060	3000	SCFM	8	PSIG		Mark Jurica Victor Harris	Treatment & Compliance Manager	979-209-5900 979-229-7259	mjurica@bryantx.gov vharris@bryantx.gov
12- 0018B	City of Bryan, TX (Still Creek)	6-Oct-13	Texas	1 x NX200-C000						Mark Jurica Victor Harris	Treatment & Compliance Manager	530-743-2482 530-743-2756	bdavis@lindawater.com jharvey@lindawater.com
12-0020	Camp PendIton NRTTP, CA	21-Nov-14	California	4 x NX150-C100 3 x NX150-C070	2175	SCFM	12	PISIG	SBR and Digester process	Robert Mespeca Phil Starks	Maintenance Supervisor Chief Plant Operator	C:760-636-3370	rnespeca@percwater.com pstarks@percwater.com
12-0021	Wilsonville WWTP, OR	9-Jul-13	Oregon	3 x NX100-C060	1700	SCFM	8	PSIG	GE MBR	Ted Michaelidis	Civil Engineer	503-682-1077 ext. 20838	ted.michaelidis@ch2m.com
12-0022	Metro NPD Denver, CO	31-Aug-16	Colorado	6 x NX350-C100	4308	SCFM	12.5	PSIG	Aeraion	Ryan Robinson	Maintenance Supervisor	303-286-3417	rrobinson@mwrd.dst.co.us
12-0023	lowa City, IA	17-Jul-13	lowa	1 x NX200-C070	4000	CFM	7.5	PSIG		Brad Herrig	Senior Maintenance Worker	319-631-1137	Brad-Herrig@iowa-city.org
12-0024	Metro Vancouver-	21-Oct-13	British	1 x NX700-C080	330	NCMM	80	kPaG		Vince Chiu	Superintendent,	604-523-7107	vince.chiu@metrovancouve
12-0025	Modesto Phase II, CA	16-Oct-15	California	6 x NX300-C060	6600	SCFM	8.75	PSIG	MBR & Aeration Basins	Laura Anhalt, Ben Koehler, Noland Harris,	Wastewater Treatment Plant Manager Utilities Plant	209-342-4502 209-577-6288 209-471-0387	lanhalt@modestogov.com bkoehler@modestogov.com nharris@modestogov.com
12-0026	Brembate, Italy	3-Sep-12	Italy	1 x NX150-C050					Nitrification Basins	Croce Matteo	Application Engineer	011 39 02 89257.1	mcroce@dda.ascopompe.c om
12-0027	Gun Lake, MI	13-Nov-12	Michigan	1 x NX100-C060	1730	ICFM	8.8	PSIG		Larry Knowles David Cooper	Director	269-509-1000 269-720-1017	lknowles@gunlakesewer.or g dcooper@gunlakesewer.org
12-0028	Woodbrand, OH	27-Feb-13	Ohio	1 x NX150-C070	2200	SCFM	7.4	PSIG		Mike Chicwak	Maintenance Supervisor	216-408-8677	
12-0029	Three Rivers- TRRWA, WA	15-May-13	Washington	1 x NX200-C060	4600	SCFM	7.87	PSIG		Duane Leaf	Superintendent	360-577-2040	leaf@cowlitz-wpc.org
12-0031	Marine Sanitation, CA	15-Mar-13	California	3 x NX30-C070	470	SCFM	9.63	PSIG		Tony Rubio	Waste Water Facilities Manager	415-435- 1501#106	trubio@sani5.org
12-0032	King County South Point WWTP	2-Apr-13	Washington	2 x NX200-C060	4500	SCFM	7.5	PSIG	agitation air in our mixed liquor channels and pre- aeration in the primary clarifiers for grit removal	Lester Van Gerlder Bill Bailey	Maintenance Supervisor Mechanical Lead	206-263-1827 206-263-1739	lester.vangekder@kingcoun ty.gov william.bailey@kingcounty.g ov
12-0034	Ternium-Monterey, Mexico	9-Apr-13	Mexico	2 x NX150-C060			Ī			Marcela Portillo Ordonez		52-81-1790-8355	marcela.portillo@ambbio.co m
12-0035	Monterey Regional, CA	29-Jul-13	California	2 x NX200-C100	3000	SCFM	11.4	PSIG		Bret Boateman Neil Keith Israel	Maintenance Manager Operations General Manager	831-402-7628 831-372-3367	bretb@my1water.org
12-0036	Cornwall WWTP, ON	20-Aug-14	Ontario	3 x NX200-C100	2874	SCFM	14.85	PSIG		Olivier Decroix		514-260-3641	olivier.decroix@veolia.com

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
12-0037	EMWD-San Jacinto II CA	0-Jan-00	California	1 x NX300-C060					GE MBR	Matthew Melendrez Matt Verosik Chuck Norberg	Director of Water Reclamation Plant Manager Electrical	951-928- 3777#4303 951-928- 3777#7100 602-501-5394	melendrm@emwd.org verosikm@emwd.org norbergc@emwd.org
12-0038	Oxford, AL	18-Dec-12	Alabama	1 x NX100-C060	2225	SCFM	8.5	PSIG		Wayne Livinston Max Gaskins	General Manager Chief Operator	205-365-8028 P: 256-405-6821 C: 256-310-9856	wlivinston@oxfordwater.co m mgaskins@oxfordwater.co m
12-0039	Raritan TWSP-MUA, NJ	13-Mar-13	New Jersey	2 x NX200-C050	5400	SCFM	7.5	PSIG	Traditional aeration process	Gregory LaFerla	Chief Operator	908-782-7453 # 13	BMiller@rtmua.com
12-0041	Central Ohau Wahiawa, Hawaii	4-Feb-14	Hawaii	6 x NX100-C080	1700	SCFM	7.9	PSIG		Aric Takazawa		808-286-6568	·····
12-0042	MT Vernon, IN	4-Dec-12	Indiana	3 x NX100-C070	1564	SCFM	8	PSIG		Chuck Gray	Operator	812-838-3396	cgray@mountvernon- in.com
12-0044	City of Jacksonville, IL	22-Jan-13	Illinois	1 x NX300-C060- 250	6675	ICFM	7.5	PSIG		Leland Walker	Ass. To the Director of Operation	217-479-4648	jaxwwtp@jacksonvilleil.com
12-0045	City of Plano,IL	24-Jan-13	Illinois	1 x NX75-C070	1100	SCFM	8.5	PSIG		Darrin Boyer	Water Reclamation Superintendent	630-552-8007 630-669-0625	Dbboyer2006@comcast.net
12-0046	El Toro WD-Laguna Woods, CA	4-Mar-13	California	1 x NX75-C050	1650	SCFM	5.8	PSIG	Aerobic Digester (WAC)	Mark Pade	Chief Operator	949-837-7050 #103	mpade@etwd.com
12-0047	City of Palacios, TX	20-Aug-13	Texas	2 x NX50-C070 2 x NX100-C070	950	SCFM	8	PSIG		Darrell Robbins	Public Works Director	361-404-0265	drobbins@cityofpalacios.or g
12-0048	Cortland, NY WWTP	5-Feb-13	New York	3 x NX100-C070	1880	SCFM	9.5	PSIG		Bruce Adams Ed Poole	Superintendent Operator	607-423-2630 607-745-9802	badams@cortland.org epoole@cortland.org
12-0049	City of Eugene, OR	19-Mar-13	Oregon	1 x NX700-C070	16000	SCFM		7.5	PSIG	Jon Diller	City of Eugene WW Division	541-682-8606	JDiller@ci.eugene.or.us
12-0050	JRS (PWTRP) Caldwell, ID	30-Jul-13	ldaho	5 x NX150-C070	2820	SCFM	8.43	PSIG	Traditional aeration process manual valces	John Prigge Johnny Perez	Enviremental Manager Enviromental Compliance	208-369-8851 208-890-4356	john.prigge@simplot.com perezj5@simplot.com
12-0051	Riverside, CA	24-Sep-15	California	4 x NX300-C050	7760	SCFM	6	PSIG	GE MBR	Brent Keaster	Maintenance Manager	W 651-351-6181 C 951-231-5223 or ? 951-351- 6140	<u>bkeaster@riversideca.gov</u>
12-0052	Jeffersonville, IN	4-Nov-13	Indiana	2 x NX200-C080	3100	SCFM	11	PSIG		Hagan Alsep	Maintenance Supervisor	812-285-6451	halsept@CityofJeff.net
12-0053	Lynnwood WWTP, WA	22-Oct-13	Washington	1 x NX150-C100	2350	SCFM	12	PSIG	Activated Sludge	John Ewell Ryan Reynolds	Treatment Plant Supervisor	425-670-5251	jewell@ci.lynnwood.wa.us RReynolds@lynnwoodwa.g ov
12-0054	Mount Pleasant, SC	9-Jul-14	South Carolina	4 x NX150-C070	3100	SCFM	7.5	PSIG		Greg Hill Troy Newton Matt Reaves	Operations Supervisor Wastewater Operations Foreman Contractor Garney	843-200-9305 (Mobile) 407-408-1228 843-375-5778 (Office)	greghill@mpwonline.com troynewton@mpwonline.co m mreaves@garney.com
12-0055	City of Great Falls, MT	1-Jun-14	Montana	5 x NX350-C080	5250	SCFM	10	PSIG		Randy Kerkes	Maintenance Manager	406-788-6680 406-761-7004	randy.kerkes@veolia.com
										Rodney Lance	Assistant Plant Manager	EXT:204 406-761-7004 EXT:203	rodney.lance@veolia.com
12-0056	City of Clarkston WWTP, WA	13-Nov-13	Washington	3 x NX150-C070	2850	SCFM	9	PSIG	Areation	Wes Ison	WWTP Superintendent	509-758-1674	clarkstonwwtp@qwestoffice .net

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
12-0057	Fishing River, MO	16-Apr-13	Missouri	5 x NX100-C070	1500	SCFM	9.5	PSIG	Areation	Andres Nelson Charles Stevens	Maintenance Supervisor	816-804-8915 816-439-4500	andres.nelson@kcmo.org utilities@ci.liberty.mo.us
											OperatorUtilities Director		
12-0058	North Attleborough, MA	25-Oct-13	Massachuse tts	4 x NX75-C050 1 x NX50-C060	1250	SCFM	8	PSIG		Valerie A. Flaherty		508-695-7872	vflaherty@nattleboro.com
12- 0059A	Stonington Borough, CT (Borough)	26-Aug-13	Massachuse tts	3 x NX50-C080	780	SCFM	7.2	PSIG		Bill Waterhouse		860-535-1333	bill.waterhouse@suez- na.com
12- 0059B	Stonington Borough, CT (Mystic)	26-Aug-13	Massachuse tts	2 x NX50-C080	780	SCFM	7.2	PSIG		Gerry Miner	2	860-245-4275	gerry.miner@suez-na.com
12- 0059C	Stonington Borough, CT (Pawcatuck)	19-Jun-13	Massachuse tts	2 x NX50-C070	975	SCFM	8.6	PSiG	$\mathbf{\nabla}$	Glenn Tatro	Superintendent	860-599-4548	
12-0060	City of Hastings, NE	15-Jan-14	Nebraska	2 x NX150-C070	2500	SCFM	9.5	PSIG	Aeration	Jeff Ochsner Brandan Lubken	Plant Superintendent Superintendent	402-462-3538 402-262-3673	jochsner@hastingsutilities.c om
							1			Brian Douglas (quotes)	Instrument Tech Operations	402-462-3519 402-462-3506	
										Dave Pearce			dpeara@hastingsutilities.co m
12-0061	West Perth-OCWA, ON	12-Mar-13	Ontario	1 x NX200-C060	4800	ICFM	8.2	PSIG	aerobic digesters & primary supply for the extended	Richard Wright	Environmental Services Coordinator	519-301-4388	rwright@westperth.com
12-0062	Post Point, WA	3-Dec-13	Washington	2 x NX200-C060 2 x NX300-C060	3900	SCFM	8.55	PSIG		Karl Lowry	Superintendent	360-778-7850	
12-0063	Jackson, WI	1-May-13	Wisconsin	2 x NX50-C070	920	CFM	8	PSIG	Activated Sludge	Jeff Deitsch	WWTP Supervisor	262-677-9001	utilitysupt@villageofjackson. com
12-0064	Stratford, ON	10-Sep-13	Ontario	1 x NX350-C070	7100	SCFM	9	PSIG	Activated Sludge	Marcel Misuraca	Senior Operation Manager	519-271-9071	mmisuraca@ocwa.com sbeech@ocwa.com
12-0065	City of Timmins, ON	20-Nov-14	Ontario	4 x NX200-C080	6000	CFM	10.4	PSIG		Dean McGee Sean Beech	O&M Team Lead Southwest Region	705-365-7512 519-276-8333	dean.mcgee@timmins.ca
12-0066	Decatur Phase II, IL	10-Apr-13	Illinois	2 x NX350-C070	8000	CFM	9	PSIG		Roger Dudley	Maintenance Engineer	217-620-0309 #256	davidc@sddcleanwater.org
12-0067	City of Thunder Bay, ON	24-Mar-14	Ontario	1 x NX050-C080 3 x NX350-C080	800	CFM	11	PSIG		Mark Wilson Michael Brown Patty Wilson	Operations Supervisor Maintenance Supervisor Operations	807-625-2589 807-625-2044	DonM@sddcleanwater.org
12-0068	Chimalistac, Mexico	30-Jul-13	Mexico	3 x NX350-C080						Daniel Molina	Plan supervisor	55 3294-7513	JamesM@sddcleanwater.or
12-0069	Fairfield II, CT	23-May-13	Connecticut	1 x NX150-C060	3330	SCFM	7.4	PSIG		Joseph Michelangelo	Director of Public	203-256-3010	y jmichelangelo@town.fairfiel d.ct.us
12-0070	North Conway, NH	12-Sep-13	New Hampshire	1 x NX50-C050	1110	SCFM	6.3	PSIG		Peter N. LaBonte	Chief Operator	603 356-5382	plabonte@ncwph.org
12-0071	Huntington WWTP, IN	21-May-13	Indiana	3 x NX300-C070- 250	5700	SCFM	8	PSIG		Kirk Strass	Superintendent	260-356-2314	kirk.strass@huntington.in.u s
		V	C										

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
12-0072	Thorn Creek, IL	10-Sep-13	Illinois	1 x NX350-C070	6000	SCFM	10.5	PSIG		Don Matthews Phil Luck Lucas J. Streicher Jennifer A. Hindel, PE	Water Superintendent Executive Director Director of Operations	708-756-5380 708-754-0525, Ext 32 708-754-0525 ext 23 708-754-0525 ext 16	pluck@thorncreekbasin.org lstreicher@thorncreekbasin. org jhindel@thorncreekbasin.or g
12-0073	Killingly WWTP, CT	30-Oct-13	Connecticut	2 x NX150-C060	3300	SCFM	8	PSIG		Joseph Couture	Assistant Project Manager	860 779 5392	Joseph.Couture@suez- na.com
12-0074	Wessex-DEMO_1	18-Mar-13	United Kingdom	1 x NX100-C050	2650	SCFM	7.11	PSIG		Mark Briknell	Engineer	0 11 44 0 7585 966 059	mbricknell@corgin.co.uk
12-0075	Union City, TN	16-Jul-14	Tennessee	3 x NX100-C050	3000	CFM	5.9	PSIG		Jason Moss	Waste water Director	731-885-9144	ucwwdirector@unioncitytn.g ov wastewater@ken- tennwireless.com
13-0001	Rock Creek, OR	19-Aug-13	Oregon	1 x NX300-C070	6000	SCFM	8.7	PSIG		Bill Gulacy	Plant Operation Manager, Rock Creek WWTP	503-547-8036	gulacyb@cleanwaterservice s.com
13-0002	Hartville, OH	2-Jul-14	Ohio	2 x NX50-C060	1000	SCFM	7.8	PSIG		Jim Baxter Tom Graber	Plant Manager Assistant Plant Manager	330-877-2861 330-877-2861	jbaxter@hartvilleoh.com tgraber@hartvilleoh.com
13-0003	ldaho Falls, ID	6-Nov-14	Idaho	4 x NX350-C080	5000	SCFM	10	PSIG		Larry Martin	Operator	208-612-8476	lmartinr@idahofallsidaho.go v
13-0004	Avon Lake, OH	30-May-13	Ohio	1 x NX150-C070	3000	SCFM	9	PSIG	Activated Sludge	Steve Baytos	WPCC Manager	440-933-3185	sbaytos@avonlakewater.or q
13- 0005A	City of London,ON Adelaide	5-Nov-14	Ontario	2 x NX200-C050	140	m3/min	47	KPAG	\sim	Mark Spitzig	Operations and Maintenance Manager	519-661-0670	mspitzig@london.ca
13- 0005B	City of London, ON Oxford PCP	19-Aug-14	Ontario	1 x NX100-C070	65	m3/min	46	kPaG		Mark Spitzig	Operations and Maintenance Manager	519-661-0670	mspitzig@london.ca
13- 0005C	City of London, ON Vauxhall PCP 2	9-Oct-14	Ontario	1 x NX50-C060	30	m3/min	45	KPAG		Mark Spitzig	Operations and Maintenance Manager	519-661-0670	mspitzig@london.ca
13-0006	James River Refurbishing (B-C)	2-Dec-13	Virginia	1 x NX300-C060						Bob Rutherford			
13-0008	Boat Harbor, VA	27-Nov-13	Virginia	1 x NX150-C060- 125 1 x NX50-C060	1240	SCFM	8	PSIG		Ken Sands	Chief Operator	757-375-6922	ksands@hrsd.com
13-0009	Pepper's Ferry RWTA, VA	27-Feb-14	Virginia	1 x NX250-C070	4950	SCFM	9.4	PSIG		R. Clarke Wallcraft Ryan L. Hendrix Michael H. Hutchison Dickie R. Turner	Executive Director Deputy Executive Director Plant Superintendent Maintenance Manager	P:540-639-3947 C:540-257-0241	cwallcraft@pfrwta.com rhendrix@pfrwta.com mhutchison@pfrwta.com dturner@pfrwta.com
13-0011	Goldsboro, NC	1-Aug-13	North Carolina	1 x NX300-C070	6800	SCFM	7.7	PSIG		Bert Sherman	Superintendent	919-735-3329	RSherman@goldsboronc.g ov
13-0012	Bend, OR	23-Jun-16	Oregon	4 x NX300-C060 1 x NX200-C060	6000	SCFM	7.6	PSIG		Lance Finney	Maintenance Lead	541-322-6339.	lfinney@bendoregon.gov
13-0013	Lebanon WWTP, NH	15-Sep-15	New Hampshire	3 x NX75-C050	1600	SCFM	7	PSIG		Daniel Knox Tom Carter	Plant Manager Maintenance Supervisor	603-298-5986	Daniel.know@lebanonnh.go v tom.carter@lebcity.com
13-0015	Brembate-Italy	28-Sep-13	Italy	1 x NX150-C070					Nitrification Basins				

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
13-0016	Thames Water UK	21-May-14	United Kingdom	2 x NX600-C050									
13-0017	Covidien, NC	27-Aug-13	North Carolina	2 x NX200-C070	3100	SCFM	10.6	PSIG		Brian Alls	Instrumentation/Electric al Supervisor	919-878-7039 919-878-2800	brian.alls@mallinckrodt.com
13-0018	Ravenna WWTP, OH	18-Sep-13	Ohio	2 x NX100-C060	2300	SCFM	7.5	PSIG		Bill Tuck		330-703-3145	
13-0019	San Marcos, TX	15-Dec-13	Texas	1 x NX300-C070	6000	SCFM	6.25	PSIG	5	EJ Hindy Paul Shropshire Mike Beck	Assistant Project- Manager	5 12-393-8365 (O) 281-923-5627 (M) 512-393-8345 512-393-8345	Ej.Hindy@jacobs.com Paul.Shropshire@jacobs.co m
13-0020	SJRA Plant, TX	9-Sep-15	Texas	6 x NX300-C100	5000	SCFM	14.5	PSIG	$\mathbf{\nabla}$	Phillip Smith Ron McCullough Lois Worrell	Utilities Maintenance Superintendent	936-828-7223	psmith@sjra.net rmccullough@sjra.net lworrell@sjra.net
13-0021	St-Johns, FL	13-Oct-15	Florida	5 x NX75-C080	1111	SCFM	8.6	PSIG	Aeration	Chuck Jones	Lead Operator	P:904-209-2691 C:904-495-8276	c <u>iones@sicfl.us</u>
13-0022	City of Shelton Phase II, CT	13-May-14	Connecticut	2 x NX100-C100	1400	SCFM	13	PSIG		Garritt Ogden	Plant Maintenance	203-410-0768	g.ogden@cityofshelton.org
13-0023	Paso Robles, CA	29-Oct-14	California	3 x NX150-C100	2500	SCFM	12.4	PSIG			Mark Schmitz / Ernie Valenzuela	661-440-1551	Evalenzuela@prcity.com
13-0024	Pepper's Ferry PLC	1-Dec-11	Virginia	This project consists in the upgrade of the existing LCP on the blower NX200 on site from AB to Modicon.		S		0		R. Clarke Wallcraft Ryan L. Hendrix Michael H. Hutchison Dickie R. Turner	Executive Director Deputy Executive Director Plant Superintendent Maintenance Manager	P:540-639-3947 C:540-257-0241	cwallcraft@pfrwta.com rhendrix@pfrwta.com mhutchison@pfrwta.com dturner@pfrwta.com
13-0025	City of Norway, MI	3-Dec-13	Michigan	1 x NX50-C080	1250	SCFM	8	PSIG		Brock Johnson	Wastewater supervisor	906-563-9961	wwtp@norwaymi.gov
13-0026	Avon Lake II, OH	29-Dec-14	Ohio	2 x NX200-C060	4530	SCFM	7.6	PSIG		Steve Baytos		440-933-3185	sbaytos@avonlakewater.or q
13-0027	Lauren County, SC	4-Dec-14	South Carolina	2 x NX100-C080	1650	SCFM	10	PSIG	Aeration	Barry Templeton Justin Kuykendakk	Wastewater Facilities manager Operations	864-923-0097 864-684-0989	btempleton@lcwsc.com jkuykendall@lcwsc.com
13-0028	Cox Creek, MD	2-Jan-15	Maryland	2 x NX50-C070 2 x NX300-C060 5 x NX300-C050	1000	SCFM	7.4	PSIG	GE MBR	Matt Barrett Michael Smith	Contractor Maintenance Supervisor	802-233-5197 410-302-6292	Pwsmitt77@aacounty.org
13-0029	OCWA Marathon, ON	17-Oct-13	Ontario	1 x NX50-C060	1250	SCFM	7.8	PSIG	stab tank, aeration tank, digester and return sludge	Jason Leblanc	Operations Manager	807-728-3323	jleblanc@nwi.com
13-0034	Pigeon Creek, PA	20-Aug-14	Pennsylvani a	3 x NX050-C080	948	SCFM	6.5	PSIG	······································		Site Manager	724-239-2381	
13-0035	Port Darlington, ON	15-Feb-16	Ontario	3 x NX150-C080	4000	SCMH	65.5	KPAG		Ken Towrie	Chief Maintenance Operator	905-623-7937	ken.towrie@durham.ca
13-0036	Watsonville, CA	3-Dec-13	California	1 x NX150-C100	2450	SCFM	8	PSIG	Activated Sludge	James Johnson Kevin Silviera	Utilities Maintenance Supervisor Wastewater Division Manager	831-768-3177 831-768-3175	james.johnson@cityofwatso nville.org kevin.silviera@cityofwatson ville.org
13-0038	Madison WWTP, IN	17-Jun-14	Indiana	1 x NX150-C070	3100	SCFM	7.9	PSIG		Leon Pottschmidt	-9		leonp@mitchellstark.com

1

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
13-0040	Fallbrook, CA	11-Nov-14	California	6 x NX100-C070	1720	SCFM	8.6	PSIG		Owni Toma Mark April	Environmental Compliance Technician Mechanical Technician	760-728- 1125,1152 760-728- 1125,1154	Ownit@fpud.com marka@fpud.com
13-0041	Keene NH WWTP	20-Nov-14	New Hampshire	2 x NX150-C080	2300	SCFM	9	PSIG		Aaron Costa	Operations Manager	603-357-9836	ACOSTA@ci.keene.nh.us
13-0042	Victoria-Sechelt, BC	20-Jan-15	British Columbia	2 x NX50-C070 1 x NX75-C070	1503	NCMH	9.4	PSIG		Angela Smith	Plant Supervisor	604-989-1578	Asmith@sechelt.ca
13-0043	Pinellas-South Cross Bayou, FL	15-Aug-14	Florida	3 x NX400M- C050	9445	SCFM	6.8	PSIG	Aeration	lvy Drexler Mike McRorey Chuck Fry	Plant Manager Assistant Plant Manager Maintenance Manager	P:727-582-7023 C:774-991-2009 P:727-582-7009 C:806-778-2129	idrexler@pinellascounty.org mmcrorey@pinellascounty. org cfry@co.pinellas.fl.us
13-0044	Manchester- Shortville, NY	30-Jan-14	New York	1 x NX75-C050	1410	SCFM	7	PSIG		Gordon Eddington		315 277 0162	
13-0048	Orangeburg, SC	11-Feb-16	South Carolina	5 x NX200-C070	3950	SCFM	9.65	PSIG	Activated Sludge & SHT	Benji Brickle		803-707-4502	bbrickle@orbgdpu.com
13-0049	Pepper's Ferry III, VA	11-Mar-14	Virginia	1 x NX250-C070	4950	SCFM	9.4	PSIG	S)	R. Clarke Wallcraft Ryan L. Hendrix Michael H. Hutchison Dickie R. Turner	Executive Director Deputy Executive Director Plant Superintendent Maintenance Manager	P:540-639-3947 C:540-257-0241	cwallcraft@pfrwta.com rhendrix@pfrwta.com mhutchison@pfrwta.com dturner@pfrwta.com
13-0051	Nice, France	17-Jul-16	France	1 x NX700-C100		$\overline{\mathcal{O}}$				Arnaud Rostan		33 0 608 642831	
13-0057	City of Shelton IV, CT	13-May-14	Connecticut	1 x NX100-C100	1400	SCFM	13	PSIG		Garritt Ogden	Plant Maintenance	203-410-0768	g.ogden@cityofshelton.org
13-0058	EleEle, Hawaii	20-Oct-15	Hawaii	2 x NX50-C050	1100	SCFM	7	PSIG		Sanny Molina	Hawaii Engineering Services Inc.	808-841-0033	sanny@hiengineering.com
13-0060	City of Hastings, MI	13-Jun-14	Michigan	1 x NX100-C070	2000	SCFM	8.3	PSIG		George Holzworth	Operations Supervisor	269-908-0977	gholzworth@wadetrim.com george.holzworth@meadhu nt.com
13-0061	Hermosillo, Mexico	12-Dec-16	Mexico	5 x NX350-C070-		Q				Tubalcain Marin		521-662-174- 6533 +52 662 366 0463	
13-0062	Metro Grit-Syracuse, NY	9-Jun-15	New York	3 x NX50-C060	1040	SCFM	6.1	PSIG		Brian Stone Kevin Scriven@ongoy.net	Maintenance Coordinator Maintenance Crew Leader	315-800-9352 315-435-5024 x 227	brianstone@ongov.net kevinscriven@ongov.net
13-0063	Addison, IL	1-Sep-14	Illinois	1 x NX300-C060	6270	SCFM	7	PSIG		Doug Armstrong	Plant Supervisor	224-301-4934	darmstrong@addison-il.org
13-0064	Bensenville, IL	20-Sep-16	Illinois	3 x NX150-C070	3000	SCFM	9	PSIG		Mark Swayne	Superintendant	630-350-3486	mswayne@bensenville.il.us
13-0066	City of Sanger, CA	2-Apr-15	California	2 x NX150-C060	2200	SCFM	7.5	PSIG	GE MBR	Ron Franz	Plant Manager	559-513-9612	RonF@ci.sanger.ca.us
13-0067	Blaine, WA	27-Aug-14	Washington	1 x NX50-C060			İ		GE MBR	Christina (Chrissy)Ness	Lead Operator	360-332-8311 x 3501	cness@cityofblaine.com
13-0068	Silver Creek, NY	13-Mar-15	New York	2 x NX50-C050	1369	SCFM	6.4	PSIG		David Voigt	Lead Operator	716-969-4340 716-785-1234	silvercreeksewer@yahoo.c om
13-0069	Marlay Taylor, MD	10-Sep-15	Maryland	6 x NX150-C060	3035	SCFM	8.1	PSIG		Morgan O'Dell	Assistant Superintendent	P-1-301-862-3915 C-1-443-624-1628	modell@metcom.org
		7	5	7									

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
13-0070	Pearl Harbor, Hawaii	23-Oct-14	Hawaii	1 x NX200-C070	4220	SCFM	8.5	PSIG		Paul Carter	Chief Operator	808-474-2202	
13-0072	Bordighera, Italy	29-Jul-14	Italy	1 x NX75-C060					Nitrification Basins	Matteo CROCE	Application Engineer	39 02 89257234	mcroce@ascopompe.com]
13-0073	Mammoth, CA	8-Sep-14	California	2 x NX75-C070	1100	SCFM	6.7	PSIG		Rob Motley	Plant Maintenance Supervisor	760-920-2822	rmotley@mcwd.dst.ca.us
13-0074	Suncor Energy, CO	15-Jan-14	Colorado	1 x NX75-C080	800	SCFM	10	PSIG		Kim Slim		303-286-5853	
13-0075	Waukesha, WI	18-Dec-16	Wisconsin	3 x NX300-C080	6100	SCFM	9	PSIG		Jeff Harenda Nate Tillis	Plant Maintenance Maintenance Supervisor	262-524-3629 262-524-3626	JHarenda@waukesha- wi.gov ntillis@waukesha-wi.gov
13-0076	DC Filtrate-Blue Plains, MD	19-Dec-17	Maryland	12 x NX150-C100	2000	SCFM	12.2	PSIG	0	Vernon New Shawna Martinelli Laura Knox Salii Kharkar	PC Construction Engineer Process Engineer Maintenance Director Director of Operations	704-609-0719 202-568-2675 202-412-9345 202-812-0013	vnew@pcconstruction.com shawna.martinelli@dcwater. com laura.knox@dcwater.com salil.kharkar@dcwater.com
13-0077	Reidsville, NC	26-Jul-16	North Carolina	3 x NX150-C070	2460	SCFM	8.5	PSIG		Scott Bryan	Superintendent	336-349-1102	<u>sBryan@reidsville.gov</u>
13-0080	Crystal Lake, IL	24-Apr-14	Illinois	1 x NX150-C060	2750	SCFM			PSIG	Jim Huchel Daniel Langguth Sam Ferraro	Superintendent Wastewater Superintendent Division Supervisor	815-356-3700 847-587-3694	jhuchel@crystallake.org sferraro@crystallake.org
13-0081	Washington County SD, NY	15-Oct-14	New York	2 x NX50-C060	1000	SCFM	7.5	PSIG		Ray Hoag	Chief Operator	518-747-6967	rhoag@washingtoncountyn y.gov
13-0082	Delhi, ON	21-May-15	Ontario	3 x NX100-C080	3030	NCMH	60	KPAG		Martin Konietzny		519 909 0674	martin.konietzny@veolia.co m
13-2006	A_James River Refurbishing	1-Jul-13	Virginia	1 x NX300-C060	8400	SCFM	7.5	PSIG		Joe Battersby		757-833-1743	jbattersby@hrsd.com
13-2007	Boat Harbour, VA	28-Apr-13	Virginia	1 x NX150-C060- 125 1 x NX50-C060	2400	SCFM	8	PSIG		Matthew Russell Billy Phelps Laura Shields	Electrical, controls Maintenance Superintendent	757-274-5787 757-244-1674 757-244-1672	mrussell@hrsd.com wphelps@hrsd.com lshields@hrsd.com
14-0001	Glen Cove WWTP, NY	23-Apr-15	New York	1 x NX300-C080	5811	SCFM	7.76	PSIG		John Koziarz (RJ Industries)	Project Manager	516-493-7350	jkoziarz@rjii.net
14-0002	Thunder Bay NX50, ON	15-Aug-14	Ontario	1 x NX050-C080	800	SCFM		PSIG		Mark Wilson Michael Brown Patty Wilson	Operations Supervisor Maintenance Supervisor Operations	807-625-2589 807-625-2044	mwilson@thunderbay.ca mikebrown@thunderbay.ca pwilson@thunderbay.ca
14-0003	Parsipanny, NJ- REFURB	15-May-15	New Jersey	3 x NX300-C060 2 x NX150-C050	5760	SCFM	9	PSIG		Steven Vetrero Phil Bober Frank Lorito	Maintenance Superintendent Assistant Superintendent	973-428-7593 973-428-7593 973-428-7416	svetrero@parsippany.net pbober@parsippany.net florito@parsippany.net
14-0005	Christchurch, UK ASP2	10-Nov-15	United Kingdom	3 x NX50-C060						Wayne Culver Eamon Connoly		05738 063 559 75 5726 6636	wayne.culver@trant.co.uk eamon.connolly@trant.co.u k
14-0006	Christchurch, UK- ASP3	5-Jun-15	United Kingdom	3 x NX50-C070									
14-0007	Muncie, IN	2-Dec-14	Indiana	1 x NX350-C070	7076	SCFM	8	PSIG		John Barlow	Superintendent	765-808-1512	jcbarlow@msdeng.com
14-0008	Village of Carol Stream, IL	1-Oct-14	Illinois	1 x NX150-C070	2350	CFM	9.9	PSIG		Andrew Warmus Nicholas Lenzi	Operations Supervisor CH2M Project Manager	630-488-0003 630-653-5663 224 500-7864	Andy.Warmus@ch2m.com Nicholas.lenzi@jacobs.com

1

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
14-0011	City of Joliet, IL	10-Sep-14	Illinois	2 x NX350-C070	8000	SCFM	7.5	PSIG		Nicholas Gornick	Plant Supervisor	815-724-3675	ngornick@jolietcity.org
14-0012	City of Manteca, CA	1-Sep-15	California	3 x NX150-C060	3333	SCFM	7.55	PSIG		Tim Carroll Bill Perry	Wastewater Maintenance Supervisor Lead Wastewater Maintenance Worker	209-456-8470 209-481-4575	tcarroll@ci.manteca.ca.us bperry@ci.manteca.ca.us
14-0013	Goldsboro, NC- Replacement	11-Sep-14	North Carolina	1 x NX200-C070	4185	SCFM	7.7	PSIG		Bert Sherman	Superintendent	919-735-5529	RSherman@goldsboronc.g ov
14-0014	Chambers Creek, WA	8-Oct-16	Washington	4 x NX300-C080	5200	SCFM	11	PSIG		Barnaby Hoit	h	206-579-4021	barnaby@mcclureandsons. com
14-0015	City of Wilson, NC	27-Aug-15	North Carolina	1 x NX300-C070 1 x NX350-C070	7246	SCFM	9.52	PSIG		Jimmy Pridgen Nicholas Eatmon	Water Reclamation Manager Operation and Maintenance Supervisor	252-205-2519 252-291-4017	jpridgen@WILSONNC.OR G nearmon@wilsonnc.org
14-0016	Everett, WA	2-Sep-15	Washington	1 x NX100-C060	2200	SCFM	7.6	PSIG	Areation	Matt Gagner	WPCF Maintenance Supervisor	425-257-6795	mgagner@everettwa.gov
14-0017	City of Visalia, CA	13-Mar-17	California	4 x NX300-C060	7484	SCFM	6.34	PSIG	GE MBR	Jim Hestily Jeffrey B. Misenhimer	Water Conservation Plant Superintendent	559-713-4174	jim.hestily@visalia.city
14-0018	Milleys Creek, AL	28-Apr-16	Alabama	3 x NX75-C080	1250	SCFM	8.2	PSIG	LC C	Daniel Young Scott Milner /Kenneth W. Causey	Plant Supervisor Operations Operations	P:334-206-8800, C:334-206-1795 P:334-206-8800 P:334-206-8800	dyoung@mwwssb.com smilner@mwwssb.com kwcausey@mwwssb.com
14-0019	Portbury, England, UK	24-Aug-15	United Kinadom	1 x NX100-C060						Mark Bricknell		01785 229 300	mbricknell@corgin.co.uk
14-0021	City of Woonsocket, RI	18-Jul-16	Rhode Island	1 x NX300-C050	6500	SCFM	7.5	PSIG		Leslie Sjobom		401-597-6201	leslie.sjobom@ch2m.com
14-0022	Twin Falls, ID	2-Jun-15	Idaho	4 x NX300-C070						Jack Bennion Harry Stites	Project Manager Assistant Project Manager	208-280-1038 208-316-5096	Jack.bennion@jacobs.com harry.stites@jacobs.com
14-0023	Mid-Halton, ON	15-Nov-17	Ontario	2 x NX200 -C050	8500	NCMH	310	NBARG		Benny Seminerio	Mech Super	905-825-6000 ext 7544	benny.seminerio@halton.ca
14-0025	Lexington II, NC	22-Jul-15	North Carolina	1 x NX300-C100	3667	SCFM	14	PSIG	nonwovens manufacturing process	Chris Willoughby	Lex 1 Maintenance Planner	336-242-6616	Chris.W.willoughby@hyh.co m
14-0026	Intl. Airport of Houston, TX	5-Jul-16	Texas	7 x NX350-C70	7100	SCFM	7.5	PSIG		Ken Brown Jason Francis	City of Houston Operator	713-504-7705 832-590-9577	ken.brown@houstontx.gov jason.francis@houstontx.go v
14-0027	City of Woodland, CA	10-Dec-16	California	2 x NX200-C070 2 x NX300-C070	4100	SCFM	8	PSIG		Anthony Gedatus		530-867-2742	anthony.gedatus@cityofwoo dland.org
14-0028	Opequon WRF, VA	2-Aug-15	Virginia	4 NX150-C070	3075	SCFM	8.1	PSIG		Richard Wadkins Robert Evans Ken Fisher	Facility Manager Maintenance Manager Chief Operator	540-665-9867 540-335-1142 540-665-9867 304-303-3123 540-665-9867 540-303-8825	richard.wadkins@wincheste rva.gov robert.evens@winchesterva .gov Ken.fisher@winchesterva.g ov
14-0030	Michael Foods, MN	18-Feb-15	Minnesota	1 x NX350-C070	7168	SCFM	8.2	PSIG	Aeration	Darren Reid	WWTP Operations Maintenance	507-237-4581 phone 507-317- 4075 Cell	darren.reid@michaelfoods.c om

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
14-0031	Kitchener WWTP, ON	11-Jul-18	Ontario	5 x NX350-C080	8050	NCMH	73	KPAG		Kyle Walton	O & M Team Lead	519-748-4141 ext. 227	kwalton@ocwa.com
14-0032	BELMONT, ON	13-Mar-15	Ontario	1 x NX100-C060	2170	SCFM	8.1	PSIG		Trevor Martin	Superintendent	519-617-0485	tmartin@centralelgin.org
14-0033	ST. MARY'S, ON	23-Jun-15	Ontario	1 x NX150-C070	3086	SCFM	8.5	PSIG		Renee Hornick		519-274-0997	RHornick@ocwa.com
14-0034	Tillamook, OR	16-Feb-15	Oregon	2 x NX300-C100- 250	3600	SCFM	11	PSIG	<	Steven Blahut	Plant Manager	503-825-1336	sblahut@tillamook.com
14-0036	Bremerton, WA	25-Mar-15	Washington	1 x NX100-C070	2200	SCFM	7	PSIG		Rick Zimburean	Maintenance Supervisor	360-471-5168	rick.zimburean@ci.bremerto n.wa.us
14-0037	Manatee, FL	9-Mar-17	Florida	2 x NX300-C060	6600	SCFM	8.7	PSIG		Malissa Dicky Jon Van Waardhuizen	SCADA Technician	O: 941-792- 8811,5181 941-348-7100	<u>malissa.dicky@mymanatee,</u> org Jonathon.VanWaardhuizen @mymanatee.org
14-0038	McAllen South Plant, TX	30-Nov-17	Texas	6 x NX300-C080 1 X NX50-C070	5750	SCFM	10.3	PSIG	NX 300 Aeration NX 100 Post air UV	Edgar Tijerina Fernando Perez	Plant Manager Supervisor	956- 681-1751 956-681-1756	edgartijerina@mcallen.net fperez@mcallen.net
14-0039	South San Francisco II, CA	23-Jan-16	California	1 x NX350-C080	6700	SCFM	10.3	PSIG		Brian Schumaker Arran Gordon	Superintendent Maintenance Supervisor	650-829-3844 650 829 3850	Brian.Schumacker@ssf.net Arran.Gordon@ssf.net
14-0040	Western Riverside, CA	2-Mar-17	California	2 x NX200-C070	3500	SCFM	8.5	PSIG		Scott Page Michael Snow		760-443-7413 951-789-5189	SPage@wmwd.com msnow@wmwd.com
14-0041	Metro Vancouver II, BC	13-Apr-16	British Columbia	3 x NX700-C080	330	NCMM	80	KPAG		Vince Chiu	Superintendent, WWTP,	604-523-7107	vince.chiu@metrovancouve r.org
14-0043	Summit County - Snake River, CO	12-Nov-15	Colorado	1 x NX50-C080 1 x NX75-C080	940	SCFM	8.2	PSIG	>	Stone Turner		970-468-5794	stoner.turner@summitcount yco.gov
14- 0044A	Evansville, IN	1-Oct-15	Indiana	3 x NX350-C070	7500	SCFM	7.5	PSIG		Joe Dickman	Chief Operator	812-454-2584	jdickman@ewsu.com
14- 0044B	Evansville, IN	1-Oct-15	Indiana	3 x NX200-C060	4100	SCFM	7.5	PSIG		Chris Bauer	Chief Operator	812-483-8544	cbauer@ewsu.com
14-0045	Scotts Valley, CA	7-Jul-15	California	1 x NX50-C080	800	SCFM	8.5	PSIG	Areriation 2 Tanks	Scott Hamby	Wastewater Division Manager	831-438-0732	shamby@scottsvalley.org
14-0046	Crystal Lake, IL	30-Apr-15	Illinois	2 x NX150-C060	2750	SCFM	7	PSIG		Chris Olson		773-908-5343	colson@independentmech. com
14-0047	Fort Collins-Drake, CO	21-Oct-15	Colorado	2 x NX200-C100						Link Mueller	Project Manager	970-222-0465	LMueller@fcgov.com
14-0048	Moline, IL	26-Oct-17	Illinois	4 x NX100-C080	2000	SCFM	8.9	PSIG		Greg Pyles	Operations Manager	309-798-7032	gpyles@moline.il.us
14-0049	Owen Sound, ON	12-Jan-17	Ontario	3 x NX150-C100	2530	NCMH	14.8	PSIG		Catherine petit		514-334-7230 ext 3195	catherine.petit@veolia.com
14-0052	Lowestoft, UK	16-Apr-15	United Kingdom	1 x NX350-C070						Paul Ellis	Project Manager (Jacobs LED Ltd)	011 44 0 7841 499899	
15-0001	Niagara on the Lake, ON	10-Aug-18	Ontario	3 x NX75-C080	2057	NCMH	69	KPAG		Bob Pysher		905-685-4225 ext. 3657	bob.pysher@niagararegion. ca
15-0002	Shady Cove, OR	12-May-15	Oregon	1 x NX50-C060	3500	SCFM	7.75	PSIG		Carl Tappert	District Manager	541-664-6300	ctappert@rvss.us
15-0003	Salt Creek, IL	5-Jul-15	Illinois	1 x NX200-C060	3500	SCFM	7.75	PSIG		Kris Komorn	Project Manager (DMI)	847-212-1147	kkomorn@dahmemechanic al.com
15-0004	Frederick, MD	28-Jun-18	Maryland	4 x NX200-C070	4000	SCFM	8.3	PSIG		Jason Michael	Superintendent	301-600-1809	jburrier@cityoffrederick.com
		, V	2										

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
15-0005	South Cary, NC	2-Jun-16	North Carolina	1 x NX350-C070	8530	SCFM	7.7	PSIG	Digester	Jarrod A. Buchanan Larry James Josh Cummings	Plant Manager Maintenance Supervisor Plant Engineer	919-633-9016 919-580-3798 919-810-1505	jarrod.buchanan@townofca ry.org larry.james@townofcary.org Josh.Cummings@townofca ry.org
15-0006	City of Genoa, IL	25-Jul-15	Illinois	1 x NX75-C070	1300	SCFM	6.82	PSIG		Janice Melton	Sewer, Streets, and Forestry Supervisor	815-784-7131	jmelton@genoa-il.com
15-0007	Wasaga Beach OCWA. ON	20-Oct-15	Ontario	1 x NX200-C060	8719	Nm3/hr	53	KPAG		Karen Lorente	Regional Manager	705-429-2525	klorente@ocwa.com
15-0008	Kingsville OCWA, ON	13-Nov-15	Ontario	1 x NX100-C070	3698	Nm3/hr	61	KPAG		Karen Burgess		519-738-3038	kburgess@ocwa.com
15-0009	RM Clayton, Atlanta	13-Apr-16	Georgia	4 x NX700-C080	12500	SCFM	9.1	PSIG	\mathcal{O}	Danial Sabou Julius Bell Kelley, Christian D.	Plant Manager Plant Maintenance Supervisor Asset and Accountability	404-565-8903 404 798-1022 678-358-1363	dsabou@atlantaga.gov JCBell@AtlantaGa.Gov CDKelley@AtlantaGa.Gov
15-0010	Roane County, TN	29-Dec-15	Tennessee	2 x NX75-C070	1000	SCFM	8.4	PSIG		Majel Leach Casey	Pretreatment coordinator	423-506-4384 865-360-0242 865-591-8377	magentaroane@comcast.n et
15-0011	NBC,RI	28-May-15	Rhode Island	2 x NX350-C070	7910	SCFM	8.4	PSIG		Eugene Sorkin		401-641-3271	ESorkin@narrabay.com
15-0012	Canada Malting, AB- Ph_2	8-Dec-15	Alberta	1 x NX400-C100	6000	SCFM	14.22	PSIG		Rick Armstrong	Plant Manager	403-518-3495	rick.armstrong@canadamalt
15-0013	Orangeville, ON	14-Jun-17	Ontario	3 x NX150-C100	3968	CMHR	85	kPaG		Jeff Hardy	Wastewater Supervisor	519-941-0440	jhardy@orangeville.ca
15-0014	Copperas Cove, TX	9-Jun-16	Texas	4 x NX100-C060	2006	SCFM	7	PSIG		Chris Altott Thomas Brooks	Wastewater Superintendent Senior Operater	254-547-0751 254-547-9966	caltott@copperascovetx.go v tbrooks@copperascovetx.g ov
15-0015	North River, NY	30-Jan-18	New York	9 x NX350-C100	4567	SCFM	14.2	PSIG		Kiah Miller Chris Kearney	Plant Chief	646-530-1811 212-491-5050	millerk@dep.nyc.gov
15-0016	26th Ward, NY	24-Aug-17	New York	5 x NX700-C070	13500	SCFM	8	PSIG		Kevin McCormick James McCann	Deputy Plant Chief	347-451-4493	kmccormick@dep.nyc.gov JMcCann@dep.nyc.gov
15-0019	Stayner WWTP, ON	9-Aug-16	Ontario	2 x NX50-C060	850	SCFM	7	PSIG		Glenn Price		705-445-1581 ext 3315	gprice@collingwood.ca
15-0020	Sudbury, ON	9-Dec-15	Ontario	1 x NX350-C070	8170	CFM	8	PSIG		Bob Lee	Maitenance Officer	705-674-4455 ext:4817	bob.lee@greatersudbury.ca
15-0021	Chatham, ON	17-Dec-15	Ontario	1 x NX300-C070	8000	SCMH	8	PSIG		Dhanna Niriella	Supervisor South/ Central PUC `	226-312-2023 ext 4338	dhanan@chatham-kent.ca
15-0022	Leonardtown, MD	18-Nov-16	Maryland	3 x NX50-C060	1200	SCFM	7	PSIG		Jay Johnson	Utilities Superintendent	240-298-4451	jay.johnson@leonardtownm d.gov
15-0023	Cypress Hill, TX	9-May-17	Texas	5 x NX50-C060	1030	SCFM	8	PSIG	2 x Digesters, 3 x Aeration	TR Riley Michael Butler	Plant Manager Operator	281-303-6405 281-889-9964	tr@eaglewatermanagement .com mikeyb77375@gmail.com
15-0024	Ear Falls, ON	29-Oct-15	Ontario	1 x NX50-C070	928	SCFM	8.4	PSIG		Rob Eady	Operations Manager	807-222-3479	ready@ear-falls.com
15-0025	Town of Plympton- Wyoming, ON	8-Oct-15	Ontario	1 x NX50-C060	1130	SCFM	7	PSIG		Peter Ollos		905-491-3060	Pollos@ocwa.com
15-0026	Wadsworth, OH	10-Dec-15	Ohio	1 x NX150-C070	2500	SCFM	7.5	PSIG		Christ Babcok Herman Maruschke	Superintendent	330-336-2894 216-798-7800	jclark@wadsworthcity.org hmaruschke@wadsworthcit y.org

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
15-0027	Roanoke, VA	13-Apr-18	Virginia	2 x NX700-C070	1450	SCFM	10.03	PSIG		S. Scott Shirley Tommy Shaver	Director of Wastewater Operations	540-283-8270 540-537-5894	Stephen.Shirley@WesternV aWater.org Tommy.Shaver@WesternV aWater.org
15-0028	Fenton, MO	15-Mar-16	Missouri	1 x NX150-C070	3374	SCFM	8	PSIG		Tod Heller Shane Babson Jon Winslow Nathan Shroyer	Senior Operator	636-861-6701 314-335-2042 636-861-6704 636-861-6703	theller@stlmsd.com sbabson@stlmsd.com jwinslow@stlmsd.com nshroyer@stlmsd.com
15-0029	HRRSA, VA	6-Aug-15	Virginia	1 x NX350-C070	7200	SCFM	8	PSIG		Harvey Morris	Maintenance supervisor	540-434-1053	hmorris@hrrsa.org
15-0030	Bensenville, IL	23-Mar-16	Illinois	3 x NX150-C070	3000	SCFM	9	PSIG		Mark Swayne	Superintendant	630-350-3486	mswayne@bensenville.il.us
15-0031	Corona, CA	29-Jun-16	California	2 x NX30-C060	350	ACFM	5.5	PSIG	$\mathbf{\nabla}$	Frank Garza Roger Johnson		951-279-3665 915-830-1441	frank.garza@ci.coronaca.us roger,johnson@ci.coronaca. us
15-0032	Fredonia, NY	22-Jul-16	New York	2 x NX100-C050	2450	SCFM	7	PSIG		Betsy Sly Kenny Porter Tony Mistretta.	Engineer Senior Operator Maintenance Mechanic	716-366-0057	fwwtp@netsync.net
15-0033	JEA-Upgrades, FL	2-Jan-16	Florida	4 x NX700-C070	15980	SCFM	10	PSIG		Todd Gilbert	Electrician & Instrumentation Tech	904-545-7238	gilbta2@jea.com
15-0034	Chillicothe, IL	9-Aug-16	Illinois	2 x NX75-C060	1412	SCFM	8	PSIG		David Day		309-274-3583	chilisd@frontier.com
15-0035	Kingsport, TN	2-Sep-16	Tennessee	1 x NX150-C060	3300	SCFM	7.1	PSIG	Aeration	Niki Ensor Tom Hensley	Water/Wastewater Facilities Manager Wastewater Plant Superintendant	423-914-9433 423-229-9394	nikiensor@kingsporttn.gov TomHensley@kingsporttn.g ov
15-0036	Harlingen, TX	3-Aug-17	Texas	3 x NX300-C070	5765	SCFM	9.22	PSIG	Aeration	Bernardino Quintana, Jesus Guevara	WWTP Superintendent Chief Operator	956-440-6513 956-440-6521	bquintana@hwws.com jguevara@hwws.com
15-0038	Norway, MI	9-Nov-17	Michigan	2 x NX75-C070	1470	CFM	8.5	PSIG		Brock Johnson	Wastewater supervisor	906-563-9961	wwtp@norwaymi.gov
15-0039	Beddington phase II	10-Jun-16	United Kinadom	1 x NX600-C050	400	m3/min	3.05	BarG		Alan Jenner	MEICA Lead		alan.jenner@costain.com
15-0040	EMWD-Temecula, CA	8-Jun-19	California	3 x NX200S-C060 3 x NX600-C070	4521	SCFM	7.4	PSIG	Plant # 3 Air Scour Plant # 3 Aeration	Matthew Melendrez Clete Fracchiolla Ron Ceallos Ken Tagney	Director of Water Reclamation Plant Manager Plant Shift Supervisor Plant Shift Supervisor	951-928-3777 #4303 951-928-3777 #7401 951-928-3777 #7403 951-928-3777 #7402	melendrm@emwd.org fracchic@emwd.org ceballor@emwd.org tangneyk@emwd.org
15-0042	USD, CA	7-Jun-16	California	1 x NX600-C070	12000	SCFM	9.4	PSIG		Scott Martin Michael Hovey	Coach, Facilities Manitenance FMC Planner/Scheduler	510-477-7576 510-477-7683	scottm@unionsanitary.ca.g ov mikeh@unionsanitary.ca.go v
15-0043	Fox Metro South, IL	5-Dec-18	Illinois	3 x NX200-C080	3922	ACFM	9.2	PSIG		Doug Bakers Andrew Deitchman	Superintendent Project amanager	573-218-0146 630-897-4651	adeichman@deuchler.com
15-0045	Burbank, CA	26-Jul-16	California	3 x NX350-C070	5150	SCFM	8.16	PSIG		Linda Martinez		818-972-1115	linda.martinez@suez- na.com
15-0047	Livingston, NJ	8-Jun-17	New Jersey	3 x NX100-C070	2000	SCFM	8	PSIG		Joe Greco	Superintendent	973-535-7944	jgreco@livingstonnj.org

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
15-0048	Salida Sanitary District, CA	14-Dec-16	California	3 x NX30-C070 3 x NX100-C100	390	SCFM	8.4	PSIG		Linda Walker	Operations Manager	209-346-0289	LWalker@salidasanitary.net
15-0049	Elmhurst, IL	23-Feb-17	Illinois	3 x NX150-C070	2850	SCFM	8.5	PSIG		Larry Leable		847-878-7100	lars@bollerconstruction.co m
15-0050	Bayshore RSA, NJ	3-Aug-16	New Jersey	1 x NX350-C070	7500	SCFM	7.25	PSIG		Roy Anderson	Assistant Superintendent/ Maintenance Supervisor	732-739-1095	roy.anderson@bayshorersa .com
15-0051	Suncor, CO	9-May-16	Colorado	1 x NX100-C100	1000	SCFM	11.5	PSIG		Tony Gibbons	hX -	303-386-5590	tgibbons@suncor.com
15-0053	Vallecitos, CA	29-Feb-16	California	1 x NX75-C070	1470	SCFM	9.5	PSIG		Dale Austin	\boldsymbol{C}	O:760-744- 0460,237 C:760- 468-3686	<u>daustin@vwd.org</u>
15-0054	Periodistas, MX	30-Mar-17	Mexico	3 x NX100 -C100			1			Dulce Vazquez		521 (81) 8345 9359	dulce.vazquez@ambbio.co m
16-0001	Greenway, ON	15-Feb-18	Ontario	1 x NX100-C050	300	m3/min	48	kPaG		Mark Spitzig	Operations and	519-661-0670	mspitzig@london.ca
16-0003	Bergen Point, NY	27-Jun-17	New York	2 x NX100-C050	2200	SCFM	6	PSIG	C.	Dale Grudier Jr Frank Oliveri	Assistant Plant Supervisor Maintenance Supervisor	631-854-4045 631-854-4045	dale.grudier@suffolkcounty ny.gov frank.oliveri@suffolkcountyn y.gov
16-0004	Kimberly Clark Hendersonville, NC	29-Jul-16	North Carolina	1 x NX700-C080	6200	SCFM	8	PSIG	nonwovens manufacturing process	Josh Henri Jerry Gilliam	Senior Electrical Engineer Maintenance Planner	423-534-6608 828-697-4033	Josh.D.Henri@kcc.com jerry.gilliam@kcc.com
16-0005	Fox Metro North, IL	29-May-18	Illinois	4 x NX700-C070	17560	CFM	7.75	PSIG		Chris Morphey John E. Odean Joel Ilseman	Maintenance Supervisor Operations Foreman Operations Supervisor	630-301-6840 630-892-4378 630-892-4378	cmorphey@foxmetro.org jodean@foxmetro.dst.il.us jilseman@foxmetro.org
16-0007	Town of Aylmer, ON	14-Oct-16	Ontario	1 x NX75-C070	1262	SCFM	8.36	PSIG					
16-0008	Granite City, IL- Phase II	24-Mar-17	Illinois	1 x NX300-C050	7500	SCFM	7.2	PSIG		William Jones Jeff Hamilton Keith Watson	Assistant Superintendent Superintendent General Foreman of Maintenance	616-452-6229 618-910-9191 618-447-6809	bjones@granitecity.illinois.g ov jhamilton@granitecity.illinois .gov kwatson@granitecity.illinois. dov
16-0011	San Elijo Joint Power Authority, CA	9-Mar-17	California	3 x NX75-C080	1321	SCFM	10.5	PSIG		Michael Henke		760-801-1238	henkem@sejpa.org
16-0015	Goleta, CA	16-Mar-17	California	1 x NX100-C080	1400	SCFM	9.3	PSIG		Chuck Smolnikar		805-967-4519	
16-0016	Golden Gate, FL	8-Feb-18	Florida	2 x NX150-C060	2500	SCFM	8.4	PSIG	Aeration (2 Zones)	Richard Stefanko Frank Gawlinski Wade Bassett	Plant Supervisor Operator Operato	239-455-3439	Richard.Stefanko@collierco untyfl.gov Frank.Gawlinski@colliercou ntyfl.gov Wade.Bassett@colliercount yfl.gov
16-0017	Lehigh Acres, FL	14-Mar-18	Florida	1 x NX75-C060 1 x NX100 C050 1 x NX150-C060	1300	ACFM	8	PSIG			Plant Operator	C: 239-222-3260	<u>ckimball@uswatercorp.net</u>
16-0018	San Luis Obispo, CA	14-Jul-17	California	1 x NX200-C060	4100	SCFM	8	PSIG		Chris Lehman	WRRF Operator	805-431-4372	clehman@slccity.org
		7	1										

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
16-0020	Salineville, OH	1-Mar-17	Ohio	2 x NX30-C050	600	SCFM	6.2	PSIG		Michelle Maynard		234-564-9785	Mmaynard1995@gmail.com
16-0021	Brembate,, IT Phase	9-Jan-17	Italy	1 x NX150-C070			T						
16-0022	Bayshore RSA Phase II	18-Jan-18	New Jersey	1 x NX350-C070	7500	SCFM	7.25	PSIG		Roy Anderson	Assistant Superintendent/ Maintenance Supervisor	732-739-1095	roy.anderson@bayshorersa .com
16-0023	City of Salem, OR	17-Feb-17	Oregon	1 x NX200-C060	4700	SCFM	7.05	PSIG		Glen Putman		503-588-6380	gputman@cityofsalem.net
16-0025	Plymouth, IN	11-Apr-17	Indiana	1 x NX100-C070 2 x NX150-C070	1893	SCFM	9	PSIG		Cleon Wagoner	Maintenance Supervisor	574-936-3017	
16-0026	Lowville, NY	20-Jan-17	New York	3 x NX100-C070	1900	SCFM	8.8	PSIG		Colin Fayle	Plant Operator	315-376-4464	wwtp@villageoflowville.org
16-0027	Westfield, NY	12-May-17	New York	3 x NX150-C060	3400	SCFM	7	PSIG					
16-0028	Capinteria	20-Apr-17	California	2 x NX75-C070	1100	SCFM	9.25	PSIG					
16-0030	American Falls, ID- Phase II	23-Mar-17	ldaho	1 x NX30-C080	300	SCFM	8.24	PSIG		Peter Cortez	Superintendent	208-226-2827	pcortez@co.power.id.us
16-0031	Harlingen, TX-Phase II	4-Oct-17	Texas	2 x NX75-C050	1600	SCFM		PSIG	Digester	Jim Vallely Bernardino Quintana	Wastewater Service Director Wastewater Superintendent	956-440-6516 956-440-6513	jvalley@hwws.com bquintana@hwws.com
16-0032	South Huron Valley, MI	26-Apr-18	Michigan	2 x NX200D-C070	4308	SCFM	9	PSIG					······
16-0036	Friarsgate, SC	10-Aug-16	South Carolina	1 x NX50-C050	1343	SCFM	7.2	PSIG		Jimmy Holland		334-206-1722	jholland@wkdixon.com
16-0037	Fairfield Suisun Sewer District, CA	19-Jul-19	California	4 x NX350-C070	8250	CFM	7.8	PSIG		Jordan Damerel Dave Harrold	Director of Enginnering Maintenance Supervisor	707-429-8930 O:707-428-9156 C:707-365-1837	jdamerel@fssd.com dharrold@fssd.com
16-0038	Bradford, ON	26-Apr-17	Ontario	1 x NX150-C070	84	СММ	70	kPaG		Brad Sullivan	Wastewater Treatment Plant Supervisor	905-775-3252 ext 7102	bsullivan@townofbwg.com
16-0039	Vallecitos, CA Ph II	1-Jun-17	California	1 x NX100D-C070	1400	SCFM	9.5	PSIG		Dale Austin		760-744-0460	
16-0040	Battle Creek, MI	19-Jul-18	Michigan	4 x NX350-C070	7500	SCFM	8.5	PSIG					
16-0041	Orillia, ON	24-Oct-19	Ontario	3 x NX200-C060	7000	NCMH	56.8	kPaG		Jasani Vallabhadas	Superintendant of Wastewater	905-850-1242	jasaniv@malfar.ca
16-0042	Isla Blanca, TX	22-Sep-17	Texas	2 x NX150-C060	4000	CFM	6.8	PSIG	Aeration (4 basins)	Mark Garza Fransisco Guzman	Manager Assistant Manager	956-572-0395 956-371-1345	mgarza@lmwd.org, fguzman@lmwd.org
16-0043	Patuxent, MD	18-Oct-18	Maryland	1 x NX200-C060 2 x NX300-C060	4570	SCFM	8	PSIG		Dave Miller Robert Kraus	Project Superintendent Utilities Team Manager	443-292-8236 443-685-5172	pwkrau18@aacounty.org
16-0045	Broadholme, UK	30-Jan-18	United Kingdom	2 x NX300-C060			T						
16-0046	TOHO-South Bermuda, FL	31-May-18	Florida	4 x NX350-C080	7000	SCFM	8	PSIG	Aeration	Don Vedner	Chief Operator II	P:407-944-5077 C:407-501-1259	dvedner@tohowater.com
16-0047	Port Isabel, TX	27-Nov-18	Texas	1 x NX200-C060	4000	SCFM	8	PSIG		Mark Garza Fransisco Guzman	Manager Assistant Manager	956-572-0395 956-371-1345	mgarza@lmwd.org, fguzman@lmwd.org
		7											

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
16-0049	Lemont , IL	29-Aug-17	Illinois	1 x NX150-C070	2700	SCFM	9.2	PSIG		Mark Kursell, PE	Principal Mechanical Engineer	708-588-4182	KursellM@mwrd.org
17-0002	Addison, IL-Phase II	27-Apr-17	Illinois	1 x NX150-C070	2600	SCFM	7	PSIG		Doug Armstrong	Plant Supervisor	224-301-4934	darmstrong@addison-il.org
17-0006	Crown Point, IN	12-Jan-18	Indiana	2 x NX150-C070	2905	SCFM	8.6	PSIG	Waste Water Treatment	Chris Previs	Wastewater Superintendent	219-662-3255	cprevis@crownpoint.in.gov
17-0007	Howard Grove, WI	17-Dec-17	Wisconsin	1 x NX75-C060	1300	SCFM	8.2	PSIG	Waste Water Treatment	David Wright	Plant Manager	920-565-3029 920-377-6039	hgwwtf@howardsgrove.org
17-0008	Dekalb, IL	19-Sep-19	Illinois	4 x NX150-C080	2550	SCFM	9.8	PSIG					
17-0011	Durango, CO	28-Feb-19	Colorado	3 x NX200-C080	2700	SCFM	8.7	PSIG	Aeraion	Chanel Fitch- Kirkpatrick Joe Wise	Chief Plant Operator	970-759-4707 970-375-4895	chanel.kirkpatrick@durango gov.org joe.wise@durangogov.org
17-0013	Michael Foods, Lenox, IA	28-Sep-17	lowa	1 x NX350-C070	6000	SCFM	8.5	PSIG	Aeration	Jeremy Robinson	Plant Supervisor	712-542-7055	jeremy.robinson@michaelfo ods.com
17-0014	Soldotna, AK	#N/A	Alaska	3 x NX100D-C060	2200	SCFM	8.5	PSIG		CO Robert Hays Site Email	Project Manager Utility Department Manager	907.714.1235 907.262.4205	corudstrom@soldotna.org rhays@soldotna.org uoperator@soldotna.org
17-0015	Shelton, CT Phase	26-Jul-18	Connecticut	1 x NX100-C100	1400	SCFM	13	PSIG		Garritt Ogden	Plant Maintenance	203-410-0768	g.ogden@cityofshelton.org
17-0016	Bristol, TN	27-Sep-18	Tennessee	3 x NX150S-C060	3100	SCFM	7.8	PSIG	LV	William (Bill) Davidson Matthew Dake	Assistant Manager Project Manager	423-340-0993 423-989-5570	Bill.Davidson@inframark.co m Matthew.Dake@inframark.c om
17-0017	Coleshill, UK	22-May-18	United Kingdom	1 x NX150-C050									
17-0021	Seven Springs, FL	27-Jul-18	Florida	2 x NX75-C050 2 x NX150-C060	2017	SCFM	5	PSIG		Terry Henry Chris Chument	Op. Manager Op. Lead	727-243-4570 727-389-8616	thenry@uswatercorp.net cchumenti@uswatercorp.ne t
17-0022	Noblesville, IN	26-Sep-18	Indiana	3 x NX300S-C100	4100	SCFM	11	PSIG		Gene Stafford	Plant Operator	317-432-8248	gstafford@Noblesville.in.us
17-0023	West Lafayette, IN	8-Feb-18	Indiana	2 x NX200S-C050	5500	SCFM	7.2	PSIG		Jim Bjork Adam Huwe	Instrumentation specialist Opertions Supervisor	765-775-5145 765-775-5145	jbjork@wl.in.gov phuwe@wl.in.gov
17-0025	West Walton, UK	3-Jul-18	United Kinadom	2 x NX200-C050									
17-0026	Wilson Creek, TX	18-Jul-19	Texas	1 x NX300-C080	4600	SCFM	11.2	PSIG		Jason Pittsigner	Chief Operator	972-442-5405	jpittsigner@ntmwd.com
17-0027	OCWA Marathon, ON	12-Dec-17	Ontario	1 x NX30-C060	668	SCFM	7	PSIG	stab tank, aeration tank, digester and return sludge	Rodger Betts	Operations Manager	807-229-1186	rodger.betts@nwi.ca
17-0028	Rutland, VT	27-Jun-18	Vermont	1 x NX100D - C070	2094	SCFM	9.8	PSIG		David Joyce Robert Protivanski	Superintendent Chief Wastewater Operator	208-434-2432 802-773-1851	davidj@rutlandcity.com bobp@rutlandcity.org
17-0029	City Of Conroe, TX	31-Aug-18	Texas	2 x NX300-C070	4691	SCFM	9	PSIG		Greg Hall	Project Superintendent- Contractor	407-402-1845 936-522-3836 or 936-522-3885 Oprion 0	ghalljr@cityofconroe.org
17-0030	Elmvale, ON	24-May-18	Ontario	1 x NX100-C060	1750	SCFM	7.5	PSIG		Hank Andres	Senior Water & Wasetwater Process Engineer	905.271.3696	handres@ocwa.com
17-0031	St. Johns - Ponte Vedra, FL	28-Jun-19	Florida	4 x NX75-C070	1300	SCFM	9.52	PSIG	Aeration	Mark Mashburn	Operation Supervisor	P:904-209-2757 C: 904-669-7490	mmashburn@sjcfl.us

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
17-0032	Meary Veg, UK	28-Jun-18	United Kingdom	3 x NX100-C060									
17-0033	BSA, NY	14-Dec-18	New York	5 x NX700S-C080	1100	SCFM	10	PSIG					
18-0001	Alderwood Picnic Point II	19-Sep-18	Washington	2 x NX150S-C070	2500	SCFM	8.7	PSIG		Joe Carter Manuel Semana Kevin Sykes Corey Ott	WWTF Manager Senior Facilities Mechanic SCADA / Electrical Manager SCADA Systems Lead	425-787-1940 Ext. 8311 425-787-3271 425-248-0029	jcarter@awwd.com MSemana@awwd.com KSykes@awwd.com cott@awwd.com
18-0002	Gig Harbor	20-Jun-19	Washington	1 x NX100D-C070	2041	SCFM	9.1	PSIG		Darrell Winans	Plant Supervisor	253-851-8999	winansd@cityofgigharbor.n et
18-0003	Lake Haven II, WA	31-Oct-19	Washington	4 x NX150S-C080	2330	SCFM	11.5	PSIG	Y	John Barton Brian Richardson John Kercher	Wastewater Operations Manager Wastewater Operations Supervisor	253-945-1642 253-945-1660 253-561-1357	jbarton@lakehaven.org brichardson@lakehaven.org jkercher@lakehaven.org
18-0004	Penoles, MX	#N/A	Mexico	2 x NX30-C050			\$			X			
18-0005	Pottersburg (London, ON)	15-Jun-18	Ontario	1 x NX400-C050	328	m3/min	48	КРА		Mark Spitzig	Operations and Maintenance Manager	519-661-0670	mspitzig@london.ca
18-0006	Oconomowoc, WI	10-Aug-18	Wisconsin	1 x NX150S-C070	2500	SCFM	7.4	PSIG		Kevin Freber	Operations Manager	262-569-2192 262-354-5265	kfreber@oconomowoc- wi.gov
18-0008	Gig Harbor-PLC Upgrade	#N/A	Washington	5 x CompactLogix LCP						Darrell Winans	Plant Supervisor	253-851-8999	winansd@cityofgigharbor.n et
18-0009	Charlotte, NC	30-Apr-20	North Carolina	2 x NX300D-C100	4500	SCFM	11.5	PSIG		Jeffrey Woolard	Lead Operator	743-333-1897	jswoolard@montrose- env.com
18-0010	Matheson, ON (OCWA)	29-Aug-18	Ontario	1 x NX50-C080	500	SCFM	8.6	PSIG					
18-0011	WLSSD WWTF Duluth, MN, Phase 2	1-Mar-19	Minnesota	1 x NX200S-C060	3700	SCFM	6.5	PSIG	The low pressure air in the final contact tank can also add dissolved oxygen to the effluent if needed	Al Parrella Joseph Schleret Jim Simmons Nathan Hartman Andy Klingsporn Lee McInnes	Manager Operations and Maintenance Planner Scheduler Senior engineer Lead Operator Lead Operator	218-740-4769 218-591-9027 218-740-4767 218-740-4762 218-740-4803 218-740-4854	al.parrella@wlssd.com Joseph.Schleret@wlssd.com jim.simmons@wlssd.com Nathan.hartman@wlssd.co m Andrew.Klingsporn@wlssd. com lee.mcinnes@wlssd.com
18-0013	Sacramento,CA	20-Apr-20	California	3 x NX200-C060	4050	SCFM	8.3	PSIG		Daniel DiBiasio	HYCHEM Team	P: 916-875-9341	dibiasiod@sacsewer.com
18-0014	Manteca II,CA	21-May-19	California	3 x NX200D-C080 1 x NX100-C070	1890	SCFM	7.0	PSIG		Bill Perry	Mastewater Maintenance Supervisor Lead Wastewater Maintenance Worker	209-456-8470 209-481-4575	icarroli@ci.manteca.ca.us bperry@ci.manteca.ca.us
18-0015	Orbit Energy, RI	28-Feb-20	Rhode Island	1 x NX300D-C100 1 x NX150-C100	2250	SCFM	11.5	PSIG					
18-0018	Sidney,OH	16-May-19	Ohio	1 x NX100-C060 2 x NX200-C050	2000	SCFM	7	PSIG					
		7											

February 2022

Project #	Project Name	Startup completion date	State	System Description	Flow (Rated performance)	Unit of measure	Head (Discharge Pressure)	Unit of measure	Type of Process	Site Contact	Title	Site Number	Site Email
18-0021	Goldsboro II, NC	18-Jan-19	North Carolina	2 x NX300-C070	6933	SCFM	7.7	PSIG		Bert Sherman	Superintendent	919-735-5529	RSherman@goldsboronc.g ov
18-0026	Clacton Holland Haven UK	7-Dec-18	United Kingdom	2 x NX100-C070									
18-0029	Dunstable, UK	6-Nov-18	United	1 x NX200-C060			<u>+</u>						
18-0030	Manchester-	18-Dec-18	New York	1 x NX50-C080	900	SCFM	7	PSIG					
18-0031	Brantford II, ON	6-Jun-19	Ontario	2 x NX300-C050	12190	nm3/hr	52	kPaG		Jim Sehl	Plant Manager	519-759-4150 ext	RLynes@brantford.ca
										John Smith	Maintenance	5825 519-732-3937	smithj@brantford.ca
18-0034	Heinz, OR II	22-Aug-19	Oregon	3 x NX500DS- C080	7500	SCFM	9.5	PSIG	Aeration	Bob Pharmer Jess Farrow	Stover Group ENG Maintenance	405-385-2439 208-447-7131	rpharmer@stovergroupeng. com jess.farrow@kraftheinz.com
18-0035	Sudbury II, ON	6-Feb-20	Ontario	1 x NX350-C070	12932	nm3/hr	55	КРА		Akli Ben-Anteur	water/wasterwater	705-674-4455	akli.ben-
										\sim	projects engineer	ext:4457	anteur@greatersudbury.co m
18-0036	West Perth II, ON	17-Jan-20	Ontario	2 x NX200-C060	3797	SCFM	8.5	PSIG					
18-0037	Lambton County,	27-Nov-19	Ontario	1 x NX50-C070	31	nm3/min	41.4	KPA		İ			
18-0043	Westfield II, NY	15-Oct-19	New York	1 x NX50-C060	1288	SCFM	6	PSIG		7			
19-0003	Georgetown, CO	16-Sep-19	Colorado	3 x NX50-C070	606	SCFM	7.5	PSIG		Jimmy Vass Ryan Zabel	Superintendent Public Work Supervisor	720-447-1755 303-518-3094	jvass@velocityci.com gtownutilities@townofgeorg etown.us
19-0010	Kenai, AK	27-Sep-19	Alaska	3 x NX50-C050	1459	SCFM	5.7	PSIG		<u>.</u>			
19-0011	Westside, AL	6-Nov-19	Alabama	2 x NX30-C070	576	SCFM	8.5	PSIG		James Dean	Plant Manager	251-580-1853	Jamesdean@mbumail.com
19-0013	Half Moon Bay, CA	19-Dec-19	California	2 x NX200D-C060						Kishen Prathivadi		650-726-0124	kishen@samcleanswater.or ɑ
19-0016	North Sitra, Bahrain	11-Oct-19	Bahrain	1 x NX150-C100				1		+			
19-0017	Hawaii Kai, HI	17-Jan-20	Hawaii	2 x NX75-C060	1728	SCFM	8.3	PSIG	-	Matt Lazecki		916-275-4740	Matthew.lasecki@amwater.
19-0020	Paris, ON	18-Dec-19	Ontario	1 x NX200-C060	4125	SCFM	9	PSIG					
19-0021 (11- 0037)	Millipore, NH	13-Dec-19	New Hampshire	3 x NX75-C060	Q								
19-0022	Van Wert, OH	17-Apr-20	Ohio	1 x NX150-C070	3300	SCFM	9.2	PSIG		<u>+</u>			
19-0036	City Of Petrolia, ON	18-Jun-20	Ontario	1 x NX100D-C080	2759	nm3/h	75	kPaG					
19-0037	Michael foods II, MN	18-Aug-20	Minnesota	1 x NX150-C060	3326	SCFM	7.8	PSIG					
20-0007	Oxford II, ON	22-May-20	Ontario	2 x NX100-C070	76	m3/min	46	kPa					
	<u>.</u>	~	Ç				<u>.</u>	. <u>.</u>		-			

Jacobs Installation List

Confidential Information

February 2022

Country	Project #	Project Name	Facility Location	State	Model	Core	Qty.	Ship Date
USA	10-0029	Granite City	Granite City	Illinois	NX100	C050	1	Dec-10
USA	10-0029	Granite City	Granite City	illinois	NX300	C050	2	Dec-10
USA	12-0003	JEA Talleyrand	Jacksonville	Florida	NX700	C070	4	Jul-12
USA	19-0010	Kenai WWTP	Kenai	Alaska	NX50	C050	3	Jul-19
USA	17-0003	Coffee Creek - Edmond,	Edmond	Oklahoma	NX300	C060	3	Jul-19
USA	17-0003	Coffee Creek - Edmond	Edmond	Oklahoma	NX200	C060	1	Jul-19
CANADA	18-0037	County of Lambton	Lambton	Ontario	NX50	C070	1	Jul-19
USA	19-0018	Haikey Creek, OK	Broken Arrow	Oklahoma	NX300	C080	4	Aug-20
USA	19-0028	Marine Park	Vancouver	washington	NX300	C070	1	Dec-20

APG-Neuros 1270 Michele Bohec, Quebec Canada, J7C 5S4 P:1 877 717-4150 sales@apg-neuros.com

d. Service Network

Confidential Information

1. Active Service Organizations in the vicinity of the **Owner**

Confidential Information

We offer Greater New Haven WWTP a highly responsive product support system including services of our Regional Field Service Managers dedicated to your support, with visits to your facilities periodically to monitor the operation, provide educational and refresher training and help resolve any technical or commercial issues.

APG-Neuros has 13 Startup & Field Service Engineers located at the Plattsburgh, NY facility and more than 25 factory certified field service technicians located across the United States that can commission or troubleshoot our Turbo Blowers.

We will provide strong proximity support with our employees located within driving distance from Greater New Haven, CT:

- APG-Neuros Technical Services Manager, Adam Norcorss, who is located in Plattsburgh, NY – 5 hours driving time from New Haven, CT.
- APG-Neuros Production Manager and Start-up Manager, Brandon Chamberlain, who is located in Plattsburgh, NY – 5 hours driving time from New Haven, CT
- APG-Neuros Senior Regional Manager, Chris James, who is located in Plattsburgh, NY 5 hours driving time from New Haven, CT
- APG-Neuros Field Technician, Chris Violette, who is located in Plattsburgh, NY 5 hours driving time from New Haven, CT
- APG-Neuros Field Technician, Brett Carnright, who is located in Plattsburgh, NY – 5 hours driving time from New Haven, CT
- APG-Neuros Field Technician, Scott Dublanyk, who is located in Plattsburgh, NY – 5 hours driving time from New Haven, CT
- APG-Neuros Director of Sales and Qualified Service Technician, Craig Phelps, who is located in Blainville, QC 7 hours driving time from New Haven, CT
- APG-Neuros Aeration Control Manager and I&C, Steven Kestel, who is located in Pennsylvania – 4 hours driving time from New Haven, CT
- APG-Neuros Field Technician, James Green, who is located in " †°

hours driving time from New Haven, CT

Confidential Information

2. Resumes

Confidential Information

Expertise Summary

Over 6 years' experience working with APG-Neuros blower systems, over 12 years experience in Manufacturing: *Production Manager*

- Oversee production in the Plattsburgh facility
- Manage production and testing schedules
- Training employees in production methods
- Oversee witness testing for various Customers
- Work with QA and Engineering to ensure all work is performed to the project's specifications
- Work with Project Management on site start-up planning, scheduling & review of services required
- · Review test results and advise accordingly
- Work with Engineering for new products and test requirements
- Oversee Electrical safety within the facility and start-ups
- Implement Lean manufacturing strategies for process improvements

Lead Test Technician

- Ensure safe work practices are always followed (proper PPE, awareness of hazards, etc.)
- Trained in NFPA 70E 2015, 2018
- Experience factory testing hundreds of blower packages and cores
- Extensive knowledge of installation and removal of all components within the blower package including:
 - Core
 - VFD
 - Cooling System
 - Harmonic Filter
 - Sine Wave Filter
 - LCP
 - Blow-Off Valve
- Experience working with the following PLC Manufacturer's products and their associated programming software:
 - Allen Bradley (CompactLogix, MicroLogix)
 - Siemens (S7)
 - General Electric (VersaMax)
 - Schneider (Modicon MD-340)
 - Cimon (XPanel)
- Extensive knowledge working with Windows-based PC software, as well as troubleshooting communication and hardware problems within
- Able to quickly and effectively troubleshoot problems within the blower package, along with identifying inconsistencies outside the blower enclosure (site related)
- Extensive experience working with blower enclosure liquid cooling systems, including mechanical piping (where applicable)
- Extensive knowledge programming associated hardware within the blower enclosure including:
 - VFD
 - PLC
 - HMI
 - Managed Network Switches
 - UPS systems
- Extensive knowledge of the blower to identify how it may respond to certain operating conditions

Field Service Engineer / Start-up Technician

- Trained in the stringent safety protocols of the United Kingdom
- Work with clients and engineers to determine the most effective method of controlling the blowers in an aeration application.
- Assist SCADA and MCP developers on changes to logic that may need to occur to meet the control demands of the blower system to match process.
- Well versed in development, implementation and adherence of APG-Neuros' Start-Up procedures.
- Experience in upgrading and installing new software in PLCs and HMIs currently in operation at client's sites.
- Basic understanding of wastewater treatment processes and associated P&ID.
- Completed numerous safety presentations for client construction sites.
- Providing enhanced support to technicians working at customer sites during and after working hours.
- Mid-level experience in changing PLC logic to adapt the blower to run in non-standard conditions.

Education

- A.A.S. Electrical Engineering Technology, SUNY Canton
- B.A Computer Information Technology, Southern New Hampshire University

Professional Registrations

- 10-hour General Industry OHSA card
- 10-hour construction OHSA card
- LEAN Six-Sigma Green Belt
- NFPA-70E certificate 2018 standards
- Universal HVAC License

Relevant Project Experience

Completed Start-ups and field Service on the following:

- Rochester, NY
- Keene, NH
- Jacksonville, FL
- Parsippany, NJ
- Syracuse, NY
- Fox Lake, IL
- Christ Church, UK
- Royal port Burry, UK
- Lowestoft, UK
- Conroe, TX
- Kingston, ON
- St. Johns, FL
- South Windsor, CT
- West Haven, CT
- Howard County, MD
- Richland, VA
- Warwick, RI
- Alexandria, VA
- Western wake, NC
- Linden Roselle, NJ
- Hillsborough, FL
- Bucklin Point, RI
- Riverside, CA
- Stonington, CT

Brandon Chamberlain Production Manager

- Killingly, CT
- San Jacinto, TX
- Shelton, CT
- Reidsville, NC
- Washington County, NY
- Visalia, CA
- Mileys Creek, AL
- Woodland, CA
- Opequon, VA
- Atlanta, GA
- Roane County, TN
- Copperas Cove, TX
- North River, NY
- Bensenville, IL
- Chillicothe, IL
- Buffalo, NY

Expertise Summary:

Over six years of experience working with APG-Neuros blower systems, including the following:

Test Technician/Technical Services Technician

- Ensure Safe work practices are always followed (proper PPE, awareness of hazards, etc.)
- Trained in NFPA 70E.
- Experience factory testing of blower packages and cores.
 - Extensive knowledge of installation and removal of all components within the blower package including:
 - Core
 - VFD
 - Cooling System
 - Harmonic Filter
 - Sine Wave Filter
 - LCP
 - Blow-Off Valve
- Extensive knowledge of troubleshooting VFD's while using Combivis 6.
- Experience working with the following PLC Manufacturer's products and their associated programming software:
 - Allen Bradley (CompactLogix, MicroLogix)
 - Siemens (S7)
 - Schneider (Modicon MD-340)
 - CIMON
- Experience working with Windows-based PC software.
- Able to quickly and effectively troubleshoot problems within the blower package, along with identifying inconsistencies outside the blower enclosure (site related).
- Extensive experience working with blower enclosure liquid cooling systems, including mechanical piping (where applicable).
- Knowledge programming associated hardware within the blower enclosure including:
 - VFD
 - PLC
 - HMI
- Knowledge with how the blower reacts to different situations.

Field Service Engineer / Start-up Technician

- Work with Customers and Engineers to determine the most effective method of controlling the blowers in an
 aeration application.
- Well versed in adherence of APG-Neuros' Start-Up procedures.
- Experience in upgrading and installing new software in PLCs and HMIs currently in operation at Customer's sites.
- Basic understanding of wastewater treatment processes and associated P&ID.
- Completed numerous safety presentations for Customer construction sites.

Professional Registrations:

- OSHA 10 Hour Construction
- OSHA 10 Hour General Industry

Education:

A.A.S. Manufacturing

Relevant Project Experience:

As of 02 January 2020, Completed Service/Start-ups in:

- Atlanta, GA
- Ballenger McKinney, MD
- Clark County, NV
- Corona, CA
- Cox Creek, MD
- Cypress Hill, TX
- Daphne, AL
- Decatur, IL
- Ellenville, NY
- Ellsworth, ME
- Elmhurst, IL
- Fox Lake, IL
- Fox River Grove, IL
- Greater Peoria, IL
- Hackettstown, NJ
- Harlingen, TX
- Hollister, CA
- JEA, FL
- Killingly, CT
- Livingston, NJ
- Long Brach, NJ
- NBČ, RI
- Orangeville, ON
- Pagosa Springs, CO
- Paso Robles, CA
- Riverside, CA
- South Valley, UT
- Stayner, ON
- Stonington Borough, CT
- Unified Sanitary District, CA
- Valdosta, GA

Scott Dublanyk Field Service Technician

Expertise Summary

Field Service Engineer / Start-up Technician

- Ensure Safe work practices are always followed (proper PPE, awareness of hazards, etc.)
- Knowledge of installation and removal of all components within the blower package including:
 - Core
 - VFD
 - Cooling System
 - Sensors

- Harmonic Filter
- Sine Wave Filter
- Logic Control Panel
- Blow-Off Valve

HM

- Experience working with the following PLC Manufacturer's products and their associated programming software:
 - Allen Bradley (CompactLogix / MicroLogix)
- Knowledge programming associated hardware within the blower enclosure including:
 - PLC
 - VFD
- Efficient working from electrical and mechanical drawings
- Extensive knowledge working with Windows based PC software
- Efficient at troubleshooting electrical, mechanical, and communication issues
- Able to troubleshoot problems quickly and effectively within the blower package, along with identifying inconsistencies outside the blower enclosure (site related).
- Knowledge of the blower enabling the ability to identify how it may respond to certain operating conditions.
- Work with Customers and Engineers to apply the most effective method of controlling the blowers in applications
- Assist SCADA and APGN Automation Team with blower integration including hardwiring controls, ethernet communication, and applying changes to logic to meet the control demands of the blower system and site process.
- Basic understanding of development, implementation, and adherence of APG-Neuros' Start-Up procedures
- Basic understanding of wastewater treatment processes and associated P&ID.

Education

AAS Business Administration

AAS Telecommunications Technology

Relevant Experience

As of March, 2021, Completed Start-Up/Field Service at:

Linden Roselle, NJ Warwick, RI Bayshore, NJ Hackettstown, NJ Knoxville, TN Spokane, WA South Cary, NC Iron House, CA Chillicothe, IL Brightwater, WA Monroe County, NY Shelton. WA IAH, TX Paso Robles, CA Fallbrook, CA Visallia, CA North River, NY Boisbriand, QC Long Branch, NJ Raritan. NJ Rockland, ME Seven Springs, FL Keene, NH Athabasca, AB Jackson Miller, TN Daphne, AL Lehigh Acres, FL Manatee, FL Michael Foods, IA Iowa City, IA Ellenville, NY Metro Vancouver, BC Campbell River, BC Kitchener, ON Pinellas, FL

Michael Magee Field Service Technician

Expertise Summary

Field Service Engineer / Start-up Technician

- Ensure Safe work practices are always followed (proper PPE, awareness of hazards, etc.)
- Knowledge of installation and removal of all components within the blower package including:
 - Core
 - VFD
 - Cooling System
 - Sensors

- Harmonic Filter
- Sine Wave Filter
- Logic Control Panel
- Blow-Off Valve

HM

- Experience working with the following PLC Manufacturer's products and their associated programming software:
 - Allen Bradley (CompactLogix / MicroLogix)
- Knowledge programming associated hardware within the blower enclosure including:
 - PLC
 - VFD
- Efficient working from electrical and mechanical drawings
- Extensive knowledge working with Windows based PC software
- Efficient at troubleshooting electrical, mechanical, and communication issues
- Able to troubleshoot problems quickly and effectively within the blower package, along with identifying inconsistencies outside the blower enclosure (site related).
- Knowledge of the blower enabling the ability to identify how it may respond to certain operating conditions.
- Work with Customers and Engineers to apply the most effective method of controlling the blowers in applications
- Assist SCADA and APGN Automation Team with blower integration including hardwiring controls, ethernet communication, and applying changes to logic to meet the control demands of the blower system and site process.
- Basic understanding of development, implementation, and adherence of APG-Neuros' Start-Up procedures
- Basic understanding of wastewater treatment processes and associated P&ID.

Education

BA Business Administration

AA Degree, Liberal Arts

AA Degree, Microprocessors

Relevant Experience

As of March, 2021, Completed Start-Up/Field Service at:

Rock Island, IL Village of Oregon, WI Delta Diablo, CA Oceanside, CA Westminster, MD Spokane, WA Martin Way, WA Chico, CA Haikey Creek, OK Alderwood, WA Oro Loma, CA Vallecitos. CA Blaine, WA McCain Foods, WA Vancouver, WA Camp Pendleton, CA Scotts Valley, CA Vacaville, CA Idaho Falls, ID King County, WA Hollister, CA Sacramento, CA

Expertise Summary:

About 3 years of experience working with APG-Neuros blower systems, including the following:

Test Technician

- Over 2,000 hours of test cell experience.
- Ensure Safe work practices are always followed (proper PPE, awareness of hazards, etc.)
- Experience factory testing of blower packages and cores.
- Extensive knowledge of installation and removal of all components within the blower package including:
 - Core
 - VFD
 - Cooling System
 - Harmonic Filter
 - Sine Wave Filter
 - LCP
 - Blow-Off Valve
- Experience working with the following PLC Manufacturer's products and their associated programming software:
 - Allen Bradley (CompactLogix, MicroLogix)
 - Siemens (S7)
 - General Electric (VersaMax)
 - Schneider (Modicon MD-340)
 - Cimon (XPanel)
- Able to quickly and effectively troubleshoot problems within the blower package, along with identifying inconsistencies outside the blower enclosure (site related).
- Extensive experience working with blower enclosure liquid cooling systems, including mechanical piping (where applicable).
- knowledge programming associated hardware within the blower enclosure including:
 - VFD
 - PLC
 - HMI
 - UPS systems
- Extensive knowledge of the blower to identify how it may respond to certain operating conditions.

Field Service Technician / Start-up Technician

- Work with Customers and Engineers to determine the most effective method of controlling the blowers in an aeration application.
- Well versed in development, implementation and adherence of APG-Neuros' Start-Up procedures.
- Experience in upgrading and installing new software in PLCs and HMIs currently in operation at Customer's sites.
- Basic understanding of wastewater treatment processes and associated P&ID.
- Completed numerous safety presentations for client construction sites.

Education:

Mechanical Engineering Technology

Christopher Violette Test Technician / Field Service Technician

Technical Drafting

Professional Registrations

- Adult First Aid/CPR/AED (exp. 2/19/2020)
- 10 Hour OSHA General Industry Safety Course
- Hazards of Electricity NFPA 70E
- Canadian Work Permit (exp. 07/30/2021)

Relevant Project Experience:

As of 31 Dec 2018, Completed Service/Start-ups in:

- Danielson, CT
- South Windsor, CT
- Fort Edwards, NY
- Lowville, NY
- St. Petersburgh, FL
- Cincinnati, OH
- Cincinnati, OH
- Scotts Valley, CA
- Paso Robles, CA
- Westfield, NY
- Burbank, CA
- South San Francisco, CA
- Riverton, UT
- Scottsdale, AZ
- Brooklyn, NY
- Harlingen, TX
- Oakley, CA
- Conroe, TX
- Moline, IL
- Hollister, CA
- Rockland, ME
- Carleton Place, ON
- Delta, BC
- Crystal Beach, ON
- Oakville, ON
- Villa Park, IL
- Chatham, ON
- Orangeville, ON
- Elmvale, ON
- Matheson, ON

- Port Elgin, ON
- East Windsor, NJ
- Acworth, GA
- Oswego, IL
- Linden, NJ
- Hackettstown, NJ
- Parsippany, NJ
- Addison, IL
- Villa Park, IL
- Corona, CA
- Sauget, IL
- Granite City, IL
- West Haven, CT
- New York, NY
- Union, CA
- Liberty, MO
- Curtis Bay, MD
- West Haven, CT
- Boisbriand, QC
- Woodinville, WA
- Brockville, ON
- Campbell River, BC
- Brantford, ON
- Chicago Heights, IL
- Peoria, IL
- Niagara On the Lake, ON
- Providence, RI
- Commerce City, CO
- Lathrop, CA
- Crown Point, IN
- Noblesville, IN

Expertise Summary:

Over 8 years' experience working with APG-Neuros blower systems, including the following:

Regional Field Service Manager

- Responsible for over 200 sites in the US and Canada.
- Routine site visits conducted on a biweekly basis to both new sites and existing.
- Provide onsite training of personnel on maintenance and blower operation.
- Review of internal and external field service deployments.
- Manage technical and non-technical support inquires.
- Updating sites with the most current procedures.

Production Manager

- Oversee production in the Plattsburgh facility.
- Create production and testing schedules for projects.
- Train employees in production methods.
- · Work with various engineering firms for witness testing
- · Work with QA and Engineering to ensure all work is performed to the project's specifications
- Work with Project Management on site start-up planning, scheduling & review of service required.
- Review test results and advise accordingly.
- Work with Engineering for new products and test requirements.

Test Department Supervisor

- Ensure Safe work practices are always followed (proper PPE, awareness of hazards, etc.)
- Trained in NFPA 70E. 2015
- Experience factory testing hundreds of blower packages and cores.
- Extensive knowledge of installation and removal of all components within the blower package including:
 - Core
 - VFD
 - Cooling System
 - Harmonic Filter
 - Sine Wave Filter
 - LCP
 - Blow-Off Valve
- Experience working with the following PLC Manufacturer's products and their associated programming software:
 - Allen Bradley (CompactLogix, MicroLogix)
 - Siemens (S7)
 - General Electric (VersaMax)
 - Schneider (Modicon MD-340)
 - Cimon (XPanel)
- Extensive knowledge working with Windows based PC software, as well as troubleshooting communication and hardware problems within.
- Able to quickly and effectively troubleshoot problems within the blower package, along with identifying inconsistencies outside the blower enclosure (site related).
- Extensive experience working with blower enclosure liquid cooling systems, including mechanical piping (where applicable).
- Extensive knowledge programming associated hardware within the blower enclosure including:
 - VFD
 - PLC

- HMI
- Managed Network Switches
- UPS systems
- Extensive knowledge of the blower to identify how it may respond to certain operating conditions.

Field Service Engineer / Start-up Technician

- Work with clients and engineers to determine the most effective method of controlling the blowers in an aeration application.
- Assist SCADA and MCP developers on changes to logic that may need to occur to meet the control demands of the blower system to match process.
- Well versed in development, implementation and adherence of APG-Neuros' Start-Up procedures.
- Experience in upgrading and installing new software in PLCs and HMIs currently in operation at client's sites.
- Basic understanding of wastewater treatment processes and associated P&ID.
- Completed numerous safety presentations for client construction sites.
- Providing enhanced support to technicians working at customer sites during and after working hours.
- Mid-level experience in changing PLC logic to adapt the blower to run in non-standard conditions.
- OHSA 10 hour general and construction cards

Education:

A.A.S. Industrial Engineering Technology, CCC

B.A. Industrial Psychology

Relevant Project Experience:

Completed Service visits to sites in the following states / provinces:

- Maine
- New Hampshire
- Connecticut
- Massachusetts
- Rhode Island
- New Jersey

- New York
- Pennsylvania
- Virginia
- Quebec, Canada
- Ontario, Canada

Expertise Summary:

Over 3 years of experience working with APG-Neuros blower systems, including the following:

Test Technician

- Over 4,000 hours of test cell experience.
- Ensure Safe work practices are always followed (proper PPE, awareness of hazards, etc.)
- Deep knowledge in factory testing of turbo blower packages and cores.
- Extensive experience working with Professional Engineers (PE) during factory testing.
- Extensive knowledge of the proper operation and can quickly notice minor and major issues during testing.
- Over 1,000 hours assisting the automation department in developing and upgrading PLC and HMI software.
- Involved in improving factory testing procedures and writing manuals.
- Involved in research and development projects while working with the Engineering department.
- A vast amount of knowledge in reading electrical drawings.
- Extensive knowledge of installation and removal of all components within the blower package including:
 - Core
 - VFD
 - Cooling System
 - Harmonic Filter
 - Sine Wave Filter
 - LCP
 - Blow-Off Valve
- Experience working with the following PLC Manufacturer's products and their associated programming software:
 - Allen Bradley (CompactLogix, MicroLogix)
 - Siemens (S7)
 - General Electric (VersaMax)
 - Schneider (Modicon MD-340)
 - Cimon (XPanel)
- Able to quickly and effectively troubleshoot problems within the blower package.
- Extensive experience working with blower enclosure liquid cooling systems, including mechanical piping (where applicable).
- Knowledge programming associated hardware within the blower enclosure including:
 - VFD
 - PLC
 - HMI
 - UPS systems
- Extensive knowledge of the blower to identify how it may respond to certain operating conditions.

Field Service Technician / Start-up Technician

- Work with Customers and Engineers to determine the most effective method of controlling the blowers in an
 aeration application.
- Extensive troubleshooting skills of the turbo blower during site operation.
- Skills in troubleshooting components in wastewater systems (dissolved oxygen sensors, flow meters, automatic valves) and identifying issues in a wastewater system non-related to the turbo blower.
- Well versed in development, implementation and adherence of APG-Neuros' Start-Up procedures.
- Extensive experience working with site automation departments for SCADA communication.

Brett Carnright Test Technician / Field Service Technician

- Experience in upgrading and installing new software in PLCs and HMIs currently in operation at Customer's sites.
- Basic understanding of wastewater treatment processes and associated P&ID.
- Completed numerous safety presentations for Customer construction sites.

Education:

Wind Energy & Turbine Technology, Clinton Community College, Plattsburgh, New York

Professional Registrations:

- NFPA 70E OSHA Training
- Adult First Aid/CPR/AED Training

Relevant Project Experience:

As of 31 DEC 2018, Completed Service/Start-ups in (but not limited to):

- Athabasca, AB
- Atlanta, GA
- Kalamazoo, MI
- Barstow, CA
- Bend, OR
- Bradenton, FL
- Brooklyn, NY
- Boisbriand, QC
- Burbank, CA
- Camp Pendleton, CA
- Campbell River, BC
- Cincinnati, OH
- Cincinnati, OH
- Conroe, TX
- Conroe, TX
- Crown Point, IN
- Crystal Lake, IL
- Dryden, NY
- Hattiesburg, MS
- Hollister, CA
- Huron, MI
- Jacksonville, FL
- Jacksonville, IL
- Kissimmee, FL
- Kitchener, ON
- Lathrop, CA

- Leon, MX
- Marathon, ON
- Manchester, NY
- Moreno Valley, CA
- McAllen, TX
- Noblesville, IN
- Oconomowoc, WI
- 🔪 Olympia, WA
- Orange Park, FL
- Oswego, IL
- Peoria, IL
- Portland, OR
- Providence, RI
- Richland, WA
- Riverside, CA
- Rutland, VT
- San Luis Obispo, CA
- Scottsdale, AZ
- Sonora, MX
- San Marcos, TX
- San Francisco, CA
- Sudbury, ON
- Tampa Bay, FL
- Union, CA
- Walla Walla, WA
- West Babylon, NY

3. Active Parts Stocking Warehouse and Service Facility

Confidential Information

APG-Neuros maintains more than \$12 million worth of spare parts inventory, including air filters, sensors, cores and ready for shipping units in our Plattsburgh, NY facility supplying new parts within 24 hours. All repairs, parts and technical services will be in the US and provided to the Greater New HavenWastewater Treatment Plant from our support facilities in the US.

APG-Neuros stock is always full and ready to support around 1500 existing installations in over 600 different facilities and does not have to order parts from overseas or manufacture to order.

Stocked spare parts include:

- Blower cores (motor, shaft. Bearing, impeller)
- Variable frequency drives
- Harmonic Filters
- Input Reactors
- Programmable Logic Controllers
- HMI touchscreens
- Inlet Air filters
- Fuses
- Sensors (Vibration, temperature, pressure)
- Valves (Check valves and Isolation)
- Blow off Valves (with silencer)

Best method of contact is via phone or email. APG-Neuros provides 24/7 customer support via the **+1(855) 423-2746** telephone line. The email address for customer support is <u>Customerservice@apg-</u> <u>neuros.com</u>; and for ordering spare parts: <u>Spareparts@apg-neuros.com</u>

Our Production and testing Facility at Plattsburgh, NY has 15 based service technicians who are doing the testing of the units as well as the start up and commissioning. The same team is working on the life cycle of each blower from production till the start up and then field service and trouble shooting.

4. APG-Neuros Stocking Distributors in North America

Confidential Information

APG-Neuros Stocking Distributors in North America

Company	Representative	Email	Phone Number	Address	City	State	Country	Zipcode
USA								
B. L. Anderson	Mark Gasvoda	mark@blanderson.com	765-463-1518	4801 Tazer Dr.	Lafayette	IN	USA	47905
B. L. Anderson	Rick Kocerha	rick@blanderson.com	765-463-1518	4801 Tazer Dr.	Lafayette	IN	USA	47905
B. L. Anderson	Matt Boone	matt@blanderson.com	614-790-0344	46 W North Street	Worthington	OH	USA	43085
B. L. Anderson	Gary Prehm	gary@blanderson.com	765-463-1518	4801 Tazer Dr.	Lafayette	IN	USA	47905
B. L. Anderson	Brad Gasvoda	brad@blanderson.com	765-463-1518	4801 Tazer Dr.	Lafayette	IN	USA	47905
Mulchahy Shaw Water	Tom Mulcahy	tmulcahy@mulcahyshaw.com	262-241-1199	N57 W6316 Center Street	Cedarburg	WI	USA	53012
Mulchahy Shaw Water	Rich Knoelke	rknoelke@mulcahyshaw.com	262-241-1199	N57 W6316 Center Street	Cedarburg	WI	USA	53012
Carter and VerPlanck	Tyler Tedcastle	tylertedcastle@carterverplanck.com	850-264-9391	4910 West Cypress Street	Tampa	FL	USA	33607
Carter and VerPlanck	Eric Freeman	ericfreeman@carterverplanck.com	865-617-9944	110 Mathis Drive, Suite 206	Dickson	TN	USA	37055
Carter and VerPlanck	Glenn House	glennhouse@carterverplanck.com	770-530-1801	4910 West Cypress Street	Tampa	FL	USA	33607
Carter and VerPlanck	Brandon Lang	blang@cviwater.com	813-481-5200	4910 West Cypress Street	Tampa	FL	USA	33607
Carter and VerPlanck	Dave Hartwig	davehartwig@carterverplanck.com	813-240-1199	4910 West Cypress Street	Tampa	FL	USA	33607
Carter and VerPlanck	Saade Chibani	saadechibani@carterverplanck.com	813-340-9889	4910 West Cypress Street	Tampa	FL	USA	33607
Carter and VerPlanck	Ken Walker	kenwalker@carterverplanck.com	561-866-0655	4910 West Cypress Street	Tampa	FL	USA	33607
Carter and VerPlanck	Dan Loy	danloy@carterverplanck.com	904-608-0346	4910 West Cypress Street	Tampa	FL	USA	33607
JGM Valves	Joey	Joey@jgmvalve.com	248-926-6200	1155 Welch Road, Ste D	Commerce	MI	USA	48390
EPI Environmental	Steve Squires	steves@electricpump.com	800-383-7867	4280 East 14th Street	Des Moines	IA	USA	50313
EPI Environmental	Tom Miller	tomm@electricpump.com	800-383-7867	4280 East 14th Street	Des Moines	IA	USA	50313
EPI Environmental	Steven Forsythe	stevenf@electricpump.com	800-211-6432	201 4th Avenue SW	New Prague	MN	USA	56071
EPI Environmental	Rob Wright	robw@electricpump.com	800-211-6432	201 4th Avenue SW	New Prague	MN	USA	56071
Shupe & Associates	Phil Shupe	phil@shupeandassoc.com	501-834-4271	6160 Getty Drive	North Little Rock	AR	USA	72117
Shupe & Associates	Anne Crouch	anne@shupeandassoc.com	501-834-4271	6160 Getty Drive	North Little Rock	AR	USA	72117
Fluid Process & Pumps LLC	Carl	cd@fluidprocess.net	504-733-1330	P.O. Box 10608	New Orleans	LA	USA	70181
Fluid Process & Pumps LLC	Glen Smith	gs@fluidprocess.net	504-733-1330	P.O. Box 10608	New Orleans	LA	USA	70181
Fluid Process & Pumps LLC	Michael Guidry	mg@fluidprocess.net	504-733-1330	P.O. Box 10608	New Orleans	LA	USA	70181
Fluid Process & Pumps LLC	Ken Barlow	fpp_kb@bellsouth.net	601-664-0233	P.O. Box 1578	Florence	MS	USA	39073
Ressler & Asssociates	Ken Ressler	kressler@resslerassociates.com	636 391 8992	PO Box 4018	Ballwin	MO	USA	63002
Letts Van Kirk & Associates	Rick	jack@midamericapump.com	913-713-7111	5600 Inland Drive	Kansas City	KS	USA	66106
Letts Van Kirk & Associates	Jeff Selby	jeff@lettsvankirk.com		5600 Inland Drive	Kansas City	KS	USA	66106
Koester Associates	Mark Koester	mark@koesterassociates.com	315-697-3800	3101 Seneca Turnpike	Canastota	NY	USA	13032
Koester Associates	Peter Radosta	peter@koesterassociates.com	315-697-3800	3101 Seneca Turnpike	Canastota	NY	USA	13032
Koester Associates	Tom Whetham	tomw@koesterassociates.com	315-697-3800	3101 Seneca Turnpike	Canastota	NY	USA	13032
Koester Associates	Wayne Dodsworth	wayned@koesterassociates.com	315-697-3800	3101 Seneca Turnpike	Canastota	NY	USA	13032
Koester Associates	Rick Buckles	rick@koesterassociates.com	315-697-3800	3101 Seneca Turnpike	Canastota	NY	USA	13032
Koester Associates	Sheena Williams	sheenaw@koesterassociates.com	315-697-3800	3101 Seneca Turnpike	Canastota	NY	USA	13032
Vision Equipment	David Bartlett	david@visionequipment.net	830-755-8819	6 Falls View	Fair Oaks Ranch	ТΧ	USA	78015
Vision Equipment	Hershel Ezzell	hershel@visionequipment.net	281-361-2933	5830 Laurel Caverns Drive	Kingwood	ТΧ	USA	77345
Vision Equipment	Bryan black	bryan@visionequipment.net	361-215-3866	802 Cantwell Lane	Corpus Christi	ТΧ	USA	78408
Vision Equipment	Keisha Antoine	keisha@visionequipment.et	832-356-3903	802 Cantwell Lane	Corpus Christi	ТΧ	USA	77379
Vision Equipment	Jodie Robertson	jodie@visionequipment.net	817-584-3689	907 West Lake Drive	Weatherford	ТΧ	USA	76087
Vision Equipment	Ron Shindoll	ron@visionequipment.net	214-957-5066	1930 Meadow Way	Terrell	ТΧ	USA	75160

APG-Neuros Stocking Distributors in North America

Company	Representative	Email	Phone Number	Address	City	State	Country	Zipcode
Vision Equipment	Brian Robertson	brian@visionequipment.net	817-584-3689	907 West Lake Drive	Weatherford	ТΧ	USA	76087
Haynes Equipment Company	Tony Moraska	tonymoraska@haynes-equipment.com	405-755-1357	117 NW 132nd St.	Oklahoma City	ОК	USA	73114
Heyward	Tim Bishop	tbishop@heyward.net	704-583-2305 x 214	2101-A Cambridge Beltway Drive	Charlotte	NC	USA	28273
Heyward	Gary Broome	gbroome@heyward.net	704-583-2305 x 215	2101-A Cambridge Beltway Drive	Charlotte	NC	USA	28273
Heyward	Jim Cooper	jcooper@heyward.net	704-583-2305 x 212	2101-A Cambridge Beltway Drive	Charlotte	NC	USA	28273
Heyward	Ed Crowell	ecrowell@heyward.net	704-583-2305 x 202	2101-A Cambridge Beltway Drive	Charlotte	NC	USA	28273
Heyward	Mike Davis	mdavis@heyward.net	704-583-2305	2101-A Cambridge Beltway Drive	Charlotte	NC	USA	28273
Heyward	Benji Watkins	bwatkins@heyward.net	704-583-2305 x 245	2101-A Cambridge Beltway Drive	Charlotte	NC	USA	28273
Rockwell Solutions	Kent Rockwell	kent@rockwellsolutions.us	949-275-8100	21163 Newport Coast Drive, Suite 492	Newport Coast	CA	USA	92657
Davidson Sales & Engineering	Paul Mora	paul_mora@dseslc.com	801-977-9200	2441 South 3850 West, Site 'B'	West Valley City	UT	USA	84120
Water Technology Group	Charles Greaves	cgreaves@wtrgroup.com	303-8859889	14452 W 44th Ave.	Golden	CO	USA	80403
Hawaii Engineering Services, Inc		mike@hiengineering.com	808-841-0033	240 Puuhale Rd ste:202	Honolulu	HI	USA	96819
Hawaii Engineering Services, Inc		mack@hiengineering.com	808-841-0033	240 Puuhale Rd ste:202	Honolulu	HI	USA	96819
Hawaii Engineering Services, Inc		nicol@hiengineering.com	808-841-0033	240 Puuhale Rd ste:202	Honolulu	HI	USA	96819
Hawaii Engineering Services, Inc		ron@hiengineering.com	808-841-0033	240 Puuhale Rd ste:202	Honolulu	HI	USA	96819
Hawaii Engineering Services, Inc		sanny@hiengineering.com	808-841-0033	240 Puuhale Rd ste:202	Honolulu	HI	USA	96819
Hawaii Engineering Services, Inc		rudy@hiengineering.com	808-841-0033	240 Puuhale Rd ste:202	Honolulu	HI	USA	96819
Hawaii Engineering Services, Inc		marc@hiengineering.com	808-841-0033	240 Puuhale Rd ste:202	Honolulu	HI	USA	96819
APSCO LLC.	Main Office	dmcbain@apsco-llc.com	425-822-3335	1120 8th Street	Kirkland	WA	USA	98033
APSCO LLC.	Main Office	jkernkamp@apsco-inc.com	425-822-3335	1120 8th Street	Kirkland	WA	USA	98033
APSCO LLC.	Main Office	jbuckman@apsco-llc.com	425-822-3335	PO Box 2639	Kirkland	WA	USA	98033
APSCO LLC.	Corvallis Office	sclark@apsco-llc.com	541-754-7292	922 NW Circle Blvd. Box #405, Ste. 160	Corvallis	OR	USA	97330-1410
INECO Industrial Equip. Comp.	Ed Morales	morales@ineco.us	787-760-2425	Rd. 877, Km 0.8	Rio Piedras	PR	USA	00924
Mexico								
Pro Agua	Juan Negrete	janegrete@proagua.mx	55-5659-2784	Viena No. 198, Colonia del Carmen	Mexico, D.F.	Mexico D.F.	Mexico	04100
Canada		A'A						
Ramtech Environmental Products	Jeff Kundert	jkundert@ramtech.ca	403-221-8585	Unit B, 2130 - 33 Avenue SW	Calgary	AB	Canada	T2T 1Z6
Ramtech Environmental Products	Sharna Batey	sbatey@ramtechltd.com	403-221-8585	Unit B, 2130 - 33 Avenue SW	Calgary	AB	Canada	T2T 1Z6
Ramtech Environmental Products	Gord Cassie	gcassie@ramtechltd.com	403-221-8585	Unit B, 2130 - 33 Avenue SW	Calgary	AB	Canada	T2T 1Z6
Ramtech Environmental Products	Anders Nielsen	anielsen@ramtechltd.com	403-221-8585	Unit B, 2130 - 33 Avenue SW	Calgary	AB	Canada	T2T 1Z6
Ramtech Environmental Products	Aura Weinberger	aweinberger@ramtechltd.com	403-221-8585	Unit B, 2130 - 33 Avenue SW	Calgary	AB	Canada	T2T 1Z6
ENV Treatment Systems Inc.	Ed Pikovnik	envinc@interlog.com		70 High Street	Etobicoke	ON	Canada	M8Y 3N9
ENV Treatment Systems Inc.		leew-env@uniserve.com	905-799-1060	70 High Street	Etobicoke	ON	Canada	M8Y 3N9
ENV Treatment Systems Inc.		ephinc@sympatico.ca		70 High Street	Etobicoke	ON	Canada	M8Y 3N9
Metcon Sales & Engineering Ltd.	Matthew Nicolak	matthewn@metconeng.com	905-738-2355 Ext 231	15 Connie Crescent, Unit 3	Concord	ON	Canada	L4K 1L3

5. APG-Neuros Customer Service and Aftermarket Team Organization

Confidential Information

APG-Neuros Customer Service and Aftermarket

Team Organization

Aftermarket Team Organizational Chart

Skill Levels

Skill Levels	Test Tech	Field Service Tech (PBG and Remote)
Level 1	 Able to test complete package and core test with no supervision. Complete understanding of blower operation. Beginner level of troubleshooting blower issues. Can competently upload/download KEB and Rockwell programs. Has not travelled on their own in the field and are still learning the field service processes. Understands APGN drawings 	 Has completed Level 1 Field Tech Training in PBG. Complete understanding of blower operation. Can competently upload/download KEB and Rockwell programs. Has not travelled on their own in the field and are still learning the field service process. Minimum 4 trips, additional trips to be completed if needed.
Level 2	 Includes all of tech level 1 skills. Can troubleshoot and resolve most issues found during testing in Plattsburgh test cells. Can complete EPRM/Field Service and minor troubleshooting in the field. Can complete witness-testing of cores and packages Can complete local blower start-up on Rockwell PLC platform. 	 Includes all of tech level 1 skills. Has completed Level 2 Field Tech Training in PBG. Can complete the following Field Service visits on their own with little support needed: EPRM, core swaps including start-up of cores and BOV/Min speed testing, VFD swaps, Blower Health Checks, Minor troubleshooting, Blower start-up and commissioning. Promote Aftermarket products and services
Level 3	 Includes all of tech level 1 & 2 skills. Can complete start-ups on blowers with several PLC platforms Can troubleshoot VFD issues in the field independently Has strong understanding of Blower/wastewater operations Has experience with navigating Blower PLC programs in Rockwell Can assist automation department with testing new PLC and HMI programs in test cell. Can interpret supplier drawings and apply them to our product. 	 Includes all of tech level 1 & 2 skills. Can complete start-ups on blowers with several PLC platforms. Can complete Aftermarket blower upgrades . Can troubleshoot VFD issues in the field. Has strong understanding of Blower/wastewater operations. Can assist in training new test technicians and assist those with less experience.
Level 4	 Includes all of tech level 1, 2, & 3 skills. Can navigate their way around most PLC program platforms Is working with Automation on blower MCP/SCADA integration Able to troubleshoot blower using PLC program. 	 Includes all of tech level 1, 2, & 3 skills. Can navigate their way around most PLC program platforms. Is working with Automation on blower MCP/SCADA integration. Able to troubleshoot blower using PLC program. Able to do Company presentations to existing customers while on site.
Level 5	 Includes all of tech level 1, 2, 3, & 4 skills. Can complete SCADA and MCP integrations on their own. Can fix programs related issues and upgrades in field with little assistance from automation 	N/A

Weures Proprietary Information

Key Responsibilities

Admin Assistant

Responsible for arranging travel and maintaining updated schedule of service technicians availability.

Special Projects Coordinator Responsible for technical review of upgrades, prepare quotes and management of upgrades from receipt of PO up till time of site visit.

Aftermarket Specialist Responsible for quote creation, follow up with customers and invoicing for spares parts and repairs.

Regional Coordinator

Responsible for the creation, follow up distribution and coordination of EPRM, AMMSP & LCP quotes.

Regional Manager

Responsible for contacting sites for customer management, commercial and technical actions follow ups, courtesy visits and site relations.

Senior Regional Manager

Responsible for managing the five positions listed above and coordination with others in the Aftermarket group.

Technician (Plattsburgh)

Execution of customer site visit based on skill level and availability. A shared resource with the test department.

Field Service Technician (Remote)

Execution of customer site visits for preventive maintenance and trouble-shooting based on required skill level and geographical proximity.

Technical Service Technician

Responsible for incoming customer service calls, case entry and assisting customers and remote technicians while on site for service.

Technical Services Manager

Responsible for managing technical service & field service technicians, preparation of technical scope for site visits and post service visit follow-up.

Aftermarket Sales Manager

Responsible for managing sales of Aftermarket strategy, creating services product offerings and services ensuring customer satisfaction

Geographical Location-Tech's & Regional Managers

Market Leader

Over 1,500 units in North America

More than 600 installations

e. Technical Proposition of the second secon

Confidential Information

Mechanical 1) **Confidential Information** Page 55

a. Performance Data

Confidential Information

Greater New Haven - APG- Neuros Turbo Blower - Performance Data													
Ambient Conditions													
	Aeration												
Indoor													
Air													
			14	.69				psia					
DP1	DP2	DP3	DP4	DP5	DP6	DP7	DP8						
14.44	14.44	14.44	14.44	14.44	14.44	14.44	14.44	psia					
-5.0	-5.0	82.0	82.0	-5.0	-5.0	82.0	82.0	°F					
54	54	74	74	54	54	74	74	%					
7.70	7.70	7.70	7.70	10.25	10.25	10.25	10.25	psig					
9,500	31,900	9,500	31,900	9,500	31,900	9,500	31,900	SCFM					
9,500	7,975	9,500	7,975	9,500	7,975	9,500	7,975	SCFM					
1	4	1	4	1	4	1	4	Units					
5	2	5	2	5	2	5	2	Units					
			APGN5	00-C060									
			4	70				HP					
281	234	348	287	351	295	433	361	bhp					
232	193	287	237	290	243	357	298	kW					
12,784	12,784	11,440	11,440	11,958	11,958	10,701	10,701	SCFM					
4,506	4,506	4,033	4,033	5,265	5,265	4,712	4,712	SCFM					
64.8%	64.8%	64.8%	64.8%	56.0%	56.0%	56.0%	56.0%	%					
65.6	64.7	167.5	165.7	83.5	83.2	188.3	187.2	°F					
15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	psig					
8.25	8.25	8.25	8.25	5.70	5.70	5.70	5.70	psig					
	Greater New I DP1 14.44 -5.0 54 7.70 9,500 9,500 9,500 1 1 5 281 232 12,784 4,506 64.8% 65.6 15.95 8.25	Breater New Haven - APG- DP1 DP2 14.44 14.44 -5.0 -5.0 54 54 7.70 7.70 9,500 31,900 9,500 7,975 1 4 5 2 281 234 232 193 12,784 12,784 4,506 4,506 64.8% 64.8% 65.6 64.7 15.95 15.95 8.25 8.25	Greater New Haven - APG- Neuros Turb DP1 DP2 DP3 14.44 14.44 14.44 -5.0 82.0 54 54 74 7.70 7.70 7.70 9,500 31,900 9,500 9,500 7,975 9,500 1 4 1 5 2 5 V 281 234 348 232 193 287 12,784 12,784 11,440 4,506 4,633 64.8% 65.6 64.7 167.5 15.95 15.95 15.95 8.25 8.25 8.25	Greater New Haven - APG- Neuros Turbo Blower - Person Incolor Aera Incolor Incolor	Greater New Haven - APG- Neuros Turbo Blower - Performance D Aeration Indoor Air 14.69 DP1 DP2 DP3 DP4 DP5 14.44 14.44 14.44 14.44 -5.0 -5.0 82.0 82.0 -5.0 54 54 74 74 54 7.70 7.70 7.70 10.25 9,500 31,900 9,500 31,900 9,500 9,500 7,975 9,500 31,900 9,500 1 4 1 4 1 5 2 5 2 5 APGN500-C060 470 281 234 348 287 351 232 193 287 237 290 12,784 12,784 11,440 11,440 11,958 4,506 4,506 4,033 4,033 5,265	Greater New Haven - APG- Neuros Turbo Blower - Performance Data Indoor Indoor Air 14.69 DP1 DP2 DP3 DP4 DP5 DP6 14.69 DP1 DP2 DP3 DP4 DP5 DP6 14.44 14.44 14.44 14.44 14.44 14.44 -5.0 -5.0 82.0 -5.0 -5.0 -5.0 54 54 74 74 54 54 -54 56 57 55 55 55 55 5 55 55 5 56	Greater New Haven - APG- Neuros Turbo Blower - Performance Data Aeration Indoor Air 11.69 DP1 DP2 DP3 DP4 DP5 DP6 DP7 14.49 DP3 DP4 DP5 DP6 DP7 14.44 14.44 14.44 14.44 14.44 14.44 -5.0 -5.0 82.0 82.0 -5.0 -5.0 82.0 54 54 74 74 54 54 74 7.70 7.70 7.70 10.25 10.25 10.25 9,500 31,900 9,500 31,900 9,500 31,900 9,500 9,500 7,975 9,500 7,975 9,500 7,975 9,500 APGN500-C060 470 281 234 343	Greater New Haven - APG- Neuros Turbo Blower - Performance Data Aeration Indoor Air 14.69 DP1 DP2 DP3 DP4 DP6 DP7 DP8 14.49 14.44 14.44 14.44 14.44 -5.0 82.0 62.0 -62.0 82.0 62.0 82.0 62.0 82.0 82.0 62.0 82.0 <th colsp<="" td=""></th>					

Note:

Note: SCFM defined at 68 Deg F,14.696 psia and 36% relative humidity

Wire power figures are reported based on ASME PTC-13 Performance Test Code standard

2

Noise Level : +/- 2dB

APGN Inc. proprietary Information

APGN Inc. 1270 Michèle-Bohec, Blainville, QC, J7C-5S4 Tel: 450-939-0799 Fax: 450 939 2115 www.apg-neuros.com

Greater New Haven - APG- Neuros Turbo Blower - Performance Data													
Ambient Conditions													
Aeration													
Indoor													
Air													
			14	.69				psia					
DP1	DP2	DP3	DP4	DP5	DP6	DP7	DP8						
14.44	14.44	14.44	14.44	14.44	14.44	14.44	14.44	psia					
15.0	15.0	74.0	74.0	15.0	15.0	74.0	74.0	°F					
54	54	85	85	54	54	85	85	%					
7.70	7.70	7.70	7.70	10.25	10.25	10.25	10.25	psig					
9,500	39,000	9,500	39,000	9,500	39,000	9,500	39,000	SCFM					
9,500	9,750	9,500	9,750	9,500	9,750	9,500	9,750	SCFM					
1	4	1	4	1	4	1	4	Units					
5	2	5	2	5	2	5	2	Units					
			APGN5	00-C060									
			4	70	-			HP					
293	302	340	352	367	378	424	437	bhp					
242	249	281	291	303	312	350	361	kW					
12,500	12,500	11,559	11,559	11,693	11,693	10,812	10,812	SCFM					
4,406	4,406	4,074	4,074	5,148	5,148	4,760	4,760	SCFM					
64.8%	64.8%	64.8%	64.8%	56.0%	56.0%	56.0%	56.0%	%					
88.9	89.1	158.0	158.5	107.5	107.7	178.6	178.9	°F					
15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	psig					
8.25	8.25	8.25	8.25	5.70	5.70	5.70	5.70	psig					
	Greater New H	Greater New Haven - APG- DP1 DP2 14.44 14.44 15.0 15.0 54 54 7.70 7.70 9,500 39,000 9,500 9,750 1 4 5 2 293 302 242 249 12,500 12,500 4,406 4,406 64.8% 64.8% 88.9 89.1 15.95 8.25	Greater New Haven - APG- Neuros Turb DP1 DP2 DP3 14.44 14.44 14.44 15.0 15.0 74.0 54 54 85 7.70 7.70 7.70 9,500 39,000 9,500 9,500 9,750 9,500 1 4 1 5 2 5 Z93 302 293 302 340 242 249 281 12,500 12,500 11,559 4,406 4,406 4,074 64.8% 64.8% 64.8% 88.9 89.1 15.95 8.25 8.25 8.25	Greater New Haven - APG- Neuros Turbo Blower - Person Indiana Aera Indiana Indiana DP1 DP2 DP3 DP4 14 DP1 DP2 DP3 DP4 14 DP1 DP2 DP3 DP4 14 0 7 7 7 0 10 0 0 0 0 0 0 0 0 15 <t< td=""><td>Greater New Haven - APG- Neuros Turbo Blower - Performance D Aeration Indoor Air 14.69 DP1 DP2 DP3 DP4 DP5 14.44 14.44 14.44 14.44 15.0 15.0 74.0 74.0 15.0 54 54 85 85 54 7.70 7.70 7.70 10.25 9,500 39,000 9,500 9,500 39,000 9,500 39,000 9,500 10.25 9,500 39,000 9,500 39,000 9,500 1 4 1 4 1 5 2 5 2 5 APGN500-C060 470 293 302 340 352 367 242 249 281 291 303 12,500 12,500 11,559 11,693<</td><td>Greater New Haven - APG- Neuros Turbo Blower - Performance Data Indoor Indoor Air 14.69 DP1 DP2 DP3 DP4 DP5 DP6 14.69 DP1 DP2 DP3 DP4 DP5 DP6 14.44 14.44 14.44 14.44 14.44 14.44 15.0 74.0 74.0 15.0 15.0 15.0 54 54 85 85 54 54 10.25 10.25 10.25 10.25 10.25 9,500 39,000 9,500 39,000 9,500 39,000 9,500 39,000 9,500 39,000 9,500 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 14.4</td><td>Greater New Haven - APG- Neuros Turbo Blower - Performance Data Aeration Indoor Air 1 Indoor Air 14.69 DP1 DP2 DP3 DP4 DP5 DP6 DP7 14.44 14.44 14.44 14.44 14.44 14.44 15.0 74.0 74.0 15.0 15.0 74.0 54 54 85 54 54 85 7.70 7.70 7.70 10.25 10.25 10.25 9,500 39,000 9,500 39,000 9,500 39,500 9,500 9,500 9,750 9,500 9,750 9,500 10.25 10.25 10.25 APGN500-C060 470 293 302 340 352 350 11,559 11</td><td>Greater New Haven - APG- Neuros Turbo Blower - Performance Data Aeration Indoor Air 14.69 DP1 DP2 DP3 DP4 DP6 DP7 DP8 14.49 14.44 14.44 14.44 14.44 14.44 14.44 15.0 15.0 74.0 74.0 15.0 74.0 74.0 54 54 85 85 54 54 85 85 7.70 7.70 7.70 10.25 10.25 10.25 10.25 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750</td></t<>	Greater New Haven - APG- Neuros Turbo Blower - Performance D Aeration Indoor Air 14.69 DP1 DP2 DP3 DP4 DP5 14.44 14.44 14.44 14.44 15.0 15.0 74.0 74.0 15.0 54 54 85 85 54 7.70 7.70 7.70 10.25 9,500 39,000 9,500 9,500 39,000 9,500 39,000 9,500 10.25 9,500 39,000 9,500 39,000 9,500 1 4 1 4 1 5 2 5 2 5 APGN500-C060 470 293 302 340 352 367 242 249 281 291 303 12,500 12,500 11,559 11,693<	Greater New Haven - APG- Neuros Turbo Blower - Performance Data Indoor Indoor Air 14.69 DP1 DP2 DP3 DP4 DP5 DP6 14.69 DP1 DP2 DP3 DP4 DP5 DP6 14.44 14.44 14.44 14.44 14.44 14.44 15.0 74.0 74.0 15.0 15.0 15.0 54 54 85 85 54 54 10.25 10.25 10.25 10.25 10.25 9,500 39,000 9,500 39,000 9,500 39,000 9,500 39,000 9,500 39,000 9,500 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 14.4	Greater New Haven - APG- Neuros Turbo Blower - Performance Data Aeration Indoor Air 1 Indoor Air 14.69 DP1 DP2 DP3 DP4 DP5 DP6 DP7 14.44 14.44 14.44 14.44 14.44 14.44 15.0 74.0 74.0 15.0 15.0 74.0 54 54 85 54 54 85 7.70 7.70 7.70 10.25 10.25 10.25 9,500 39,000 9,500 39,000 9,500 39,500 9,500 9,500 9,750 9,500 9,750 9,500 10.25 10.25 10.25 APGN500-C060 470 293 302 340 352 350 11,559 11	Greater New Haven - APG- Neuros Turbo Blower - Performance Data Aeration Indoor Air 14.69 DP1 DP2 DP3 DP4 DP6 DP7 DP8 14.49 14.44 14.44 14.44 14.44 14.44 14.44 15.0 15.0 74.0 74.0 15.0 74.0 74.0 54 54 85 85 54 54 85 85 7.70 7.70 7.70 10.25 10.25 10.25 10.25 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 39.000 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750 9.500 9.750					

Note:

Note: SCFM defined at 68 Deg F,14.696 psia and 36% relative humidity

Wire power figures are reported based on ASME PTC-13 Performance Test Code standard

2

Noise Level : +/- 2dB

Greater New Haven - APG- Neuros Turbo Blower - Performance Data										
Ambient Conditions										
Application	Aeration									
Blower Installation Location	Indoor									
Working Fluid	Air									
Ambient Pressure				14	.69				psia	
Design Conditions	DP1	DP2	DP3	DP4	DP5	DP6	DP7	DP8		
Inlet Pressure	14.44	14.44	14.44	14.44	14.44	14.44	14.44	14.44	psia	
Inlet Temperature	40.0	40.0	104.0	104.0	40.0	40.0	104.0	104.0	°F	
Relative Humidity	50	50	86	86	50	50	86	86	%	
Duty Discharge Pressure	7.70	7.70	7.70	7.70	10.25	10.25	10.25	10.25	psig	
System Flow Rate	13,000	43,600	13,000	43,600	13,000	43,600	13,000	43,600	SCFM	
Flow Rate per Blower	6,500	8,720	6,500	8,720	6,500	8,720	6,500	8,720	SCFM	
Blower Units on Duty	2	5	2	5	2	5	2	5	Units	
Blower Units Stand By	4	1	4	1	4	1	4	1	Units	
Available Blower Performance										
Model			APGN500-C060							
Rated Motor Output Power				4	70				HP	
Power @ Design Condition per Blower	208	284	251	343	267	356	318	428	bhp	
Wire-to-Air Power @ Design Condition per Blower	172	234	207	283	221	294	263	354	kW	
Maximum Air Flow @ Duty Discharge Pressure per Blower 🗨	12,156	12,156	10,862	10,862	11,371	11,371	10,160	10,160	SCFM	
Minimum Air Flow @ Duty Discharge Pressure per Blower	4,285	4,285	3,829	3,829	5,006	5,006	4,473	4,473	SCFM	
Turndown from Maximum to Minimum	64.8%	64.8%	64.8%	64.8%	56.0%	56.0%	56.0%	56.0%	%	
Discharge Temperature @ Design Condition	116.2	117.4	190.2	192.4	137.9	137.1	213.4	214.3	°F	
Maximum Discharge Pressure	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	psig	
Rise-to-Surge	8.25	8.25	8.25	8.25	5.70	5.70	5.70	5.70	psig	

Note:

Note: SCFM defined at 68 Deg F,14.696 psia and 36% relative humidity

Wire power figures are reported based on ASME PTC-13 Performance Test Code standard

2

Noise Level : +/- 2dB

b. Performance Curves

Confidential Information

1. Wire to Air Efficiency Curves

Confidential Information

APGN proprietary Information

APGN proprietary Information

APGN proprietary Information

2. Wire Power Curves

Confidential Information

APGN proprietary Information

APGN proprietary Information

APGN proprietary Information

3. Performance Curves

Confidential Information

PERFORMANCE CURVES OF APGN500-C060

APGN proprietary Information

PERFORMANCE CURVES OF APGN500-C060

APGN proprietary Information

PERFORMANCE CURVES OF APGN500-C060

APGN proprietary Information

PERFORMANCE CURVES OF APGN500-C060

APGN proprietary Information

Greater New Haven - APG - Neuros Turbo Blower - Performance Curves

PERFORMANCE CURVES OF APGN500-C060

APGN proprietary Information

APGN Inc. 1270 Michele-Bohec, Blainville, QC, J7C-5S4 Tel: 450-939-0799 Fax: 450 939 2115 www.apg-neuros.com

Greater New Haven - APG - Neuros Turbo Blower - Performance Curves

APGN proprietary Information

APGN Inc. 1270 Michele-Bohec, Blainville, QC, J7C-5S4 Tel: 450-939-0799 Fax: 450 939 2115 www.apg-neuros.com

c. Catalog Information

Confidential Information

APGN500 SERIES TURBO BLOWER FACT SHEET

up to 40% more energy efficient*

"plug & play" turbo blower low cost easy 6 excellent reliability with SKF magnetic bearing installation wide turndown ratio user-friendly control system 7 remarkable reduction in energy/ 8 minimal maintenance and downtime Δ maintenance/installation costs UP TO OVER UP TO BELOW 80% 80 dBA 40% 50% **Energy Savings** Smaller Footprint Turndown Low Noise

5

low noise and vibration

* than other blower technologies

1

Proprietary information of APGN, Inc.

APGN500 SERIES TURBO BLOWER - Performance Data

Overview		Operating Conditions	
Series	APGN		ASME PTC 10
Blower Installation Location Indoc	or/outdoor (canopy)	Derformance Testing	
Working Fluid	Air	Performance resting	ASME PTC 13
Number of stages	Single stage		ISO 5389
Turbo Blower Design Specific	ations		
Design pressure range		\cap	5 - 15 psig
Design suction flow rate			4000 - 13000 SCFM
Operating speed range			12,900 - 21,000 RPM
Motor rating (horsepower)			470 - 940 HP
Casing design pressure			284 psig
Casing design temperature	1		302 °F
Technical Specifications	011	120	
Bearing			Active Magnetic Bearing
Motor		Permanen	t Magnet Synchronous Motor
Winding Insulation class)	Class F
Winding temperature rise			Class B
Coupling	\circ		Direct coupling
Motor starter			Variable Frequency Drive
Harmonic filter)	Outside or integrat	ed inside the blower enclosure
Power supply		38	30 - 500V, 3 phase, 50/60 Hz *
Inlet configuration			Louver/flange
Discharge configuration		Vertical/cor	ne extension from KS to ANSI
Noise			< 80 dBA
Motor/VFD cooling		Wa	ter/air cooling - fully enclosed
Product design life			30 years
* Medium voltage is available upon request			

APGN500 SERIES TURBO BLOWER - Performance Data

Controls and Monitoring

Control panel	PLC based (Allen Bradley, Siemens, Modicon, GE, Mitsubishi)
Control method	Flow/speed/pressure/dissolved oxygen
Integrated pressure sensors	Ambient, discharge, filter pressure drop
Integrated temperature sensors	Suction, discharge, motor, bearing
Vibration monitoring	Active Magnetic Bearing
Material of Construction	
Blower casing	Aluminum Alloy
Impeller	Forged aluminum alloy (AL7075)
Active Magnetic Bearing	Mix of copper, Silicon Steel Lamination
Shaft	STS Steel
Blow-off valve	Carbon steel electro pneumatic
Blower enclosure	Powder coated steel with sound dampening material
Blower enclosure skid	Structural steel construction with fork lift access ports
Electrical components coating	IEC 60721-3-3 class 3C3 Conformal Coating

APGN500 SERIES TURBO BLOWER - Performance Data

d. General Arrangement Drawings

Confidential Information

e. Dimensional Drawing with Clearances and Materials of Construction

The proposed configuration offers the following:

- Smaller discharge piping (16")
- Smaller enclosure
- No need for inline silencer or discharge silencer.

Confidential Information

1. Preliminary Equipment List

Below is a general technical sheet of the proposed equipment. For more details regarding the material of construction, please refer to Section Proposal Submittal Information – e. Technical – I. Mechanical – c. Catalog Information.

Confidential Information

Turbo Blower Data

General Information										
Project	Greater New	Haven WWTP	Manufacturer	APGN Inc. (www.apg-neuros.com)						
Site Address	345 East Shore Parkwa	y, New Haven, CT 06405	Place of Installation	Indoor						
Site Elevation	19	(feet)	Application		Was	ste Water T	reatr	nent		
Working Gas	A	IR	Number of Units Present	Total	6	Working	5	Standby	1	
Machanical										

Mechanical

Wieellamear						
Model	APGN500	C060				
Bearing	Active	Magnetic B	Bearing	Number of Impellers	1	
Coupling	Direct	Noise	80	Size (W/L/H) ¹	5'11"/7'8"/7'7"	(ft)
Type of VFD		Integrated		PWM Type	Vector	6 Pulse
Inlet Type	Но	rizontal Flai	nge	Discharge Type	Vertic	al
Inlet Flange Size	/	ANSI 24 incl	า	Discharge Flange Size	ANSI 16	inch
Foot Type		Anchor Fee	t			

Electrical and Controller

Electricity	480V - 60Hz - 3Ph	Power Entry	Bottom
Local Control Panel	CompactLogix	Master Control Panel	CompactLogix
Communication	Ethernet	Mode of Operation	Local/Remote
Room Ventilation	No Separate Fan Required	Lubricants	Not Required
Additional Items	Vibration Sensor		

Note:

- 1. Blower size without foot
- 2. Flow Modulation : Speed Control by PLC

3. No Condensation

- 4. Blow-off Valve and Silencer shall be supplied as default loose item
- 5. Tolerance of $\pm 2 \ dB$ (A) on noise

APGN Inc. 1270 Michèle-Bohec, Blainville QC J7C 5S4, Canada Tel: 450 939-0799, Fax: 450 939-2115 www.apg-neuros.com

2. Recommended Lifting height and Horizontal

Clearances

Confidential Information

APG Neuros recommends to locate the blower at least 42 inches (3.5 ft) from other blowers, walls, vertical pillars, any other obstructions or other machines in order to secure a space for maintenance (large heavy parts are to be removed during maintenance). This also allows for proper air flow.

Confidential Information

Using Lifting Equipment

Lift and transport blower units to the installation site by using a suitable lifting equipment such as a forklift or an eyebolt lifting. Verify that the weight capacity of the lifting equipment will support the weight of the unit before attempting to move. Do not drop the blower unit. Use care to lift and transport the unit.

Using a Forklift

AWARNING

DO NOT LIFT the blower unit from the front or back side.

The blower unit must be lifted from its lateral side. If the blower unit has an air conditioning unit installed, the blower unit must be lifted from the opposite side of the air conditioning unit. Carefully place the forks underneath the pallet. Transport the unit on a well-leveled floor using a forklift.

Forklift Lifting

Using Eyebolts

A DANGER There are four (4) eyebolts installed on each top corner of the blower and all eyebolts must be used when lifting the blower. Do not deform the eyebolts or drop the blower.

EYEBOLT LIFTING

Verify the weight of the unit before attempting to lift. All ropes, cables and lifting equipment should be able to support the weight of the unit.

When lifting the blower with ropes or cables using the eyebolts, the angle (β) between the rope and the vertical must not exceed 45 degrees. As $\beta = \alpha/2$, α must not exceed 90 degrees.

The load capacity of the eyebolt decreases by half at a 45-degree angle.

AWARNING When moving the blower, the tilt angle of the blower unit must not exceed one degree.

Installing Blower Units with Anchor Feet

Install the blower on a firm, level foundation such as a concrete floor that can support the full weight of the blower. Ensure the anchor feet are touching the base completely, otherwise the blower frame will twist and cause damage when bolting them down. If the foundation is not level, shims may be used as an adjustment to ensure the blower is level within 1/8 of an inch (3.175 mm); the addition of grout may be required.

ANCHOR BOLT INSTALLATION

Installation of anchor bolts are required and should follow the manufacturer's installation recommendations.

Model	Anchor Hole	Anchors (diameter)
APGN500	1 inch (2.54 cm)	7/8 inch (2.22 cm)
Length for each bolt is	s usually six (6) inches (15.24 cm) b Anchor Bolt Recomment	out it can vary from site to site. DATIONS
		7.5
		0°
		A A
		\sim
		2
	A A	
	O^{*}	
P.	<i>C</i>	
O`,C		
\mathbf{O}		

f. Compressor Sound Level Data

This is to confirm that in accordance with ASME PTC 36, Measurement of Industrial Sound, and operating at the maximum design capacities, the tested sound values from the blower shall not exceed 80 dB(A) at a distance of 3 feet.

Confidential Information

g. Heat Dissipation

Confidential Information

Cooling narrative with heat rejection outside the blower room

Base Bid

No heat rejection to the blower room. Heat is piped outside the blower room.

Cooling Process description for blower

- Blower inlet air flow Tambient enters from the rear inlet filter of the blower
- The air is diverted directly into the blower core such that Tambient is equal to Tinlet.
- The blower core compartment is completely isolated from the rest of the enclosure. This
 prevents the air used for cooling from mixing with the intake process air to the blower
 core.
- Qcooling air is drawn into the bottom rear inlet filter of the blower.
- The heat from the electrical components and heat exchanger is dissipated into the Qcooling intake air and diverted upward towards the VFD.
- Qcooling air is exhausted by a high powerd fan as Qexhaust.
- Qexhuast can be ducted outside the blower room to prevent the blower from recylcing the warm air.
- Qcooling does not mix with the blower process intake air. As a result, the inlet air temperature at the blower core is approximately 20-25 deg F cooler than the existing "integrated glycol cooling system" configuration. Since the inlet temperature is reduced, the SCFM flow rate is increased by 4-5% due to the increased air denisity of the cooler intake air. Furthermore, the discharge temperature of the air is subsequently reduced by 30-35 Deg F as a result of the decreased inlet temperature.

eureno

eure No heat rejection to the blower room. Heat is discharged to the processed air.

APG-Neuros Turbo Blower Integrated cooling system: Models APGN500

Cooling Process description for Models CRI P722

- Blower inlet Flow Q1 enters from the rear inlet filter of the blower
- The air is diverted downward (decreasing the inlet flow velocity) and passes through the heat exchanger. As the air passes through the heat exchanger it cools the glycol/water cooling fluid.
- The heated air from the heat exchanger is diverted upward into the blower core.
- Blower inlet flow Q2 enters the front inlet filter of the blower and passes through the variable frequency drive (VFD).
- The heat from the VFD is dissipated into the fresh intake air and diverted towards the blower core.
- Both air flows Q1 and Q2 are combined as they are diverted into the blower core and discharge as process air.

In conjunction with the forced air convection cooling, the blower is equipped with an internal glycol cooling system.

- Coolant fluid (yellow lines) is sent to the blower core (equipped with a water jacket) and the VFD (equipped with cooling channels).
- The coolant fluid absorbes the heat generated by the blower core and VFD and is diverted to the heat exchanger (red lines).
- The coolant passes trough the heat exchanger and is cooled by the inlet flow Q1.
- No heat is exhausted or dissaped to the blower room. No additional piping is required to exhaust heat away from the blower.

h. Internal and External Heat Exchangers

The proposed equipment does not use any external heat exchangers. For the internal cooling system, APG-Neuros HSTB uses internal forced air convection combined with internal glycol cooling. No external cooling piping or cooling system is needed .

Confidential Information

Instrumentation and Control 2)

Confidential Information

a. Process and Instrumentation Diagrams

Confidential Information

SYMBOLS								
		-17-	Å					
Valve, Gate	Valve, Butterfly	Valve, Check	l Valve, Angle					
		\bigotimes						
Motor	Solenoid	Radiator						
	\square	-11	\Box					
Silencer	Expansion Joint	Flange	Discharge Cone					
Blower Motor	Filter	Pump Motor						

GENERAL INSTRUMENT OR FUNCTION SYMBOLS							
	Primary Location Normally Accessible To Operator	Field Mounted	Auxiliary Location Normally Accessible To Operator				
Discrete Instruments		(
Shared Display, Shared Control		[]					
Computer Function	((=)-					
Programmable Logic Control							
			Instruments Sharing Common Housing				
	Pilot Light	Undefined Interlock Logic					

Note: Normally inaccessible or behind-the-panel devices or functions are depicted using the same symbol but with dashed horizontal bars:

INSTRUMENT LINE SYMBOLS (All lines to be fine in relation to process piping lines)						
DESCRIPTION	SYMBOL					
Instrument Supply or Connection To Process						
Pneumatic Signal						
Electric Signal						
Hydraulic Signal	<u></u>					
Internal System Link (Software or Data Link)						
Mechanical Link						
Supplied by Others						
Open Space Air Flow Within the Enclosure						

	JAN-20-2022	BY	PM	PM	ISSUED FOR BID	ISSUED FOR BIDDING BID						
	DATE	PAR BY	VER. CHEC.	APP.	DESCRIPTION				REV.	A		
				2	FOR						POUR	
ED:				6		APG	N500 B	LOV	VER			
	1270, BOULEV BLAINVILLE, QUÉ TEL: (45 FAX:(45	(ARD MIC BEC, CAN 50) 939- 50) 939-	HÈLE-BO 1404 J71 -0799 2115	HEC, 3 554	TITLE PROCESS AND INSTRUMENTATION DIAGRAM					TITRE		
1	This drawing is the property of hereon are confidential and may with the written p	APG-Neuros la not be reprodu permission of A	nc. Information uced in whole o IPG-Neuros Inc	and know-how r in part except	PROJECT NO.	BD	PID-	50	Dxxx	XXX	DE DESSIN	
ſ	Ce dessin est la propriété de AP sont confidentielles. Il ne doit pa permission é	G-Neuros inc. I as être copié el crite de APG-N	Les information n partie ou au leuros Inc.	is qu'il contient complet sans la	MSTR ND.		sc. NONE	ECH.	SHEET 1 (PAGE DF 1	^{REV} BID	
			2					1				

b. Instrumentation

Confidential Information

Controller Model: AB Single Core NX Series

This document contains confidential information and is subject to change without notice. This information is provided by APG-Neuros and while we endeavor to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy or reliability of the information contained therein. Information shall not be copied or redistributed without the express written permission of APG-Neuros.

Publication: APGN-DO-OM-035-E Release Date: Monday, December 02, 2019 Version: 6.1 Review Date: November-2019

Carefully read this manual before attempting to operate or perform any maintenance. If you are uncertain about any of the instructions or procedures provided in this manual please contact APG-Neuros or your distributor. We recommend that you retain this manual, and all publications provided with your Turbo Blower, in a location accessible to all personnel who operate and service your Turbo Blower.

Revision History

Date	Version	Description
11-May-2011	v4.0	Rebrand to new template. Revise to resolve grammar and layout issues. Supply missing information. Centralize all information regarding the controller into one document.
14-July-2011	v4.1	Changes to warranty.
09-November- 2011	v5.0	Conversion to XML format. Addition of publication number and next review date. Separation of information and cre- ation of new document per model. Update graphics to reflect documentation.
08-April-2014	v5.1	Modifications to reflect new PLC version 3.41 (beta).
20-December- 2015	v5.2	Modifications to reflect the updated PLC version (L23E_ 3.41_07).
13-February-2017	v5.3	Update for the latest PLC program (P_ABL24_3.41_19).
21-March-2018	v5.4	Update for the latest PLC program (P_ABL24_3.41_26).
06-June-2018	v5.5	Update for the latest PLC program (P_ABL24_3.41_30).
07-January-2019	v6.0	Update for the latest PLC program (P_ABL24_3.42_00).
02-December- 2019	v6.1	Update for the latest PLC program (P_ABL24_3.42_02).

Contents

1. Touch Screen Configuration	11
1.1 Main	11
1.2 Monitor	13
1.3 Menu - Home	
1.4 Graph	
1.5 Bar Graph	
1.6 Blower 3D	17
1.7 History	
1.8 Reset	22
1.9 Contact APGN	
1.10 Menu - Setup	23
1.11 Advanced Setup	25
1.12 Operation Setup	
1.12.1 Blower Units	
1.12.2 Time/Date Setup	27
1.12.3 Valve Setup	
1.12.4 Time Control	
1.12.5 Tuning Setup	31
1.13 Limitation Setup	
1.14 System Setup	35
1.15 Control Setup	
2. Warning	46
3. Fault	

Table of Figures

Pressing the Emergency Stop Button	9	
Resetting the Emergency Stop Button	9	
Main screen	.11	
Methods to Change the Command Input	. 12	
Monitor screen	. 14	
Monitor screen and VFD state window	. 14	
Monitor2 screen	.15	r
Menu - Home screen	. 15	
Graph screen	. 16	
Graph Parameters	. 16	
Bar Graph screen	. 17	
Blower 3D screen	. 18	
History screen	. 19	
History screen and VFD state window	. 19	
History2 screen	20	
Maintenance message example	20	
History3 and History4 screens	21	
History5 screen	21	
History6 screen and VFD state window	. 22	
Reset screen	22	
Contact APGN screen	. 23	
Entering Password	. 23	
Menu - Setup screen at user level	24	
Menu - Setup screen at admin level		
Menu - Setup screen at tech level	.25	
Advanced Setup screen	.25	
Operation Setup screen	.26	
Blower Units screen	.27	
Time/Date Setup screen	.28	
Valve Setup screen	.28	
Discharge Valve Control screen	29	
Inlet Valve Control screen	.29	
Main screen showing Time Control mode	30	
Time Control screen	30	
Time Control warning	31	
Flow Control Tuning	32	
Pressure Control Tuning	32	
DO Control Tuning	33	
Limitation Setup screen	34	
Operating Log Sheet	35	
System Setup screen	36	
Second Level of System Setup screen	37	
Third Level of System Setup screen	38	
Fourth Level of System Setup screen	39	
Control Setup screen	39	

Second Level of Control Setup screen	40	
Third Level of Control Setup screen	41	
Fourth Level of Control Setup screen		
Fifth Level of Control Setup screen		
Sixth Level of Control Setup screen		
Seventh Level of Control Setup screen		
Eighth Level of Control Setup screen		
Sample Warning Message		
Sample Fault Message		
Fault Message in the Reset Screen		
5		F

Warranty

APG-Neuros guarantees that this product will be free from defects in materials and workmanship as defined in your proposal and specifically stated in your Certificate of Warranty.

During the warranty period, APG-Neuros will, at its discretion, either repair or replace defective products.

This warranty shall not apply to consumable parts and failure or damage caused by improper usage or unauthorized services or articles of consumption. In such cases, APG-Neuros may refuse to furnish service under the warranty.

Unauthorized modifications and improper installations may void your warranty. APG-Neuros reserves the right to charge for any required repairs.

Conventions

The following conventions are used in this manual:

A DANGER	Indicates a hazardous situation which, if not avoided, will result in death or personal injury.
AWARNING	Indicates a hazardous situation which, if not avoided, could result in death or personal injury.
ACAUTION	Indicates a hazardous situation which, if not avoided could result in minor or personal injury. Caution identifies conditions or practices that could result in damage to the unit or to other equipment.

Graphics

Every effort has been made to use graphics reflective of the typical blower by model and may not be 100% accurate with the blower model you have. Screen shots of many of the touch screen menus are common to all blower models and should not be considered as errors if they reflect a different model as seen in the upper left corner.

Safety Instructions

Before the operation or the maintenance of this system, carefully read this section and all its contents. General safety regulations and safety precautions must be observed at all times. Noncompliance to safety instructions may be fatal or may result in the breakdown of the system or products.

Safety precautions are included in other sections.

Safety Labels

Safety labels on the blower unit are very important and should never be removed. If they are soiled, illegible, peeled off or lost, replace them with new labels.

The following describes the safety labels identified on the blower unit. Do not operate or perform system maintenance when someone is working in a dangerous area.

Emergency Stop Button

The system is fitted with an Emergency Stop button. Pressing it disables the VFD from operating and stops the motor immediately.

Before operation or maintenance work, verify the position of the Emergency Stop button and verify the AC power is disconnected if working within the energized compartments of the units.

In case of an emergency stop, the breaker inside the system will not shut off. The power within the unit will remain energized unless the power source feeding the unit is turned off. Therefore, do not touch the terminals inside the blower.

Verify the Emergency Stop button functions and alarms regularly by pressing the button while the unit is not operating.

To Use the Emergency Stop Button

Press the Emergency Stop button to immediately shut off the Turbo Blower.

PRESSING THE EMERGENCY STOP BUTTON

To Reset the Emergency Stop Button

Turn the button clockwise. Once the button is released, the Emergency Stop button is reset.

RESETTING THE EMERGENCY STOP BUTTON

Ensure the unit is clear and operable before resetting the Emergency Stop button.

Danger of Electrical Shock

The blower contains moving and energized parts that can cause serious or deadly injury.

When the blower is powered on, do not touch the inside of the blower under any circumstances.

Turn off power on the Main Circuit Breaker (MCCB) and wait at least five (5) minutes for the capacitors to discharge. Then use a voltmeter or a multimeter to ensure there is no voltage before performing any maintenance work.

Do not wear jewelry or loose clothing when operating or maintaining the blower.

Danger of Short Circuit

Turn off the main power supply upstream of the blower when the circuit breaker trips or the fuses are blown. Troubleshoot and resolve the problem before resetting the breaker to prevent electrical shock due to short circuit.

Switching Power on the Blower

Do not repeatedly switch the Main Circuit Breaker (MCCB) ON and OFF in a short interval. Wait at least five (5) minutes between each switching of MCCB. The capacitors of the VFD need to discharge between power cycles to avoid electrical damage to the equipment and/or injury to personnel.

In case of maintenance on the feeder circuit of the blower, make sure to also switch OFF the Blower MCCB. When power is restored upstream, you may switch the MCCB back ON.

1. Touch Screen Configuration

The turbo blower is controlled by many parameters such as motor speed, discharge pressure and suction flow rate. All parameters have been set at the factory and some of them cannot be changed by the operator. Other parameters have to be set depending on the blower site conditions.

Please note that controller programs are identical but the operational parameters are different from one blower to another.

ACAUTION

The blower may be damaged if operation parameters are set incorrectly. Only trained and qualified personnel will have access to the internal parameter settings.

1.1 Main

Main screen is displayed at power up and during normal operation. It displays the principal operation parameters. The banner at the top of the display shows the model name (the first set of numbers determine horsepower and the second set indicates the compressor model based on discharge pressure and flow requirements), operation type (local or remote control), date and the blower operation mode (constant speed, constant flow, constant pressure or DO control).

The following parameters are displayed in the Main screen:

- Motor Speed The revolution speed of the motor. It is measured in RPM.
- Discharge Pressure The current discharge pressure.
- Suction Flowrate The calculated suction flow rate.
- Power Consumption The output power from the blower package.
- Suction Temperature The temperature of suction air.
- Discharge Temperature The temperature of the air being delivered from the blower.
- Inlet Pressure Drop The differential pressure between the exterior and interior of the blower package.

The middle column displays the current value and the third column displays the measurement units.

ix c of	P:Local 7	-Jan-2019	Mode	: Const	. Speed
Motor Speed	0.0%	0	H	RPM	
Discharge Pr	essure	2.090		PSI	_
Suction Flow	rate	0.0	S	CFM	Monit
Power Consu	Imption	0.0		kW	Monu
Suction Temp	erature	69.6		°F	Ivienu
Discharge Te	mperature	72.5		°F	
Inlet Pressur	e Drop	0.1450	4	PSI	
Target Speed	STATUS	Ready			
TACUT	95.00%	-1%	+1%		

MAIN SCREEN

The bottom of the display shows the Command Input Value (Target Percent) corresponding to speed, flow, pressure and DO (dissolved oxygen); two percentage buttons to increase or decrease the command input and the current status. The red number to the left represents the actual value of the target. The corresponding units and description above the display will change according to the control mode.

010103130	
Status	Description
Checking	The blower is performing a self-check after power has been turned on.
Ready	The blower is ready to run and is waiting for Start command or the Run button to be pressed depend
Ready	ing on the operation mode.
Start	The blower is going through the starting cycle after Start command or Run button is pressed.
Run	The blower is running.
Ston	The blower is going through the stopping cycle after Stop command or Stop button is pressed. The
Otop	status will change to Ready when the cycle is complete.
Fault	The blower stops due to a fault (refer to fault code and message in Reset screen).
Reset	The blower is resetting a fault after Reset procedure and Reset button is pressed. Status will change
Reset	to Ready if there are no additional faults occurring.
Error	Touch screen communication failure

Changing the Command Input Value

The Command Input can be changed by two methods:

- Method One: Press the Command Input value (option 1) on the touch screen and a keypad will appear on the screen. Input the desired value using the keypad and press the bent arrow button. To correct an invalid character entry, press the left arrow button. To cancel an entry press ESC.
- Method Two: Press (+1%) or (-1%) button (option 2) on the touch screen and the Command Input value will increase or decrease by one percent.

Option 1 - Keypad

METHODS TO CHANGE THE COMMAND INPUT

Meaning of the Command Input Value (100 %)

The percentage unit (%) is used as an input value to control the blower. This enables users to directly set up the target value relative to normal performance (100%) of the turbo blower, which makes the calibration value for the current inlet temperature unnecessary. Note the performance of the turbo blower is changed according to the intake fluid temperature even though the motor rotates with constant speed.

Depending on the operation mode of the blower (constant speed, flow, pressure or DO control), the target percentage represents:

- In Constant Speed mode, the ratio of the target speed to 100% speed based on the current inlet temperature.
- In Constant Flow mode, the ratio of the target air flow to 100% air flow based on the current inlet temperature.
- In Constant Pressure mode, the ratio of the target pressure to 100% of the predefined rated value of discharge pressure.
- In DO Control mode, 100% corresponds to a predefined upper limit value, and 0% to predefined lower limit.

Flashing Indicators

Under certain operating conditions, the following flashing indicators (NC, NM, NS or WC) will be displayed on the main screen.

- NC: Overrides speed command if it is higher than NC_Max, the dynamic maximum speed based on rated maximum speed and suction temperature. NC_Max is also used to convert speed percent commands to RPM.
- NM: Overrides speed command if it is higher than NM_Max, the maximum physical speed in RPM (N_Max) minus a 100 RPM hysteresis (NS_Hys).
- NS: Dynamic speed override in RPM when in surge protection control mode without BOV_ Open mode (N_Surge). This is not the speed at which surge protection control mode will trigger. It is the speed that will be sent to the VFD if in surge protection control mode for an increase in speed.
- WC: Dynamic speed override in RPM when in power protection control mode (N_Power). Occurs when the user defined power limit has been breached and overrides the speed of the blower either in order to protect the VFD or prevent VFD overcurrent faults. While power protection control mode is off, NC_Max is assigned to N_Power.

1.2 Monitor

Press Monitor button on the Main screen to access the Monitor screen. The Monitor screen displays the output value of each sensor and its status. "OK" means the sensor measurement value is normal. "Hi" is displayed in red when the parameter value is between 95 - 100% of the normal range and will change to yellow in case of a malfunction. "Off" means the sensor is disabled. "N/A" is displayed in yellow when the signal feedback is not available. In addition to the data displayed on the Main screen, the Monitor screen displays the following parameters.

- Motor Input Power The input power delivered to the motor (output power from the VFD).
- Motor Temperature The temperature of motor.
- Bearing Temperature The temperature of bearing.
- BOV (Blow-Off Valve) The status of blow-off valve (open/close).

The actual signal feedback in current (mA) from the analog input devices (discharge pressure, motor temperature, inlet pressure drop, rotor vibration, DO, remote input and ambient pressure) is also displayed with the following status.

- "Channel disabled" The sensor is disabled (in gray text)
- "Wire disconnected" The sensor is enabled but the wire is disconnected (in red text)
- "In range" The signal is in range (in green text)
- "Under 4 mA" The signal is under 4 mA (in red text)
- "Over 20 mA" The signal is over 20 mA (in red text)
- "High current" The high current (in red text)
- "Sensor misaligned" The signal is between 2 and 3 mA (in yellow text)

Motor Speed	0	0.0	0	RPM	
Discharge Pre	SS. 5.566	m <mark>e</mark> ok	2.090	PSI	
Suction Flowra	ate		0.0	SCFM	
Motor input Po	wer	OK	0.0	kW	Main
Suction Temp	erature	Off	69.8	۴F	
Discharge Ten	nperatur	e Of	72.5	۴	Meriu
Motor Temp. ^{Ch}	annel disat 4.329	mA Off	-45.0	٩F	
Bearing Temp	erature	Off	71.4	٩F	
Inlet Press. Br	annel disal OP 0.000	mA Off	0.14504	PSI	2
BOV (Blow Of	f Valve)		Open		

MONITOR SCREEN

Click the number next to Motor Speed to check the current state of VFD. A pop-up window describing the state of VFD will appear. Close the window by pressing the "X" button on the right upper corner.

Motor Speed 0	0.0	0	RPM		noP - No Operation
Discharge Press. 5.566 mA	рĸ	2.090	PSI		Central release (forminal ST) is not
Suction Flowrate		0.0	SCFM		switched.
Motor input Power (ЭК	0.0	kW	Main	
Suction Temperature	Off	69.8	°F	Manu	
Discharge Temperature	Off	72.5	۴	Iviena	
Motor Temp. Channel disabled 4,329 mA	Off	-45.0	°F		
Bearing Temperature	Off	71.4	°F		
Inlet Press. Drop 0.000 mA	Off	0.14504	PSI	2	
BO∀ (Blow Off Valve)		Open			

MONITOR SCREEN AND VFD STATE WINDOW

Press the down arrow to access Monitor2 screen. This option displays the following parameters.

 100% Motor Speed @ Ts - The actual maximum speed (in RPM) at the current suction temperature (Ts).

- Rotor Vibration The vibration value of the shaft.
- DO Level The actual dissolved oxygen value (in the aeration basin) if a DO probe sourcing a 4-20mA signal is connected to the remote terminals.
- Remote Input The actual current value (in mA) when the target setpoint is sent through hardwiring (4-20mA signal).
- CMD to Inverter The actual speed setpoint sent to the VFD.
- VFD Temperature The measured heat sink temperature of the VFD.
- Input Amps The phase (RMS) current at the input of the VFD. This a consolidated view of the volts and PF indication with the amperage reading.
- Ambient Pressure The relative ambient pressure.

100% Motor Speed @ Ts	45293	RPM	
Rotor Vibration 2,432 mA Off	-0,8	mil	
DO Level N/A	0.1	ppm	_
Remote Input N/A	0.0	mA	Main
CMD to Inverter	36688	RPM	
VFD Temperature OK	89.6	٩Ę	Wenu
Input Amps @ 480V, 0.90 PF	0.0	A	
Ambient Press. Channel disabled	-4.281	PSI	
			1

MONITOR2 SCREEN

1.3 Menu - Home

Press Menu button from the Main screen to access the Menu screen. Press Home button then the following screen options can be accessed without entering a password.

1.4 Graph

Press Graph button from the Menu - Home screen. The Graph screen displays the approximate current operating point (represented by red dot) of the blower. The discharge pressure is shown on the vertical axis and the suction flow rate is shown on the horizontal axis. The maximum values are shown at the maximum point of the corresponding axis.

The Graph screen also has increment and decrement buttons for speed control and the target percent input display.

Graph parameters can be viewed by pressing the Param p1 button on the upper right corner of Graph screen (a tech level password is required).

- Pmin The minimum value of discharge pressure (vertical axis)
- Qmin The minimum value of suction flow rate (horizontal axis)
- Pmax The maximum value of discharge pressure (vertical axis)
- Qmax The maximum value of suction flow rate (horizontal axis)
- P_00 P_12 and Q_00 Q_12 The curvilinear value of the graph

NX	-C	OP:Local	21-Jun-2018	Mode : Const	. Speed	NX -C	OP:Local	21-Jun-2018	Mode : Const. S	peed
Ρm	in	0.00	Qmin	0.00		P_07	0.72	Q_07	76.70	A
Pm	ax	1.20	Qmax	90.00		P_08	0.60	Q_08	80.60	1
P_0)0	0.00	Q_00	10.20		P_09	0.47	Q_09	83.20	
P_0)1	1.07	Q_01	36.90	Menu	P_10	0.32	Q_10	84.60	Menu
P_0	12	1.04	Q_02	44.00	—	P_11	0.16	Q_11	85.10	_
P_0	13	1.00	Q_03	49,90	Graph	P_12	0.00	Q_12	85.20	Graph
P_0)4	0.95	Q_04	58.10						
P_0)5	0.89	Q_05	65.30	2					G
P_C)6	0.82	Q_06	71.50						

GRAPH PARAMETERS

1.5 Bar Graph

Press Bar Graph button from the Menu - Home screen. The current values of the critical monitoring sensors are displayed as a bar graph. One hundred percent (100%) represents the predefined limitation value of the sensor.

- Discharge Temp. Percentage of the maximum discharge air temperature.
- Bearing Temp. Percentage of the maximum bearing temperature.
- Motor Temp. Percentage of the maximum motor temperature.
- Discharge Pressure Percentage of the maximum discharge pressure.
- Rotor Vibration Percentage of the maximum rotor vibration.
- dPi Package Percentage of the maximum inlet pressure drop.

BAR GRAPH SCREEN

The vertical bar displays the permitted maximum value (as a percentage) of a specific sensor. These values can be found on the Limitation Setup screen.

1.6 Blower 3D

Press Blower 3D button from the Menu - Home screen. This screen illustrates the blower, major components and instruments in 3D graphics.

BLOWER 3D SCREEN

The following features are available from the Blower 3D screen.

- Blower model, operation mode, control mode and blower number
- Principal operation parameters such as speed, pressure, temperature, flow, power and vibration
- Status of blower and major components.
- Command input button
- Menu button to access the Menu screen
- Monitor button to access the Monitor screen
- Reset button when the blower trips

1.7 History

Press History button from the Menu - Home screen. The History screen displays the recent fault histories in order of occurrence from 1 to 60 (1 = the most recent fault, 60 = the oldest fault). Press the left or right arrows on the screen to scroll through the fault histories. Each fault history represents the fault code, VFD code, blower running time, BOV status, date, time, critical parameter values at the moment of fault occurrence and related fault messages. Reset screen can be accessed from the screen by pressing the Reset button.

		FAUL	T HISTO	RY		
VFD	Comm. F	ail		1	-	A
Flt Code	1011	0	Date: 01	/07/2019 @	0 11:45	6
PD	2.090	psi	XM	-0.8	mil	
QS	0	SCFM	CMD	81.00	%	-
Ń	Ó	rpm	Run Tot	0	hrs	Reset
WM	0.0	K/V	Run Cur	0.05	hrs	Menu
TS	70	۹F	NCMax	45293	rpm	Werta
TD	73	۳F	N MIN	72.52	%	
ТВ	72	۹F	DPI	0.14504	psi	2
TM	-45	٩F	BOV	Open		

HISTORY SCREEN

Click the VFD code to check the state of VFD at the moment of fault occurrence. A pop-up window describing the state of VFD will appear. Close the window by pressing the "X" button on the right upper corner.

		FAUL	T HISTO	RY			
VFC) Comm. F	ail		1			noP - No Operation
Flt Code	1011	0	Date: 01	/07/2019 @	@ 11:45	6	Control release (terminal ST) is r
PD	2.090	psi	XM	-0.8	mil		switched.
QS	0	SCFM	CMD	81.00	%		
Ń	Ö	rpm	Run Tot	0	hrs	Reset	
WM	0.0	KVV	Run Cur	0.05	hrs	Menu	
TS	70	۳F	NCMax	45293	rpm	inoria.	
TD	73	۳F	N MIN	72.52	%		
TB	72	۴F	DPI	0.14504	psi	2	
TM	-45	٩F	BOV	Open			

HISTORY SCREEN AND VFD STATE WINDOW

Press the down arrow to access the History2 screen displaying the following historical data.

- Total Package Running Time the cumulated running time from the first operation of the blower package.
- Current Running Time the current running time of this operation.
- Total Core Running Time the cumulated running time from the first operation of the core.
- Core Number of Starts the total number of starts and stops of the core.
- Total KWH Usage the total power consumption of the blower package.

The core and package serial numbers are assigned at the factory, and not accessible by the operator. Only a qualified field service technician can access them when a core or a blower package is changed.

Total Package Runni	ng Time	1	0			
Current Running Tim	e	Ő,	00	0	1	
Total Core Running T	ime		0			
Core Number of Start	s	B	65			
Total KWH Usage		37	71			
Core SN	K1	K11S61G45001		Menu		
Package SN	N17-	NX2005	6-00	123	IP Addr	
Maintenance Time / (Counter	0	/	Q	- Maur	
VFD Power Run Time	(ru41)	11	157		3	
VFD SN	3	3048496	15			

The maintenance time represents the cumulated running time from the first operation. When the cumulated time reaches pre-defined hours, the following maintenance warning messages will appear on the screen.

• Factory Maintenance Due (when reaching 10950 hours or 15 months)

Factory Maintenance Due

- Factory Maintenance Past Due (when reaching 11610 hours or 16 months)
- Factory Maintenance Due Immediately! (when reaching 13140 hours or 18 months)

MAINTENANCE MESSAGE EXAMPLE

Ack

The maintenance time will be reset by a qualified field service technician once the factory maintenance service is performed.

VFD Power Run time and SN are used for VFD troubleshooting. IP addresses for PLC and HMI can be checked by pressing IP Addr. button on the left.

Press the down arrow to access History3, History4 and History5 screens which provide additional fault counter data.

	FAULT C	OUNTERS pa	ige 1	2
Flt Code	Count	Flt Code	Count	
1001	0	1010	0	2
1002	1	1011	5	
1003	0	1012	Ø	
1004	0	1013	0	Reset
1005	Ó	1014	Ø	Menu
1006	0	1015	0	moria
1007	0	2001	Ø	
1008	0	2002	0	4
1009	2	2003	0	

	FAULT COUNTERS page 2										
Flt Code	Count	Flt Code	Count								
2004	Ú.	3001	0	3							
2005	0	3002	0								
2006	Ö	3004	0								
2007	0	3008	0	Reset							
2008	Ő	3012	Ø	Menu							
2009	0	3016	0	Mona							
2010	Ø	3058	O								
2012	0	3080	0	5							
2013	Ó	3099	0								

HISTORY3 AND HISTORY4 SCREENS

	FAULT C	OUNTERS pa	ige 3	
Flt Code	Count	Flt Code	Count	
4001	Ó	5002	0	4
4002	0	5003	Û.	
4003	Ø	5004	0	
4104	0			Reset
4106	Ŭ			Menu
4107	0			meria
4108	5			
5000	0			6
5001	3		-	

HISTORY5 SCREEN

The History6 screen displays the history of the recent VFD status changes with a related fault code in order of occurrence (from 1 to 99). Press the left or right arrows on the screen to scroll through the histories. Click the VFD status code to check the description of VFD state. A pop-up window will appear. Close the window by pressing the "X" button on the right upper corner. Additional data on VFD is also displayed for troubleshooting the VFD related problems.

are marchine ma	TORY 11/29	/2019 4:50:5	58 PM
Date: 05/16/2019 @ 15:47			noP - No Operation
Fault Code	C C	í 👘	5 Control release (terminal ST) is not
VFD Status	Detail ())	switched.
InO6: software version	2.21 DMM V) 1909	11	Menu
InU7: software date (D In10-In13: serial no. 30 Last e	04849615 rrors		
In 07: software date (D In 10-in 13: serial no. 30 Last e In 24.0: 0 Detail	04849615 rrors In24.4: 0	Detail	
In 07: software date (D In 10-In 13: serial no. 30 Last e In 24.0: 0 Detail In 24.1: 0 Detail)4849615 rrors In24.4: 0 In24.5: 0	Detail Detail	

HISTORY6 SCREEN AND VFD STATE WINDOW

1.8 Reset

Press Reset Faults button from the Menu screen to access the Reset screen. When the blower stops with a fault, press the Reset button on this screen to reset the fault after troubleshooting. The Main screen is displayed after the Reset procedure is complete.

Pressing the Lamp Check button will illuminate the Run, Stop and Reset buttons at any time whether the blower running or not.

The Horn Disabled button can be pressed to silence the horn (if equipped) while troubleshooting a fault.

1.9 Contact APGN

Press Contact APGN button from the Menu screen to display the point of contact information for inquiries. Click on the region icon to have contact info for each region (Canada, USA or UK).

CONTACT APGN SCREEN

1.10 Menu - Setup

Press Setup button from the Menu screen then press Login button. Enter a proper password to access the Menu - Setup screen at each level.

ENTERING PASSWORD

Passwords are entered according to a three-tiered system:

- User password Allows basic operation and maintenance. This level is set at the factory default of 1234.
- Admin password Allows higher level user configurations but does not allow operators into Control Setup. This level is set at the factory default of 5678.
- Tech password Allows full access to all levels including Control Setup. Password is generated based on date and changes each day.

Note: Tech password is for use only by factory certified technicians or under the supervision of factory personnel.

Press Menu button on the screen after entering a password. Menu - Setup screen offers operation, system and control setup options at each blower operating level.

The following screens show the Menu - Setup screen at each password level.

NX	-C	OP:Local	7-Jan-201	9 Mode	: Const. Spee
	Home	Setup	Res Fau	set Co Ilts A	ontact .PGN
	Opera Set	up			
			Ad	lvanced Setup	Logout

MENU - SETUP SCREEN AT USER LEVEL

NX	-C OP:L	ocal 7-J:	an-2019 Mo	de : Const. Speed
	Home	Setup	Reset Faults	Contact APGN
	Operation Setup	Limit Setup	System Setup	
	Blower Units	Valve Setup	Tuning Setup	
	Time/Date Setup	Time Mode Ctr	Advanced Setup	Logout

MENU - SETUP SCREEN AT ADMIN LEVEL

Home	Setup	Reset Faults	Contact APGN
Operation Setup	Limit Setup	System Setup	Control Setup
Blower	Valve	Tuning	1.00
Blower Units	Valve Setup	Tuning Setup	In / Ou

MENU - SETUP SCREEN AT TECH LEVEL

1.11 Advanced Setup

Press Advanced Setup button from the Menu - Setup screen. The Advanced Setup screen offers password control and filter timer reset to an operator when required.

Any level of password can be manually logged out from this screen.

ADVANCED SETUP SCREEN

- User Password Sets the User password.
- Admin Password Sets the Administrator password.
- Exit Runtime Changes the touch screen to configuration mode. This option is only available at tech level.
- Reset Filter timer Allows the operator to reset the filter timer after replacing filters.
- Log Out Allows the operator to log out after completing tasks.

Note: It is recommended the operator always logs out after completing tasks.

1.12 Operation Setup

The Operation Setup screen is designed to give an operator access to blower operation and control mode. The current IP addresses and program versions are also displayed at the bottom of screen.

Note: Mode and Beacon options are only available at admin level.

١	lode	Rem/Local	Beacon	
Co S	nstant peed	Local Control	Disabled	N GY
	STA	TUS Fa	ulf	Menu
		Reset		

OPERATION SETUP SCREEN

Mode selects the operation mode from Constant Speed, Constant Flow, Constant Pressure and DO Control (this parameter cannot be changed while the unit is in operation).

Remote/Local selects the control method. Local Control, Ethernet/IP Control, Remote TB Control, Remote TB/TS SPD Control (TB – Turbo Blower, TS – Touch Screen, SPD - Speed) and Modbus TCP Control are available options. It cannot be changed while the unit is in operation.

- Local Control: blower is fully controlled via the local control panel by entering the percent command on the touch screen and using the Start and Stop buttons.
- Remote Control: blower is controlled from a remote terminal (MCP or SCADA).
 - Ethernet/IP Control (Ethernet TCP/IP communication): local Start/Stop buttons and speed command (on the blower's touch screen) are disabled. Instead, they are issued over the Ethernet network from a remote terminal.
 - Remote TB Control
 - START/STOP remote hardwired signals from remote terminal such as SCADA (digital input 24 VDC).
 - Speed command remote hardwired signal from remote terminal (analog input 4-20 mA).
 - Remote TB/TS SPD Control
 - START/STOP remote hardwired signals from remote terminal such as SCADA (digital input 24 VDC).
 - Speed command specified on the blower's touch screen
 - Modbus TCP Control (Ethernet TCP/IP communication): local Start/Stop buttons and speed command (on the blower's touch screen) are disabled. Instead, they are

issued over the Ethernet network from a remote terminal.

Beacon is used to enable or disable the beacon. If the blower is not equipped with a beacon, select Disabled.

Press Reset button to access the Reset screen.

1.12.1 Blower Units

The measurement units for each variable can be selected from this screen. All available unit options for each variable are shown in the following table:

Variable	Unit 1	Unit 2	Unit 3	Unit 4
Pressure	kgf/cm2	kPa	Bar	PSI
Flow	m3/min	Nm3/min	CFM	SCFM
Temperature	°C	°F		
Vibration	um	mil		
DO	ppm	mg/L		

Note: At admin level, the unit can be changed by clicking the measurement unit on Blower 3D, Main and Monitor screens.

The DO input transmitter range is also shown on this screen.

NX -C OP:Local	7-Jan-2019	Mode : Co	onst. Speed
Pressure Units	Fill F	PSI	
Flow Units	S	CFM	
Temperature Units		°F	Setup
Vibration Units		mil	
DO Units	p p	ipm	Menu
DO Transmitte	r Scaling		
AI_Ox_Max	10.0	ppm	
Al_Ox_Min	0.0	ppm	

BLOWER UNITS SCREEN

1.12.2 Time/Date Setup

In order to have accurate fault recording data, the PLC internal time clock is synchronized with the touch screen time clock. Both are set simultaneously from this screen.

Enter the new time in the Setting Time inputs. Then Push the "Set" button and the new time and date are loaded into the touch screen and PLC. The Current Time displays the PLC internal clock. It may take up to 15 seconds for the change to take effect. The hours are in 24 hour format and the am/pm notation is not needed.

	et	S	Time	et Current	Rese
OF		ne	tting Tin	Se	
Set	Min	Hour	Day	Month	Year
Mer	50	8	8	11	2018
		ne	rrent Tin	Cu	
	Min	Hour	Day	Month	Year
	29	11	7	1	2019

TIME/DATE SETUP SCREEN

1.12.3 Valve Setup

The discharge or inlet valves equipped with electric actuators can be controlled from this screen. Select a desired valve setup to configure the valve control.

VALVE SETUP SCREEN

- Valve Control enable or disable the valve controls.
- Manual/Auto select Auto or Manual valve controls.
- Valve Time adjust the time setting on the valve fail logic.
- Valve Logic select the type of valve control feedback.

The status of valve is displayed in one of three conditions (Fully Open, Fully Closed or In Travel). If the status is not displayed or stays in travel for an extended period of time, a fault will occur.

The Open and Close buttons are used to control the valves manually.

Discharge Valve Controls

With the valve control Enabled and in Auto - when the blower start command is issued the discharge valve is commanded open. This allows the valve to travel open while the blower is accelerating up to warm speed and the blow-off valve is open. The blow-off valve will not close until the valve is indicating fully open. When the blower stops, a close valve command is issued to close the valve. A fault will occur if the valve is failed to open or close within the specified valve time.

	VAVLE	FAILED	
V	alve Logic	N.O. Contacts	Iwienu
V	alve Time	70 Sec.	Manu
Ma	anual/Auto	Auto	Setup
Va	ve Control	Enabled	
	Discharge V	alve Controls	
NX	OP:Local	29-Nov-2019 Mode	: Const. Speed

DISCHARGE VALVE CONTROL SCREEN

Inlet Valve Controls

With the valve control Enabled and in Auto - when the blower start command is issued the inlet valve is commanded open. This allows the valve to travel open while the blower is still in Ready status. The blower will not start until the valve is indicating fully open. When the blower stops, a close valve command is issued to close the valve. A fault will occur if the valve is failed to open or close within the specified valve time.

1.12.4 Time Control

Time Control sets the blower operation for a specified running duration. If the blower is running on the Time Control mode, an icon will appear on the next to command input in the Main screen.

P:Local 9	-Aug-2018	Mode : Const. Spe
0.0%	0	RPM
essure	0.000	PSI
rate	0.0	SCFM
Power Consumption		kW
Suction Temperature		°F
mperature	77.9	۰۴
e Drop	0.08971	1 PSI
STATUS	Trually	All All
100.0%	-1%	+1% 0 Me
	CLOCAL S 0.0% essure rate imption erature emperature e Drop STATUS 100.0%	Clocal S-Aug-2018 0.0% 0 ressure 0.000 rate 0.0 imption 0.0 erature 78.3 emperature 77.9 e Drop 0.0897 STATUS Finally 100.0% -1%

MAIN SCREEN SHOWING TIME CONTROL MODE

In the example below, the blower runs during period 1 (at 13:00 hours or 1PM) at 100%, period 2 (at 14:00 hours or 2PM) at 99%, and stops during period 3 (at 15:00 hours or 3PM) and so on. From 8PM as shown in period 8 to 1PM as shown in period 1 (next day), the blower will run for a total of 17 hours at 95%.

eed

uμ

nu

- Time Control: enable or disable the time control.
- Period: display the order.
- Time Set: input the time for the operation. The unit is in hours (24h).
- CMD: input the target command (%) of the blower when the blower is running.
- ON/OFF: select the run or the stop of the blower at the assigned time.

	NX -C	OP:Local	7-Jan-20	019 Mode : Co	inst. Sp
		Time Control	DISA	BLED	
	Period	Time Set	CMD	ON / OFF	
	1	13	100	ON	
() [*] , (2	14	99	ON	De
	3	15	100	OFF	M
	4	16	97	ON	
	5	17	96	OFF	
	6	18	95	ON	
	7	19	100	OFF	
	8	20	95	ON	
		Tuar	CONTROL	OODEEN	

TIME CONTROL SCREEN

Note: If the Start button is pressed during the Time Control, a warning message "In processing for Time mode" will be displayed.

In processing for Time mode

TIME CONTROL WARNING

1.12.5 Tuning Setup

When a blower is to be running on the operation modes other than constant speed, Tuning Setup screen can be used for the desired operation mode. It provides access to the tuning parameters without having to go to the Control parameters thereby making tuning easier and more intuitive.

All three tuning screens work the same way - the user enters the setpoint percentage which is used to calculate the target value. The user then enters the deadband (DB) percentage and the PLC calculates the DB low limit and DB high limit. Using the formulas:

- DB Lo Lim = Target Value DB% * Target Value
- DB Hi Lim = Target Value + DB% * Target Value

The adjustment is how much of a speed change the blower will make if the actual is not within the DB high and low limits. The sample time determines how often the blower will make an adjustment.

In the Flow Control Tuning screen shown below, every 5 seconds the blower will check to see if the actual flow is between the DB Lo Lim and the DB Hi Lim. If it is then it will do nothing. If the flow is lower than the low limit it will increase the blower speed by 100 RPM. If the flow is higher than the DB Hi Lim then it will decrease the blower speed by 100 RPM. It will then repeat this every 5 seconds as long as the blower is in Flow control mode.

Increasing the adjustment will get a faster return to limits however too much will cause an overshoot and can cause the process to be unstable. Decreasing the sample time will also get a faster return to limits however, if the sample time is faster than the system can change, it will cause an overshoot and can cause the process to be unstable. It works the same way for pressure and DO control.

Flow Control Tuning - The flow control setpoint is in percent of the machine rated flow. The user enters the percentage setpoint (0 to 100) and the PLC calculates the target value using the formula: Target Value = (SP% * QRate * TICR)

- QRate is one of the control parameters
- TICR is a temperature compressibility factor

Thus the maximum flow rate is adjusted for temperature.

To determine the maximum flow rate at any given time, divide target by the setpoint and multiply by 100. Typical flow control sample times vary from 2 to 15 seconds. The adjustment RPM will vary with blower size; larger blowers will need smaller adjustments.

NX -C OF	:Local 17-Au	g-2018 Mode: C	onst Flow
Fl	ow Control Tun	ing	
			OP
Set Point	Target	Deadband	Setu
80.0 %	983.4	3.0 %	Men
Adjustment	Flow Units	Sample Time	
100 rpm	SCFM	5.0 Sec	
DB Lo Lim	Actual Flow	DB Hi Lim	
954.0	0.0	1013.0	

FLOW CONTROL TUNING

Pressure Control Tuning - The pressure control setpoint is in percent of the machine rated output pressure PD Rate. The user enters the percentage setpoint (0 to 100) and the PLC calculates the target value using the formula: Target Value = $(SP\% * PD_Rate)$.

PD Rate is set in the control parameters and is listed in the model number. If the blower is a C060 then PD_Rate is 0.6 kgf/cm2 or 8.534 psi. If the blower is a C070 then PD Rate is 0.7kgf/cm2 or 9.956 psi.

Typical pressure control sample times vary from 5 to 30 seconds depending on the header size and length. Bigger headers will take longer to realize a pressure change. The adjustment RPM will vary with blower size; larger blowers will need smaller adjustments.

PRESSURE CONTROL TUNING

DO Control Tuning - The DO control setpoint is in percent of the range of the DO input signal. The user can set the range of the DO transmitter in this screen or the Units screen. The user enters the percentage setpoint (0 to 100) and the PLC calculates the target value using the formula: Target Value =(SP% * DO_Range).

NX -C OP	:Local 20-Au	g-2018	Mode:DC	Control
D	O Control Tuni	ng		
300 S	DO SD Delay / Limit	1.0min	10.0m*	OF
Set Point	Target	Dead	band	Setu
80.0 %	8.0	0.0	1%	Mer
Adjustment	DO Units	Sampl	e Time	
100 rpm	ppm	30.0	Sec	
DB Lo Lim	Actual DO	DB H	li Lim	
1.0	5.0	8	.0	

DO CONTROL TUNING

For example, if the range of the DO transmitter is 0 to 10 ppm and the setpoint is 30% then the target value is 3 ppm. Typical DO control sample times vary from 30 to 900 seconds depending on the size of the basin and how far downstream the DO sensor is. Larger basins will take longer to react and will require longer sample times. The DO control will double the adjustment if the actual DO is out of limits more than twice the deadband.

1.13 Limitation Setup

The Limitation Setup sets limits to parameters such as discharge pressure, motor speed, motor input power, inlet pressure drop and temperature. If any of these parameters exceed its predefined limit while the blower is running, the blower will stop with a fault. The corresponding fault code and the message will then be displayed on the Blower 3D and Main screens.

The Limitation Setup screen requires an Admin password to view and a Tech password to make any setpoint changes.

- Discharge Pressure The limitation value of the discharge pressure. The blower stops with a fault when the discharge pressure is higher than this value.
- Motor Speed The limitation value of the motor speed. The blower stops with a fault when the motor speed is higher than this value.
- Motor Input Power The limitation value of the motor input power. The blower stops with a fault when the motor input power is higher than this value.
- Inlet Pressure Drop The limitation value of the inlet pressure drop. The blower stops with a fault when the differential pressure of the inlet is higher than this value. This fault normally occurs when the filter is blocked with dust or debris.
- Suction Temperature The limitation value of the temperature of the suctioned air. The blower stops with a fault when the suction temperature is higher than this value. This fault normally occurs when the room temperature (or suction temperature if direct piped) is high.
- Discharge Temperature The limitation value of the temperature of the discharged air. The blower stops with a fault when the discharge temperature is higher than this value.
- Motor Temperature The limitation value of the motor temperature. The blower stops with a fault when the motor temperature is higher than this value.

- Bearing Temperature The limitation value of the bearing temperature. The blower stops with a fault when the bearing temperature is higher than this value. The fault normally occurs when the thrust bearing fails.
- VFD Temperature (Inverter temperature) The limitation value of the VFD temperature. The blower stops with a fault when the VFD temperature is higher than this value.

NX -C OP:Local	7-Jan-2019 N	Node : Const	t. Spe
Discharge Pressure	15.119	PSI	
Motor Speed	48644	RPM	
Motor Input Power	47.10	kW	
Inlet Pressure Drop	0.1422	PSI	
Suction Temperature	149.0	°F	Me
Discharge Temperature	336.2	°F	
Motor Temperature	356.0	°F	
Bearing Temperature	392.0	°F	
VFD Temperature	194.0	°F	

LIMITATION SETUP SCREEN

Note: The limitation values are set depending on the blower model and operating condition.

If a site is not using SCADA recording of blowers, the operating log sheet (normally included in blower O&M manual) can be used to track trends of critical parameters. This trend analysis should be set to track trends in blower operations and to set limitation values.

Copyright ©2014 APGN Inc. All rights reserved Publication: APGN-DO-OM-035-E

	-			Record th	e followin	ng runnin	g values	_		_		
Date:		-	(v	Ē	(6	ε, E)	();	(1	\$			
Month:	(RPM)	ture (°F	e (SCFA	ature ("F	sure (PS	rature (Irop (PS	ature ("R	tion (kV	n (mil)	ure (°F)	
Year:	Motor speed	Motor tempera	Suction flow rate	Suction tempera	Discharge press	Discharge tempe	Filter pressure o	Bearing temper	Power consump	Rotor vibratio	VFD temperat	
1st						-	-	-		-		
2nd		1.0	1	1	1	1	1000	0.0	10.000			X.
3rd	1	10000					1	le marí.		1		
4th			T				1.1.1	10.0.01	12.2.21	Z		
5th		1	1	·	-		1	1.				~
6th												
7th												
8th		-		1								
9th			2 1					12222				
10th								11		t.		
11th			3 5	1	1.000		i = 11	100.00	10.01	1 1		
12th			1			· · · · ·	· · · · · ·	11				
13th			i i			-						
14th												
15th												
16th			1			-		111111		-		
17th		· · · · · · · · · · · · · · · · · · ·	Ł					11.1.1.1		h		
18th			1					1.2.2.4	10.00	3		
19th												
20th			1 1	1				10.0.04				
21st			1 1									
22nd		1		1			· · · ·	1.4				
23rd	·							1122				
24th		1	1		-				-			
25th			1				1.1.1	12.2.01				
26th			1					1.1.1.1				
27th					1		1 11	11111				
28th			i					10.000				
29th				-								
30th												
31st	1					1				1		

OPERATING LOG SHEET

1.14 System Setup

The System Setup screens are designed to give an operator access to blower system monitoring. System Setup screens require an Admin password to view and a Tech password to make changes.

Controller

NX -C OP:Loca	7-Jan-2019 Mode : Const. Speed
MCP Unit Change	English
Power Mode	None 4
dPi Sensor Limit S	Stop Off
Tm Sensor Limit S	itop Off
Tb Sensor Limit S	op Off Menu
Xm Sensor Limit S	itop Off
Ts Sensor Limit S	top Off
Td Sensor Limit S	top Off 2
Ps Sensor Limit S	top Off V

SYSTEM SETUP SCREEN

• MCP Unit Change – The selection of MCP units. There are two types of units: Metric or English unit systems. The following formulas are applied in unit conversions.

Arguments	Symbols	Metric	English	Conversion Factor	Variables
Suction Pres- sure	ΔP _i	kPa	PSI	PSI=0.1450377*kPa	
Discharge Pres- sure	Pd	kgf/cm ²	PSI	PSI=14.22334* kgf/cm ²	
Temperature	Т	°C	°F	°F = 1.8 *°C +32	Ti, Ts, Td, Tb, Tm
Suction Flow Rate	Q	m ³ /min	CFM	CFM=35.31467* m ³ /min	Q0, Qrate, Kq
Rotor Vibration	Xm	μm	mil	mil=0.03937008*µm	
Surge Airflow Gain	Ks	(m ³ /min)/ (kgf/cm ²)	CFM/ PSI	(m ³ /min)/(kgf/cm ²)= 2.483008914* (CFM/PSI)	
Motor Input Power	W _m	кW	kW		Wm_Max
Motor Speed	N ₁	rpm	rpm		
Time		sec	sec		
Time		hr	hr		
Current		mA	mA		

- Power Mode The power limitation mode. It is applied when Use is selected and ignored when None is selected.
- Sensor Limit Stop The display for selecting dPi (inlet pressure drop), Tm (motor temperature), Tb (bearing temperature), Xm (vibration), Ts (suction temperature), Td (discharge temperature) and Ps (ambient pressure) are used to create a fault condition. When On is selected, the unit will trip off and a fault will occur when one of the sensors exceeds its control parameters. Select Off to disable the fault condition.

Press the down arrow on the screen. The following shows the next screen. It is used for Remote Control Setup.

NX -C OP:Local 7-Jan	-2019 Mode : C	onst. Speed
Run Signal to Remote	Stable	
Auto Return to Ready	On	1
Control Type	3 Wire	
Automatic Restart Local	Off	-
		Menu
MCP Heartbeat Stop	On	
MCP Heartbeat Warning	On	
MCP Heartbeat Timeout	5.0 Sec	3
Auto Reset Delay	60 Sec	

SECOND LEVEL OF SYSTEM SETUP SCREEN

- Run Signal to Remote Sends the Run signal to the remote terminals from start until stopped when Stable is selected. Sends the Run signal to the remote terminals when the blow-off valve is closed if Start is selected.
- Auto Return to Ready Enables the PLC to automatically reset the alarms once power is
 restored after a power failure. The VFD may trip on nuisance alarms during a failure. If the
 auto reset is successful, the blower will be in Ready status.
- Control Type Indicates if permanent start (2-wire), momentary start or momentary stop commands are used (3-wire).
- Auto Restart in Local Enables the PLC to automatically restart the blower once automatic reset is performed. The blower must be controlled in local to use this function.
- MCP Heartbeat Stop Shuts the blower if the heartbeat signal has not changed for more than five seconds.
- MCP Heartbeat Warning Allows plants who are not using the MCP Heartbeat to shut off the warning when in TCP control mode.
- MCP Heartbeat Timeout Allows systems with heavy network traffic and slower master controllers to open up the fault time and avoid nuisance trips. Factory default setting will be five seconds. Recommended range is five to thirty seconds.
- Auto Reset Delay The amount of time the PLC waits after a power failure before attempting an automatic reset. The default is 60 seconds.

Press the down arrow on the screen. The following is the next screen.

NX -C OP:Local 7-	Jan-2019 Mode : Con	st. Speed
PMR Monitor	Enabled NO	
Surge Control	BOV Open	2
Horsepower	50	
Compressor Model	80	Menu
NX - NC	NX	-
UPS Monitor	Disabled	
LVSP Monitor	Disabled	4
SPD Monitor	Disabled	

THIRD LEVEL OF SYSTEM SETUP SCREEN

- PMR Monitor Enables or disables the PMR (phase monitoring relay) monitor alarms and warnings. If the blower is not equipped with a PMR monitor, select Disabled.
- Surge Control Indicates the surge mode. This parameter cannot be changed while the unit is in operation.
 - No Protection it does not stop automatically even if the blower runs in a surge condition.
 - Surge Stop a fault occurs and the blower stops when the blower runs in a surge condition.
 - Surge Boundary the blower tries to adjust the speed of the blower to keep the unit out of the surge area. If a surge occurs, the blower will stop and a fault will occur.
 - BOV Open the blower opens the blow-off valve (BOV) for a pre-programmed time then closes the BOV and tries to operate again.
- Horsepower Select the horsepower of the current model. This parameter cannot be changed while the unit is in operation.
- Compressor Model Displays the compressor model of the blower.
- NX-NC Specifies the blower compressor type.
- UPS Monitor Enables or disables the UPS (uninterrupted power supply) monitor alarms and warnings. If the blower is not equipped with a UPS monitor, select Disabled.
- LVSP Monitor Enables or disables the LVSP (low voltage surge protection) monitor alarms and warnings. If the blower is not equipped with a LVSP monitor, select Disabled.
- SPD Monitor Enables or disables the SPD (surge protection device) monitor alarms and warnings. If the blower is not equipped with a SPD monitor, select Disabled.

Press the down arrow on the screen. The following is the next screen.

AO 1 Remote Ind 1 Speed % AO 2 Remote Ind 2 Pd AO 3 Remote Ind 3 dPi AO 4 Remote Ind 4 Dyn. Min. % DO Sensor Limit Stop Off Blower number 1	VX -C OP:Local 7-c	lan-2019 Mode : Co	nst. Speed
AO 2 Remote Ind 2 Pd 3 AO 3 Remote Ind 3 dPi AO 4 Remote Ind 4 Dyn. Min. % DO Sensor Limit Stop Off Blower number 1	AO 1 Remote Ind 1	Speed %	
AO 3 Remote Ind 3 dPi AO 4 Remote Ind 4 Dyn. Min. % DO Sensor Limit Stop Off Blower number 1	AO 2 Remote Ind 2	Pd	3
AO 4 Remote Ind 4 Dyn. Min. % DO Sensor Limit Stop Off Blower number 1	AO 3 Remote Ind 3	dPi	
DO Sensor Limit Stop Off Blower number 1	AO 4 Remote Ind 4	Dyn. Min. %	
DO Sensor Limit Stop Off Blower number 1			Menu
Blower number 1	DO Sensor Limit Stop	Off	
	Blower number	1	

FOURTH LEVEL OF SYSTEM SETUP SCREEN

- AO "x" Remote Ind "x" Designates the analog output function, i.e. speed, discharge pressure, suction flow rate, motor power, inlet pressure drop, suction temperature or discharge temperature. Each AO is pre-wired to be used if SCADA needs to access the process data through a remote terminal.
- DO Sensor Limit Stop When On is selected, the warning message about the DO sensor is displayed if there is a connection problem.
- Blower Number Sets a blower identification number.

1.15 Control Setup

The Control Setup screens are designed to give an operator access to blower control parameters. A Tech password is required to access Control Setup screens.

N_Rate	45250	rpm	
N_Min_pct	72.3	%	8
STime_Cut	15	sec	
STime_Max	87	sec	
R_Time	2.0	sec	
PB_Time	0.1	sec	menu
B_Time	2	sec	
SB_Time	2.0	sec	
Stable_Time	30.0	sec	2
Q_Rate	24.0	m³/min	

CONTROL SETUP SCREEN

- N_Rate Rated motor speed. One hundred percent of motor speed based on the suction temperature of 20°C (68°F).
- N_Min_pct The minimum value in percentage of the motor speed. To prevent a surge occurrence be careful not to input the motor speed lower than this value.

- STime_Cut The time limitation to reach 5000 RPM. The blower stops and the fault occurs if the motor does not reach more than 5000 RPM within this time frame after the Run button is pressed.
- STime_Max The time limitation of overall start operation. The blower stops and the fault
 occurs if the starting process is not finished within this allowed time after the Run button is
 pressed.
- R_Time The time to reset an alarm before returning to Ready status.
- PB_Time The waiting time before closing the blow-off valve after reaching the value of BOV_pct control parameter.
- B_Time The waiting time prior to moving towards the target speed after closing the blow-off valve.
- SB_Time The waiting time until the VFD stops after opening the blow-off valve during a stop.
- Stable_Time Constant speed duration after closing the blow-off valve at the start.
- Q_Rate Rated air flow rate in Constant Flow mode.

Press the down arrow on the screen. The following is the next screen.

Qo (read-only)	0.000	m³/min	A
Ka	50.0	rpm/kW	1
Ns_hys	100.0	rpm	
BOV_pct	100	%	
Al_Pd_Max	1.500	kgf/cm ²	
Al_Wm_Max	47.1	kW	wenu
Al_Xm_Max	200	um	
AI_P1_Max	120	kPa	-
Al_Pi_Max	0.050	bar	3
Al_Ox_Max	10.00	ppm	

SECOND LEVEL OF CONTROL SETUP SCREEN

- Qo x-intercept of surge line.
- Ka Speed modification rate for preventing a surge in Surge Boundary mode. Speed change is fixed as Kc in case Ka is zero.
- Ns_hys The set speed tolerance. It is typically set at 100 RPM. It is related to the speed of the blow-off valve closure.
- BOV_pct The speed percentage to close the blow-off valve.
- AI_Pd_Max The discharge pressure corresponding to 20mA when using the current signal of 4~20mA. It is set to 1 when the maximum value of the sensor is 1 kg_f/cm² (14.2233 PSI) or 1.5 in case it is 1.5 kg_f/cm² (21.335 PSI).
- AI_Wm_Max Motor input power corresponding to 20mA when using the current signal of 4~20mA.
- AI_Xm_Max Shaft vibration corresponding to 20mA when using the current signal of 4~20mA.
- AI_P1_Max The ambient pressure corresponding to 20mA when using the current signal of 4~20mA.

- AI_Pi_Max The inlet pressure drop corresponding to 20mA when using the current signal of 4~20mA.
- AI_Ox_Max Dissolved oxygen (DO) corresponding to 20mA when using the current signal of 4~20mA.

Press the down arrow on the screen. The following is the next screen.

Al_Ox_Min	0.00	ppm	
Al_Rcmd_Max	100	%	2
AI_Q_Max	30	m³/min	
Pd_Min	0.300	kgf/cm²	
Kc	0	rpm	
G_VVm	1.0924		wen
Offset_Wm	-4.5978	kW	
Ai_Tm_Max	300	°C	
Ai_Tm_Min	-50	°C	4
VVarm_pct	81	%	

THIRD LEVEL OF CONTROL SETUP SCREEN

- AI_Ox_Min Dissolved oxygen (DO) corresponding to 4mA when using the current signal of 4~20mA.
- AI_Rcmd_Max Not used (100 is used in the controller).
- AI_Q_Max Air flow rate corresponding to 20mA when using the current signal of 4~20mA.
- Pd_Min The minimum discharge pressure at the motor speed of 100%. The low pressure may result in bearing failure. Normally 0.3 kg_f/cm² (4.267 PSI) is set; the minimum pressure for other speed is proportional to the square of the speed.
- Kc Speed change for preventing a surge when Ka is 0 (Surge Boundary mode).
- G_Wm Gain for correction of motor input power (Wm).
- Offset_Wm Offset value for correction of motor input power (Wm).
- Ai_Tm_Max Motor temperature corresponding to 20mA when using the current signal of 4~20mA.
- Ai_Tm_Min Motor temperature corresponding to 4mA when using the current signal of 4~20mA.
- Warm_pct Warm-up speed at the start.

Press the down arrow on the screen. The following is the next screen.

Pd_Min_Pct	72.3	%	
Warm_Time	10	sec	3
Ps_Ts	97.905	kPa	
Ps_M (read-only)	-29.515	kPa	
Pd_Rate	0.80	kgf/cm ²	
Stable_Pct	100	%	Menu
Wr	38.7	kW	
VVr_hys	0.59	kW	
K_Power	-50	rpm/kW	5
Pd_Max_Pct	70	%	N.

FOURTH LEVEL OF CONTROL SETUP SCREEN

- Pd_Min_Pct The minimum discharge pressure limit check running percentage value.
- Warm_Time Warm-up time at the start.
- Ps_Ts Ambient pressure of operation site.
- Pd_Rate Rated discharge pressure in Constant Pressure mode.
- Stable_Pct Stable motor speed after closing the blow-off valve at the start.
- Wr Base power on Power Limitation mode.
- Wr_hys Tolerance in base power on Power Limitation mode.
- K_Power Speed correction factor on Power Limitation mode.
- Pd_Max_Pct The maximum discharge pressure limit check running percentage value.

Press the down arrow on the screen. The following is the next screen.

Pd_Max_nth	2.30	%	
BOV_Open_Time	5	sec	4
SD_Time	30	sec	
Qvf	22.166		
Pdf	0.8620		Menu 2vs_Hys 5.15
Qv0	2.4		
Pd0	0.000		
Qv1	13.6		
Pd1	1.1130		6
Qs_Hys	1.2		

FIFTH LEVEL OF CONTROL SETUP SCREEN

- Pd_Max_nth The maximum discharge pressure value calculation to be used as nth value.
- BOV_Open_Time The amount of time the BOV is open in Surge Mode BOV Open.
- SD_Time The waiting time before a Restart is available after a stop.
- Qvf The factor of the flow rate on the performance map.
- Pdf The factor of the discharge pressure on the performance map.

- Qv0 The flow rate at the low point of the surge line.
- Pd0 The discharge pressure at the low point of the surge line.
- Qv1 The flow rate at the high point of the surge line.
- Pd1 The discharge pressure at the high point of the surge line.
- Qs_Hys The flow rate offset for the surge boundary, this method uses the flow rate to compare the surge point.

Press the down arrow on the screen. The following is the next screen.

Kn	3.4		
N1_Min_OPCT	0.0	%	5
Мар_Туре	4		
RH	90	%	
Filter Clean Time	720	н	
Flow_Min_Pct	0.00	%	Imenu
Press_Min_Pct	0.00	%	
Input Voltage	480	V	
Power Factor	0.9		7
T_Sample	5.0	sec	

SIXTH LEVEL OF CONTROL SETUP SCREEN

- Kn The flow rate offset for the real surge line.
- N1_Min_OPCT The upper offset that is larger than the speed making the BOV Open.
- Map_Type The model type number (0 4) for the performance map.
- RH Annual average humidity.
- Filter Clean Time The time elapsed (in hours) before a warning message is displayed to clean the filters. The default is 720 (blower running) hours which is approximately 30 days (1 month) and it can be changed depending on site conditions.
- Flow_Min_Pct The minimum flow percentage setpoint when the blower is operating in Constant Pressure mode.
- Press_Min_Pct The minimum discharge pressure setpoint when the blower is operating in Constant Flow mode.
- Input Voltage The line to line (RMS) input voltage for blower.
- Power Factor The power factor for calculating the power consumption of the blower.
- T_Sample The sample time for the step controller. (A step controller can be implemented for Pressure, Flow or DO Control.)

Press the down arrow on the screen. The following is the next screen.

KDQ	1	%	
KRQ	50	rpm	6
KDP	0.01	%	
KRP	200	rpm	
KDO	0.1	%	
KRO	50	rpm	menu
SWarm_Time	10	sec	
SWarm_Pct	81	%	
DO_Limit	10.00	ppm	8
DO_Delay_Time	300	sec	

SEVENTH LEVEL OF CONTROL SETUP SCREEN

- KDQ The flow rate deadband range (in percentage) when the blower is operating in Constant Flow mode.
- KRQ The speed adjustment (in RPM) when the blower is operating in Constant Flow mode.
- KDP The discharge pressure deadband range (in percentage) when the blower is operating in Constant Pressure mode.
- KRP The speed adjustment (in RPM) when the blower is operating in Constant Pressure mode.
- KDO The dissolved oxygen (DO) deadband range (in percentage) when the blower is operating in DO Control mode.
- KRO The speed adjustment (in RPM) when the blower is operating in DO Control mode.
- SWarm_Time The amount of the time the blower is kept running at SWarm_Pct.
- SWarm_Pct The speed decrease calculated by percentage at which the blower slows down before shutting down.
- DO_Limit The maximum limit of dissolved oxygen (DO). Once this upper limit is reached, the blower stops.
- DO_Delay_Time The amount of time the PLC waits before re-starting a blower once the actual DO level in the basin has dropped below the required DO level setpoint.

Press the down arrow on the screen. The following is the next screen.

Qvs_Hys (read-only)	5.150		1
Ps_Ts_Max	110	kPa	
Ps_Ts_Min	85	kPa	
UPS_Fail_Delay	30	Sec	- Michi
HF_Delay	60	sec	Men
Change_Filter_Count	1		
Auto Reset Retries	3		
Auto Reset LO Time	60	min	7
Auto Reset Delay	60	sec	

EIGHTH LEVEL OF CONTROL SETUP SCREEN

- Auto Reset Delay The amount of time the PLC waits after a power failure before attempting an automatic reset. The default is 60 seconds.
- Auto Reset LO Time The lock-out (LO) time within which Auto Reset is allowed.
- Auto Reset Retries The maximum number of auto resets with the lock out time.
- Change_Filter_Count The number of filter cleaning intervals before the filter change is required.
- HF_Delay The amount of time the PLC waits to couple the harmonic filter capacitor bank after the blower has reached full speed.
- UPS_Fail_Delay The amount of time the PLC waits to display a warning message after UPS is on battery mode.
- Ps_Ts_Min The lower limit for the ambient pressure. (Generally 85 kPa is set.)
- Ps_Ts_Max The upper limit for the ambient pressure. (Generally 115 kPa is set.)

	0 ^N	
8		
$\langle 0 \rangle \langle 0 \rangle$	×	
4		

2. Warning

A warning occurs when the value of the parameter falls between 95% and 100% (condition of fault occurrence) of a sensor limitation value. The warning code with a message is displayed on the top of the screen while the blower is running.

SAMPLE WARNING MESSAGE

01 Discharge Overpre

The warning message automatically disappears when the actual sensor value drops below 95% of the set level. The warning needs to be resolved to prevent the blower from stopping with a fault. Refer to Advanced Troubleshooting section in O&M manual for troubleshooting the warning.

3. Fault

The blower stops when a fault occurs, and the fault code with a message is displayed on the Main and Blower 3D screens.

SAMPLE FAULT MESSAGE

The reset screen is displayed when the Reset button is pressed on the Menu or Blower 3D screen. A detailed description of the fault message is displayed.

1X	-C	OP:Local	21-Jun-2018	Mode : Const. Speed
10	D11 VFI	D Commi	inication Failu	re
1. 2. 3.	Check Check Replac	the statu the com ce the VF	is of VFD key munication ca D keypad or F	pad and PLC. ble. PLC.
			I	
Γ	Res	et	Fault	Menu

Press the Reset button on the touch screen or the control panel after troubleshooting. The blower is initialized and its status is set Ready after a self-test is performed. The fault must be resolved in order to re-start the blower without any issues. Refer to Advanced Troubleshooting section in O&M manual for troubleshooting the fault.

c. Instrument List

Confidential Information

Greater New Haven APGN500 BOM								
No.	General	TAG	ITEM DESCRIPTION	Manufacturer Part No.	Manufacturer	QT'Y	APGN PART No.	
1	Main	MCCR	480 VAC - MAINS SIDE MOLDED CASE CIRCUIT BREAKER 800A, P-FRAME, 65kA, Micrologic 5.0 Trip Unit (LSI) WITH EXTENDED ROTARY HANDLE	PJF36080U33A-RE10	Schneider	1	ELE05015-0003.0	
2	Wall	HE	Set of Lugs Harmonic Filter with 24VDC Contactor Option	YA600P5 N-738-MAPP0636D(C)	Schneider MTF	6 1	ELE00027-0221.0 TBD	
4			Variable Frequency Drive, 920A Output, 380-500VAC, Alpha-numeric keypad, IP00, No Choke, 6-pulse, water-cooled with Al heatsink,	NXP09205A0N0NWGA1A2+BM37	Vacon	1	TBD	
5		VFD	Uption board with 6DI, 1 DO, 2AI, 1AO, +10Vret, 2 +24VM, and High-Speed Module Dual-Port Ethernet Communication Card	OPTE9-V	Vacon	1	ELE00011-0038.0	
6		SF MTR1	SINE WAVE FILTER, 840A, Liquid-Cooled, 320Hz High-Speed Permanent Magnet Synchronous Motor 350kW with Magnetic Bearings	S3L0840A00-0000 AB350	CTM Magnetics SKF	1	TBD TBD	
8		MBC	Magnetic Bearing Controller with Wide Input Range board, Modbus RTU RS-485 serial interface, Integrated UPS function	150/8-16_M	SKF	1	TBD	
10		W1	THD Board with LEW modules for measuring phase currents, voltage to motor		SKE	2	TBD	
10		W2	LPJ Time-Delay Fuse Class J, 35A, 600VAC	LPJ35SP	Eaton (Bussman)	3	ELE00018-0068.0	
12	Accessories Feeder	F01	Fuse Holder for Class J fuses, Fingersafe	СН60Ј31	Eaton (Bussman)	1	ELE00018-0069.0	
13		PDB	8 Load Connections #8-#14	FSPDB3C	Mersen	3	ELE00016-0037.0	
14 15		SPD1 PMR1	LINE VOLTAGE SURGE PROTECTOR (LVSP) VPU AC II 3 R 480V/50kA PHASE MONITORING RELAY	2591260000 3UG4513-1BR20	Weidmuller Siemens	1	ELE00019-0037.0 ELE00028-0023.0	
16 17	A/C Unit	FU4	Time-Delay Fuse Class CC, 15A, 600VAC	LP-CC-15	Eaton (Bussman)	3	ELE00018-0066.0	
18	.,	ACU	Air Conditioning Unit, 480V, 60Hz, NEMA 4X, 18000 BT/hr	K3NA6C18DP53LV	Kooltronic	1	ELE00000-0153.0	
19 20	BOV/DV Actuators	FU2	Time-Delay Fuse Class CC, 5A, 600VAC Fuse Holder for Class CC fuses, Fingersafe, 30A	LP-CC-5 CHCC3DIU	Eaton (Bussman) Eaton (Bussman)	3	ELE00018-0070.0 ELE00018-0048.0	
21	BOV/DV Actuators	FU3	Time-Delay Fuse Class CC, 5A, 600VAC		Eaton (Bussman)	3	ELE00018-0070.0	
22		FU5	Time-Delay Fuse Class CC, 7A, 600VAC	FNQ-R-7	Eaton (Bussman)	2	ELE00018-0048.0	
24 25	Transformer	5110	Fuse Holder for Class CC fuses, Fingersafe, 30A, with Fuse Blown Indicator time-Delay Fuse Class CC, 20A, 600VAC	CHCC2DIU FNQ-R-20	Eaton (Bussman) Eaton (Bussman)	1	ELE00018-0049.0 ELE00018-0019.0	
26		FU6	Fuse Holder for Class CC fuses with Fuse Blown Indicator	CHCC1DIU	Eaton (Bussman)	1	ELE00018-0055.0	
27		MS2	Motor Starter TeSys Trip range 2.5-4A, 480Y	GV2P08	Schneider	1	ELE03017-0004.0 ELE00015-0072.0	
29 30		M2 MTR2	Motor Contactor TeSys D, 24VDC Cooling Pump Motor (CRIS-4 A-CA-A-E-HQQE 3x230/460 60HZ)	LC1D09BD	Schneider GOULDS	1	ELE00028-0057.0 ELE00038-0007.0	
31		TDVV	TB3 for Cooling Pump	1492-J3	Allen-Bradley	3	ELE00016-0003.0	
32	Pump	IRXX	GROUND BLOCK	1492-JG3	Allen-Bradley	1	ELE00016-0004.0	
33			SCREWLESS END ANCHOR	1492-ERL35	Allen-Bradley	LOT As Reg	ELE00016-0012.0	
34			END BARRIER	1492-EBJ3	Allen-Bradley	LOT	ELE00016-0016.0	
35		IN-FG	IN-FG BUSBAR	8T*40mm (10mm 6POLES, 6mm 2POLES)	NEUROS	As Req. 1	ELE03023-0003.0	
36 37		EX-FG	EX-FG BUSBAR SG BUSBAR SET TO THE BLOWER ENCLOSURE BY THE INSULATION POLES	8T*40mm (10mm 3POLES, 6mm 2POLES)	NEUROS NEUROS	1	ELE03023-0001.0	
38		SG	SG BUSBAR Insulator	DCBH-10	NEUROS	2	ELE00023-0004.0	
39		TB2 FG / RTB FG	TB for LVSP & CTRL. Universal Ground Bar System	UGB2/0-414-6	PANDUIT	2	ELE00023-0003.0	
			[6-port UGB (L= 4.92") 120 VAC - MAINS SIDE					
40 41		SPD2 MS3	SURGE PROTECTIVE DEVICE (SPD) VPU AC II 1 R 150V/50kA Motor Starter TeSvs Trip range 2.5-4A, 480Y	2591660000 GV2ME08	Weidmuller Schneider	1	ELE00019-0038.0 ELE00028-0063.0	
42		M3	Motor Contactor TeSys D, 24VDC	LC1D09BD	Schneider	1	ELE00028-0057.0	
43	PMSM Cooling Fans	FAN1	EC Centritugal Fan, Backward curved, single inlet w housing flange 120VAC, 50/60Hz, 3.2A	G1G170-AB05-20 (55600.01011)	EBM Papst	1	ELE00039-0021.0	
44 45		MS4 M4	Motor Starter TeSys Trip range 2.5-4A, 480Y Motor Contactor TeSys D. 24VDC	GV2ME08	Schneider Schneider	1	ELE00028-0063.0 ELE00028-0057.0	
46		FAN2	EC Centrifugal Fan, Backward curved, single inlet w housing flange	G1G170-AB05-20 (55600.01011)	EBM Papst	1	ELE00039-0021.0	
47	Blow-Off Valve	BOV	I220VAC, 50/60Hz, 3.2A Electric Actuator, On/Off Duty, 480VAC Power, 24VDC Control, with External Backup	TBD	Rotork	1	TBD	
48			Butterfly Valve, Wafer Style, 8", Ductile Iron Body, CF8M Disc, SS 316 STEM and Viton Seat	BF1-125-080-8667	PRATT	1 10T	TBD	
49			Feed-through terminal block for 10AWG wire	1492-J4	Allen-Bradley	As Req.	ELE00016-0019.0	
50	120 VAC	LN	Terminal Block Center Jumper	1492-CJJ6-10	Allen-Bradley	LOI As Req.	ELE00000-0154.0	
51	Terminals	L,IN	End Barrier	1492-ЕВЈЗ	Allen-Bradley	LOT As Reg	ELE00016-0016.0	
52			SCREW END ANCHOR	1492-EAJ35	Allen-Bradley	LOT As Reg.	ELE00016-0001.0	
	For Linkto	CD1	CB for Receptacle	1420 1412020	Allen Dradlau			
54	r or tights	CDI	2A, 1-Pole,Curve D, 277 VAC.		Anen-brauley		LLLUUU13-UUU3.U	
55	For Receptacle	CB2	L& for keceptacie Bull. 1489-M Miniature CB, 5A, 1-Pole, Curve D,277 VAC.	1489-M1D050	Allen-Bradley	1	ELE00015-0036.0	
56	For PWS2	CB3	CB for Receptacle Bull. 1489-M Miniature CB, EA 1 Pale Curre D 373 VAC	1489-M1D050	Allen-Bradley	1	ELE00015-0036.0	
57	For PWS1	CB4	CB for Receptacle Bull. 1489-M Miniature CB,	1489-M1D050	Allen-Bradley	1	ELE00015-0036.0	
58	Panel Lights	111	SA, 1-Pole,Curve D,277 VAC.	8551-NX3	Allen-Bradley	1	ELE00000-0017-0	
59	Panel Lights	LT2	Panel LED Light 90-250 VAC	855L-NX3	Allen-Bradley	1	ELE00000-0017.0	
60 61	Panel Lights	LT3 EMC	Panel LED Light 90-250 VAC EMC Filter	855L-NX3 2856702	Allen-Bradley PHOENIX CONTACT	1 1	ELE00000-0017.0 ELE00019-0040.0	
62		RECPT1	Receptacle Duplex Outlet, 120VAC	1492-REC15G	Allen-Bradley	1	ELE00000-0016.0	
63		PWS1	TRIO-UPS-26/1AC/24DC/10	2907161	PHOENIX CONTACT	1	TBD	
64			UPS Power Storage Device 24VDC; 4Ah	1274117	PHOENIX CONTACT	1	ELE00022-0025.0	
65 66		PWS2 BM	Power Supply, 24VDC, 5A, 120VAC input Redundancy Module for Power Supplies for 10A load	1606-XLE120E	Allen-Bradley	1	ELE00020-0007.0	

	Greater New Haven APGN500 BOM								
No.	General	TAG	ITEM DESCRIPTION	Manufacturer Part No.	Manufacturer	QT'Y	APGN PART No.		
			24 VDC - CONTROLS AND INSTRUMENTS		1				
67	For DC Branch	CB5	CB for Receptacle Bull. 1489-M Miniature CB, 5.a. 1-Pole Curve D. 277, VAC	1489-M1D050	Allen-Bradley	1	ELE00015-0036.0		
68	For PLC Power Supply	FU7	1/4x1-1/4" GLASS FUSE	0312002	LITTELFUSE	1	ELE00018-0008.0		
60	For OIT	5110	2 AMP FAST ACTING 1/4x1-1/4'' GLASS FUSE	0212002		1	ELE00018 0008 0		
09	POLOTI	FU8	2 AMP FAST ACTING 1/4v1.1 /4" (cl.ass.fl)sf	0512002		1	ELE00018-0008.0		
70	For Network Switch	FU9	1 AMP FAST ACTING	0312001	LITTELFUSE	1	ELE00018-0007.0		
71	For NAT/Firewall	FU10	1/4x1-1/4" GLASS FUSE 1 AMP FAST ACTING	0312001	LITTELFUSE	1	ELE00018-0007.0		
72	For DI's	FU11, FU12,	1/4x1-1/4" GLASS FUSE	0312001	LITTELFUSE	4	ELE00018-0007.0		
73	For DO's	FU13, FU14	1/4x1-1/4" GLASS FUSE	0312002		2	FLE00018-0008.0		
/3	101003	F015, F016	2 AMP FAST ACTING	0512002		2	LLL00018-0008.0		
74	For Al's	FU17	1 AMP FAST ACTING	0312001	LITTELFUSE	1	ELE00018-0007.0		
75	For HF & BOV	FU18	1/4×1-1/4" GLASS FUSE 1 AMP FAST ACTING	0312001	LITTELFUSE	1	ELE00018-0007.0		
76	For HF & BOV	FU19	1/4x1-1/4" GLASS FUSE	0312002	LITTELFUSE	1	ELE00018-0008.0		
77	For Fuses		24V DC FUSE BLOCK	1492-H5	Allen-Bradley	13	ELE00018-0010.0		
78	For Fuses	FUXX	FUSE BLOCK END BARRIER	1492-N37	Allen-Bradley	LOT As Reg.	ELE00018-0005.0		
79			RELAY 24V DC COIL	700-HF32Z24-4	Allen-Bradley	1	ELE00028-0002.0		
80 81	PLC On/Off	CR30	RELAY BASE	700-HN116 700-HN114	Allen-Bradley Allen-Bradley	1	ELE00028-0003.0 ELE00028-0004.0		
82	Output Relays	CR2CR29	PLC RELAYS	700-HLT1Z24	Allen-Bradley	28	ELE00028-0001.0		
83		Pd	DISCHARGE PRESSURE SENSOR 0-1.5kg/cm2	PSCH01.5KCIG	SENSYS	1	ELE00024-0004.0		
84 85		tpPd	TOTAL PACKAGE PRESSURE DROP SENSOR 0-0.05Bar	PSCH0.05BCIG	SENSYS	1	ELE00024-0005.0		
86		aP	ATMOSPHERIC PRESSURE SENSOR 120kPa	PSCH0120RCIJ	SENSYS	1	ELE00024-0017.0		
87 88		Ts Td	INLET TEMPERATURE RTD SENSOR	DS 4680 120L	OMEGA	1	ELE00024-0011.0 ELE00024-0011.0		
89		PU,PI,TIII	SISCHARGE TERM ERRORE AND SENSOR	8761 060500	BELDEN	LOT	ELE00021-0076.0		
		Allig Sells		8701000500		As Req.	LLL00021-0070.0		
90		RTD-CBL	PFA with Shield Insulation	EXTT-3CUI-26S-SB	OMEGA	As Req.	ELE00021-0058.0		
91		PLC	COMPACT LOGIX CPU UNIT	1769-L33ER	Allen-Bradley	1	ELE00032-0022.0		
92			PLC POWER SUPPLY	1769-PB4	Allen-Bradley	1	ELE00020-0009.0		
94			DIGITAL OUTPUT MODULE	1769-OB32	Allen-Bradley	1	ELE00032-0009.0		
95			ANALOG INPUT MODULE	1769-IF8	Allen-Bradley	1	ELE00032-0018.0		
96 97			RTD INPUT MODULE	1769-IR6	Allen-Bradley	1	ELE00032-0002.0		
98			RIGHT-END CAP	1769-ECR	Allen-Bradley	1	ELE00032-0004.0		
99		MBS	Ethernet/IP to Modbus RTU Converter	MV169-MNETC	Prosoft	1	ELE00030-0067.0		
100		OIT	- 10 inch Touch Interface	2711P-T10C22D9P	Allen-Bradley	1	ELE00030-0044.0		
101			16 GB Metal Executive USB Flash Drive	98748	Verbatim	1	ELE00030-0056.0		
102		SCBL-1	Patch cable, CAT6, pre-assembled, 5.0 m	Order No. 2891783	PHOENIX CONTACT	1	ELE00021-0062.0		
			Network Switch to VFD-1						
103		SCBL-2	Patch cable CAT 6 pre-assembled 0.5 m long	FL CAT6 PATCH 0,5 Order No. 2891288	PHOENIX CONTACT	1	ELE00021-0045.0		
			Network Switch to PLC						
104		SCBL-3	Patch cable CAT 6 pre-assembled 0.5 m long	FL CAT6 PATCH 0,5 Order No. 2891288	PHOENIX CONTACT	1	ELE00021-0045.0		
			PLC to Ehternet/IP- Modbus RTU Converter Comm. System Cable						
105		SCBL-4	Patch cable CAT 6 pre-assembled 1.0 m long	Order No. 2891385	PHOENIX CONTACT	1	ELE00021-0044.0		
			MBC toEhternet/IP- Modbus RTU Converter Comm. System Cable	EL CATE PATCH 1.0					
106		SCBL-5	Patch cable CAT 6 pre-assembled 1.0 m long	Order No. 2891385	PHOENIX CONTACT	1	ELE00021-0044.0		
			Network Switch to OIT Comm. System Cable	FL CAT6 PATCH 1.0					
107		SCBL-6	Patch cable CAT 6 pre-assembled 1 m long	Order No. 2891385	PHOENIX CONTACT	1	ELE00021-0044.0		
			Network Switch to Ehternet Maintance Port Comm. System Cable						
108		SCBL-7	Patch cable CAT 6 pre-assembled 0.5 m long	FL CAT6 PATCH 0,5 Order No. 2891288	PHOENIX CONTACT	1	ELE00021-0045.0		
109		NAT/Firewall	Network Switch to NAT/FIREWALL Router with Network Address Translation Feature	ICR-3201			FLE00026-0052.0		
110		NWS	NETWORK SWITCH, 8-PORT	FL SWITCH SFN 8TX_	PHOENIX CONTACT	1	ELE00026-0026.0		
111		START-PB1	Momentary, Illuminated, Flush Push Button Green.	800FP-LF3	Allen-Bradley	1	ELE00029-0001.0		
112			Integrated LED Module; Green, 24V AC/DC Ring Lug	800F-N3G 800FP-I F4	Allen-Bradley	1	ELE00029-0002.0		
113		STOP-PB2	Integrated LED Module; Red, 24V AC/DC Ring Lug	800F-N3R	Allen-Bradley	1	ELE00029-0005.0		
115		RESET-PB3	Momentary, Illuminated, Flush Push Button Yellow.	800FP-LF5	Allen-Bradley	1	ELE00029-0009.0		
116			Integrated LED Module; White, 24V AC/DC Ring Lug	800F-N3W 800FP-MT34	Allen-Bradley	1	ELE00029-0020.0		
11/		E-STOP-PB4	Emergency Stop Legend Plate	900E 1EVC E113			ELE00023-0013.0		
118			w/Text - EMERGENCY STOP	0000-1010-112	Allen-Bradley	1	ELEUUU29-0017.0		
119		OFF/ON-SS1	2-Position Selector Switch Operator, Illuminated, Red.	800FP-LSM24	Allen-Bradley	1	ELE00029-0018.0		
120		,	24V AC/DC Ring Lug	800F-N3R	Allen-Bradley	1	ELE00029-0006.0		
		START-PB1;							
121		RESET-PB3;	Plastic Mounting Latch	800F-ALP	Allen-Bradley	5	ELE00029-0003.0		
		E-STOP-PB4;							
		UFF/UN-SS1; START-PB:							
		STOP-PB;							
122		RESET-PB; F-STOP-PB	Contact Block N.O.	800F-X10	Allen-Bradley	5	ELE00029-0004.0		
		OFF/ON-SS;							
123		E-STOP-PB4	Contact Block N.C. BI45_CAT6 Ethernet counter	800F-X01 09 45 452 1560	Allen-Bradley HARTING	1	ELE00029-0016.0 ELE00030-0015.0		
125		ETH PORT		09.45.502.0005	HARTING	1	ELE00030-0016-0		
125			Door on , harport motes now cover indo/or inAngrAnent	103 13 302 0003		1 ¹	EEE00030-0010.0		

DUST CAP, har-port PROTECTION

	2				1		-
							Н
							-
							G
							_
INAL BOARD)		Jan-21-2022	2 De	esign	A-00	
GRAM			Jan-21-2022	2 De	esign	A-00	F
DULE & ANA	LOG OUTPL	JT	Jan-21-2022	2 De	esign	A-00	
2			Jan-21-2022	2 De	esign	A-00	╞
1			Jan-21-2022	2 De	esign	A-00	
JT			Jan-21-2022	2 De	esign	A-00	E
			Jan-21-2022	2 De	esign	A-00	
DISTRIBUTIO	DN		Jan-21-2022	2 De	esign	A-00	_
LOW VOLTA	GE		Jan-21-2022	2 De	sign	A-00	
ASE LOADS	;		Jan-21-2022	2 De	esign	A-00	D
MOTOR			Jan-21-2022	2 De	sign	A-00	
			.lan-21-2022	> De	sian	A-00	-
			lan 21 2022			A 00	
011555 5			Jan-21-2022			A-00	С
SHEET TI	TLE		REV. DATE	ST	AGE	REV.	
							_
DE	SCRIPTION	REVISIONS	DATE DRA	AW I	CHECKED	APP'D.	В
0	OJECT XX-	·YYYY Gi	reater New	Have	n, CT	1	
eures	APG	N500 NT PAGE					╞
PR	OJECT NO: N/	A DR	awing no: N/A	\		REV: A-00	
DE Se noted : MC	SIGNED/ DIFIED BY:	P. Maillou	x	DATE	Jan-2	1-2022	Δ
RE IN IN/MM CH	HECKED BY:	P. Maillou	x	DATE	Jan-2	1-2022	
e property of Information	AWN BY:	A. Khoury	,	DATE	Jan-2	1-2022	
hereon are may not be le or in part	PROVED BY:	P. Maillou		DATE	Jan-2	1-2022	
-Neuros Inc. FILI	L NAWE.AATTYY	Creator New HaVe	., or aronouu.awg		1	UU	

	10	9	8	7	6	5	4	3
_								
G							4	.6
_							N'	
F							ON C	5
								٢
_								
E				PAGE LE	FT BLAN	K INTEN	TIONALLY	,
_					24			
D					O'	$\mathcal{O}_{\mathcal{I}}$		
_				4,)		
С				P	2			
_				O^{C}				
				X				
B				O				REV.
_								
A				4			5 4 3 2	UNLESS DTHERW ALL DIMENSIONS A PROJECTION
		1		A-00 Jan-21-2022 Released for REV DATE DESCRIPTIO	Approval DN	Andreh Khoury DRAW	Patrick Mailloux, ing. 1 VERIFY No.	JOB #
	10	9	8	7	6	5	4	3

1	2			1		
						H
0V to 1218 AQ1+ to 1218	FEEDBAC F	< 1+				G
0V to 1220 AQ2+ to 1219	FEEDBAC F	< 2+				F
0V to 1222 AQ3+ to 1221	FEEDBAC #	< 3+				E
0V to 1223						D
AQ4+ to 1222	FEEDBAC	 3+ PREWIREL PROCESS THROUGH ANY OF THE SCA SPEED DISCHAI FLOW POWER FILTER SUCTION DISCHAI NONE THIS DAT) ANALOG OU' DATA. EACL I THE HMI BY THE FOLLOWIN DA: RGE PRESSURI PRESSURE DR N TEMPERATUR RGE TEMPERATUR A ALSO AVAIL	IPUTS FOR I CONFIGURAB USER TO SE IG DATA TO E OP RE TURE ABLE VIA ETI	ILE ND	C
eures	DESCRIPTION PROJECT : XX- APG TITLE : RTD	REVISIONS DATE YYYY Greate N500 INPUT MOD	DRAW Per New Ha	ven, CT	APP'D.	B
SE NUTED : E IN IN/MM Deproperty of Information arecon are may not be e or in part e written - Neuros inc	PROJECT NO: N/A DESIGNED/ MODIFIED BY: CHECKED BY: DRAWN BY: APPROVED BY: FILE NAME:XXYYYY	A DRAWING P. Mailloux P. Mailloux A. Khoury P. Mailloux Greater New Haven, CT A	NO: N/A	E Jan-21- E Jan-21- E Jan-21- E Jan-21- PAG	REV: A-00 2022 2022 2022 2022 2022 E: 10	A
	2			I		

a. Expected Electrical demand at 100% load

Blower electrical demand (input) at 100% load: 435kW/483kVA/583HP/581A.

Confidential Information

b. Components with a separate power supply (Other than 480V)

A 120VAC/15A source is required for the blower Master Control Panel.

Confidential Information

c. Electrical Equipment Details

Confidential Information

1. Electrical Cut Sheets

Confidential Information

AFD **Confidential Information** Page 79

> APG – Neuros 1270, Michele-Bohec Blainville, Québec, Canada, J7C 5S4 Tel : (450) 939-0799, www.apg-neuros.com

ENGINEERING TOMORROW

Selection Guide | VACON® NXP Liquid Cooled | 7.5 kW - 5.3 MW

Robust, silent and space-saving control for all drive needs in demanding applications

5

Up to **25%** savings in total life cycle costs compared to air cooled solutions

drives.danfoss.com | VACON°

VACON

Quiet. Compact. Cool.

VACON® NXP Liquid Cooled AC drives are the ultimate in space-saving, high power density AC drives. They are well suited for locations where air-cooling is difficult, expensive or impractical such as onboard ships or in locations affected by altitude, or simply where installation space is at a premium. Their robust, modular design makes the VACON® NXP a suitable platform for all drive needs in demanding applications and are available in the power range from 7.5 to 5300 kW at 380-690 VAC supply voltages.

Power packed

As no air ducts are required, liquid cooled drives are extremely compact and suitable for a wide variety of heavy industries with harsh operating conditions such as marine & offshore, pulp & paper, renewable energy and mining & metal.

Thanks to the high degree of protection (IP54) achieved with these drives, they can be installed almost anywhere in the plant or vessel. This eliminates the load on the air-conditioning system in the electrical rooms – an important cost and space consideration in many retrofit applications. And since liquid cooled drives do not require large cooling fans, they are also among the most silent AC drives on the market.

We are committed to providing you with the ultimate in high power density. VACON® NXP liquid cooled products have one of the best power/ size ratios on the market. For example, our compact 12 pulse, 1.5MW drive includes a built-in rectifier, inverter and optional brake all in the same package, and all this can be mounted in an 800 mm wide enclosure.

Our liquid cooled range offers the ultimate in motor control, for both

induction and permanent magnet motors, gearless drive applications and paralleling solutions for high power motors.

Certification and grid expertize

Our VACON® NXP liquid cooled portfolio fulfills all relevant international standards and global requirements, including marine, safety and EMC & Harmonics approvals. VACON® NXP liquid cooled AC drives can be used in regenerative energy and smart grid applications, which ensures customers can effectively monitor and control energy use and costs.

Typical segments

- Marine and offshore
- Renewable energy

- Mining and metals
- Water and wastewater
- Energy management
- Pulp and paper
- Oil and gas
- Machine building

Saving fuel at sea

In the highly competitive marine segment, increased demand for efficiency is the main reason for using AC drives in fan, winch, propulsion, and various special applications across all vessel types, from large luxury liners and cargo ships to tugboats.

What's in it for you

Minimizes investment and operation costs

Saves time and money

Compact and easy to install

Virtually silent operation

Benefits

- Compact size and high power density
- No large air conditioning systems needed as state-of-the-art liquid cooled AC drive design allows heat loss to be transferred to the most convenient place with no need for vast amounts of filtered air
- Easy to adapt to various uses due to ready-to-use applications
- Flexible and scalable system for additional I/O, fieldbus and f unctional safety boards with five built-in expansion slots
- Silent operation due to eliminated need for large cooling fans

Typical applications

- Propeller and thrusters systems
- Compressors
- Wind turbines
- Extruders

- Pumps and fans
- Test bench systems
- Cranes and winch systems
- Power conversion systems
- Production lines
- Oil rigs
- Crushers
- Conveyors

The liquid way to stay cool

VACON® NXP Liquid Cooled AC drives have been pioneering for more than a decade in demanding industries with a proven track record of highly reliable products. We have succesfully mitigated the common risks of leakage and reliability in our product design.

Climate considerations

When comparing cooling technology solutions, it is important to understand the effects on the infrastructure of the electrical room, and the room's requirements. Additional comparison parameters are the geographical location, relevant industry and process.

In warm climates it is extremely important to observe the amount of heat load transferred to the electrical room because of its indirect effect on electrical energy consumption.

The type-tested switchgears standard EN 60439-1 specifies that the electrical room's 24-hour average temperature should be below +35 °C and the maximum temporary temperature cannot exceed +40 °C. As a result, the cooling system in electrical rooms is typically comprised of air conditioning chillers, which are dimensioned according to the maximum heat load, the temperature inside the electrical room and the maximum temperature outdoors. The typical electrical energy consumption of air conditioning is approx. 25-33% of the cooling power.

The higher the power, the greater the savings

In many cases liquid cooled drives are the most cost-effective option, simply due to the fact that there is no need for additional air conditioning capacity or extra ventilation for the areas in which they are used. The related savings enable shorter payback times and the higher the power, the greater the savings potential.

The continuously growing cost of energy certainly supports a wider use of liquid cooled drives technology, and the number of installations is growing rapidly.

VACON® AC drives are designed to provide proven performance in demanding environments. Our drives are serving the wind energy industry globally with a combined installed capacity of almost one gigawatt.

Exclusively designed for liquid cooling

Many other liquid cooled drives on the market are based on modifications of an air cooled drive, rather than exclusively designed for the purpose. The VACON® NXP Liquid Cooled dissipates only 0.1 -0.15% of its heat losses to air.* A state-of-the-art cooling heatsink enables the cooling efficiency of the components to be higher than ever.

Cooling technology advantages

Up to **25%** savings in total life cycle costs compared to air cooled solutions

20dBA less noise than air

cooled drive

25% smaller unit can deliver the same or better performance

*400 kW, 690 VAC liquid cooled drive

Extensive portfolio of liquid cooled drive modules

Significant energy savings and optimal performance can be achieved with the right configuration. Liquid cooled AC drives can be used in a multitude of combinations – from a single dedicated frequency converter to large-scale Common DC bus systems.

Dedicated frequency converter

The VACON® NXP Liquid Cooled drives are available as 6- or 12-pulse frequency converters. In addition, our largest unit, the CH74, can also be used as an 18-pulse converter. The AC drive consists of a power unit, control unit and possibly one or more input chokes.

An internal brake chopper is available as standard for our smallest unit CH3. For CH72 (only 6-pulse) and CH74, it is available as internal option while in all other sizes the brake chopper is available as an option and installed externally.

Front-end units

The front-end units convert a mains AC voltage and current into a DC voltage and current. The power is transferred from the mains to a common DC bus and, in certain cases, vice versa.

Active front-end (AFE)

The AFE unit is a bi-directional (regenerative) power converter (supply unit) for the front-end of a common liquid cooled DC bus drive line-up. An external LCL filter is used at the input. This unit is suitable for applications where a low level of mains harmonics and high power factor are required. AFE units can operate in parallel to provide increased power and/or redundancy without any drive to drive communication between the units. AFE units can also be connected to the same fieldbus with inverters, and controlled and monitored via fieldbus. Fuses, LCL filters, pre-charging rectifiers and resistors can be specified and ordered separately.

The LCL filter guarantees that harmonics are not an issue in any network. With a power factor > 0.99 and low harmonics, the supply chain transformers, generators, etc. can be sized very accurately without reserving margins for the reactive power. This can mean a saving of 10% in supply chain investments. Likewise the payback time is faster as regenerative energy is fed back to the grid.

Non-regenerative front-end (NFE)

The NFE unit is an unidirectional (motoring) power converter for the front-end of a common DC bus drive line-up. The NFE is a device that operates as a diode bridge. A dedicated external choke is used at the input. This unit is suitable as a 6 or 12 pulse rectifying device when a normal level of harmonics is accepted and no regeneration to the mains is required. NFE units can be paralleled to increase power without any drive to drive communincation between the units.

Inverter unit (INU)

The INU is a bidirectional DC-fed power inverter for the supply and control of AC motors. The INU is supplied from a common DC bus drive line-up. A charging circuit is needed in case a connection to a live DC bus is required. The DC-side charging circuit is external for inverter types.

Pre-charging resistors and switches or fuses are not included in an INU delivery and must be specified and ordered separately.

Brake chopper unit (BCU)

The BCU is a unidirectional power converter for the supply of excessive energy from a common DC bus drive line-up or big AC drive to resistors where the energy is dissipated as heat. External resistors are required. However, resistors or fuses are not included in a BCU delivery and can be specified and ordered separately.

BCU's improve a drive's dynamic performance in a regenerative operating point and protect common

DC bus voltage level from overvoltage. In some cases they also reduce the need for AFE investments.

VACON® NXP Liquid Cooled Enclosed drive

The low harmonic and regenerative VACON® NXP Liquid Cooled Enclosed Drives range has been developed especially with ease of use in mind. Packed full of features, these fully standardized, compact and robust AC drives with a full power range help maximize the utilization of space while minimizing overall costs.

These enclosed drives are the ideal solution for applications and locations where space is at a premium. The sturdy cabinet makes it ideal for harsh environments. See technical ratings and dimensions on page 19 for further information.

High power density

VACON® NXP Liquid Cooled Enclosed Drive can be used with AC motors in power sizes from 800–1550 kW. However, using the patented VACON® DriveSynch control concept, four enclosed drives can be run in parallel taking the power range up to an outstanding 5 MW.

Fast installation

VACON® NXP Liquid Cooled Enclosed Drives are pre-designed and engineered. That means they're good to go as soon as you receive them. Simply connect to the cooling system and the power and motor supplies. Being liquid cooled, the product is virtually silent and you'll have greater flexibility with where to put it. You don't have to worry about leaving space for air flow, and you'll save on air-conditioning energy costs.

Packed with cool performance

The enclosed unit comes equipped with the same advantages of efficient and quiet cooling performance as the rest of the VACON® NXP product family. When we say that this product is liquid cooled, we are talking about the entire product. The modules and also all its main components, such as LCL and dU/ dt filters, are liquid cooled as standard. The reliable heat exchanger is offered as an option to provide a worry-free life cycle for the product.

You can also enjoy the same fast commissioning with the aid of the easy to use Startup Wizard. The slide-out racks provide easy access for maintenance. Leakage indicators alert the operator to any potential issues in the cooling system.

A solution for all your needs

12

We provide enclosed solutions to any segment and application. And while we focus on the drives, you can concentrate on your performance.

Eliminate production disturbances

Continuous energy supply is important to ensure your processes are optimized. Distortions in the energy supply, caused by the presence of harmonic currents and voltages, can trigger equipment disturbances and create energy losses. VACON® front-end drives with low harmonic technology maintain a constant energy supply and eliminate the disruption harmonics can cause to production.

Benefits

- Saves floor space and infrastructure needs
- Saves time and money in installation

Advanced monitoring

The VACON[®] NXP Liquid Cooled Enclosed Drive's built-in Fieldbus interface communicates effectively with your process automation system. This reduces the need for cabling and gives you increased monitoring and control of process equipment.

Safety is a given

One of the most visible features of the enclosed product is the integrated main breaker switch. This simple on/off switch quickly and easily disconnects and activates the power supply as and when necessary.

- Faster and easier servicing
- Improves safety
- Enhances reliability

- Low harmonic input
- Virtually silent operation

Key features

- Optimized design with power range up to 5 MW
- All standard protection components included
- Silent design with no large cooling fans needed
- Slide-out feature
- Leakage detector

- AFE technology
- Pre-engineered solution with all-liquid-cooled design (including filters)
- Cooling system monitoring
Multiple options

VACON[®] NXP control

High-performance control platform for all demanding drive applications

- Excellent processing and calculation power
- Supports induction and permanent magnet motors
- Maximum utilization of control features over wide power and voltage range
- Built-in PLC functionality
- Integration of customer-specific functionalities
- Bumpless transfer between open loop and closed loop control

Option boards

VACON[®] NXP control provides exceptional modularity

- 5 plug-in extension slots
- Fieldbus boards
- Encoder boards
- IO boards
- Easy plug-in without need to remove other components

Fieldbus options

Easy integration with plant automation systems

- PROFIBUS DP
- DeviceNet[™]
- Modbus RTU
- CANopen

Ethernet connectivity

Ethernet connectivity allows remote drive access for monitoring, configuring and troubleshooting

- Modbus/TCP
- PROFINET IO
- EtherNet/IP™
- EtherCAT

Functional safety and reliability

Safe Torque Off (STO)

Available for all VACON® NXP drives

- Prevents drive from generating torque on motor shaft
- Prevents unintentional start-ups
- Corresponds to an uncontrolled stop
- In accordance with stop category 0, EN60204-1

Safe Stop 1 (SS1)

Available for all VACON® NXP drives

- Initiates motor deceleration
- Initiates STO function after application specific time delay
- Corresponds to an uncontrolled stop
- In accordance with stop category 1, EN60204-1

Advanced Safety Options

Support more safety functions Safe Stop functions::

- STO Safe Torque Off
- SS1 Safe Stop 1
- SS2 Safe Stop 2
- SBC Safe Brake Control
- SQS Safe Quick Stop

Safe Speed functions:

- SLS Safely-limited Speed
- SSM Safe Speed Monitor
- SSR Safe Speed Range
- SMS Safe Maximum Speed

Conformal coating

- Conformal coated circuit boards as standard
- Improved performance
- Increased durability
- Reliable protection against dust and moisture
- Extended lifetime of drive and components

ATEX- certified thermistor input

Especially designed for motor temperature supervision

- Stops feeding energy to motor in case of over-heating
- Certified and compliant with the European ATEX directive 94/9/EC

Commissioning made easy

User-friendly keypad

- Removable panel with plug-in connection
- Graphical and text keypad with multiple language support
- Text display multi-monitoring function
- Parameter backup and copy function with the panel's internal memory
- The startup wizard ensures a hassle-free set up

Software modularity

- All-in-One application package
- Seven built-in software applications

Several segment-specific and advanced applications such as:

System Interface

- Marine
- and much more

For setting, copying, storing, printing, monitoring and controlling parameters

Includes handy Datalogger function

Track failure modes & perform root cause analysis

Communicates with drive via:

- RS232
- Ethernet TCP/IP
- CAN (fast multiple drive monitoring)
- CAN@Net (remote monitoring)

Independent paralleling

Our patented independent paralleling configuration of front-end (AFE) units:

- Offer high redundancy
- Eliminate need for drive-to-drive communication
- Enables automatic load sharing

VACON® NCDrive

Dedicated applications

Intelligent system interfaces for heavy industries

VACON® System Interface Application (SIA) provides a flexible and extensive interface for use in coordinated drives, which have an overriding control system. VACON® SIA utilizes the most advanced functions of our VACON® NXP motor control software and is suitable for demanding drive systems such as those in the pulp & paper and metal industries, processing lines as well as many other standard applications.

Benefits

- Power extension with VACON® DriveSynch
- Master Follower functions for torque sharing
- Freely configurable PLC logic

Dedicated marine application

Our Marine Application provides flexibility and performance across all marine segment applications. VACON[®] Liquid Cooled drives bring many benefits to this segment in particular such as energy efficiency, improved process availability due to high redundancy, better process quality and control, as well as silent operation and substantially reduced emissions.

Benefits

- Black Out prevention logic
- Cost savings in electric propulsion system
- State-of-the-art load sharing and load trooping

VACON® NXP Grid Converter

The VACON® NXP Grid Converter is a solution that improves energy efficiency and environmental performance in marine industry use. It enables ships to source energy from local grids on shore, allowing for the ship's main generators to be completely switched off.

Benefits

- Reduces fuel consumption and emissions
- Reduces noise and vibrations

High power and improved redundancy

VACON[®] DriveSynch is a patented control concept for running standard drives in parallel to control high-power AC motors or increase the redundancy of a system. This concept suits high power single or multiple winding motors, typically above 1 MW. High power AC drives above 5 MW can be built using standard drive components.

Benefits

- System redundancy is higher than in a conventional drive because each unit can run independently
- Identical units and standard modules reduce overall costs by reducing need for spares and specialist skills in engineering, installation, commissioning and maintenance

* Fiber optic link

Liquid to liquid heat exchangers

We have a range of cooling units based on liquid-to-liquid heat exchangers (HX), which improve the availability and usability of AC drive systems. The cooling units belong to the liquid cooled VACON® NXP range and offer reliable and cost-effective cooling without ventilation concerns. The heat exchanger is a pre-designed, pre-tested and fully functional package that ensures safety and reliability.

0

Intelligent system interfaces for heavy industries

- Self-supporting module rack construction
- Cooling circuit equipped with threaded joints or flanges
- Heavy industry, stainless steel
- Industrial water heat exchanger, three-way-valve, pump, AC drive
- Flow and pressure sensors

- Stainless steel AISI piping
- Two-way-valve
- Heat exchanger installed inside a Rittal TS8 or VSG VEDA 5000 cabinet
- Double pumps for marine class requirements, types 120 kW and 300 kW

Ratings and dimensions

		Dri	ve out	put	Motor	shaft	-			
AC drive type 6-pulse	AC drive type 12-pulse	Ther- mal I _{th} [A]	Rated cont. I _L [A]	Rated cont. I _H [A]	Opti- mum motor at I _{th} (400 V) [kW]	Opti- mum motor at I _{th} (500 V) [kW]	Power loss c/a/T*) [kW]	Chassis	Choke type 6-pulse*	Choke type 12-pulse
NXP00165A0N1SWS		16	15	11	7.5	11	0.4/0.2/0.6	CH3	CHK0023N6A0	
NXP00225A0N1SWS		22	20	15	11	15	0.5/0.2/0.7	CH3	CHK0023N6A0	
NXP00315A0N1SWS		31	28	21	15	18.5	0.7/0.2/0.9	CH3	CHK0038N6A0	
NXP00385A0N1SWS		38	35	25	18.5	22	0.8/0.2/1.0	CH3	CHK0038N6A0	
NXP00455A0N1SWS		45	41	30	22	30	1.0/0.3/1.3	CH3	CHK0062N6A0	\mathbf{C}
NXP00615A0N1SWS		61	55	41	30	37	1.3/0.3/1.5	CH3	CHK0062N6A0	
NXP00725A0N0SWS		72	65	48	37	45	1.2/0.3/1.5	CH4	CHK0087N6A0	
NXP00875A0N0SWS		87	79	58	45	55	1.5/0.3/1.8	CH4	CHK0087N6A0	
NXP01055A0N0SWS		105	95	70	55	75	1.8/0.3/2.1	CH4	CHK0145N6A0	
NXP01405A0N0SWS		140	127	93	75	90	2.3/0.3/2.6	CH4	CHK0145N6A0	
NXP01685A0N0SWS		168	153	112	90	110	4.0/0.4/4.4	CH5	CHK-0261-6-DL	
NXP02055A0N0SWS		205	186	137	110	132	5.0/0.5/5.5	CH5	CHK-0261-6-DL	
NXP02615A0N0SWS		261	237	174	132	160	6.0/0.5/6.5	CH5	CHK-0261-6-DL	
NXP03005A0N0SWF		300	273	200	160	200	4.5/0.5/5.0	CH61	CHK-0400-6-DL	
NXP03855A0N0SWF		385	350	257	200	250	6.0/0.5/6.5	CH61	CHK-0400-6-DL	
NXP04605A0N0SWF	NXP04605A0N0TWF	460	418	307	250	315	6.5/0.5/7.0	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP05205A0N0SWF	NXP05205A0N0TWF	520	473	347	250	355	7.5/0.6/8.1	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP05905A0N0SWF	NXP05905A0N0TWF	590	536	393	315	400	9.0/0.7/9.7	CH72	CHK-0650-6-DL	2 x CHK-0400-6-DL
NXP06505A0N0SWF	NXP06505A0N0TWF	650	591	433	355	450	10.0/0.7/10.7	CH72	CHK-0650-6-DL	2 x CHK-0400-6-DL
NXP07305A0N0SWF	NXP07305A0N0TWF	730	664	487	400	500	12.0/0.8/12.8	CH72	CHK-0750-6-DL	2 x CHK-0400-6-DL
NXP08205A0N0SWF		820	745	547	450	560	12.5/0.8/13.3	CH63	CHK-0820-6-DL	
NXP09205A0N0SW		920	836	613	500	600	14.4/0.9/15.3	CH63	CHK-1030-6-DL	
NXP10305A0N0SWF		1030	936	687	560	700	16.5/1.0/17.5	CH63	CHK-1030-6-DL	
NXP11505A0N0SWF		1150	1045	766	600	750	18.5/1.2/19.7	CH63	CHK-1150-6-DL	
NXP13705A0N0SWF	NXP13705A0N0TWF	1370	1245	913	700	900	19.0/1.2/20.2	CH74	3 x CHK-0520-6-DL	2 x CHK-0750-6-DL
NXP16405A0N0SWF	NXP16405A0N0TWF	1640	1491	1093	900	1100	24.0/1.4/25.4	CH74	3 x CHK-0650-6-DL	2 x CHK-0820-6-DL
NXP20605A0N0SWF	NXP20605A0N0TWF	2060	1873	1373	1100	1400	32.5/1.8/34.3	CH74	3 x CHK-0750-6-DL	2 x CHK-1030-6-DL
NXP23005A0N0SWF		2300	2091	1533	1250	1500	36.3/2.0/38.3	CH74	3 x CHK-0820-6-DL	
NXP24705A0N0SWF	NXP24705A0N0TWF	2470	2245	1647	1300	1600	38.8/2.2/41.0	2 x CH74	6 x CHK-0520-6-DL	4 x CHK-0650-6-DL
NXP29505A0N0SWF	NXP29505A0N0TWF	2950	2681	1967	1550	1950	46.3/2.6/48.9	2 x CH74	6 x CHK-0520-6-DL	4 x CHK-0750-6-DL
NXP37105A0N0SWF	NXP37105A0N0TWF	3710	3372	2473	1950	2450	58.2/3.0/61.2	2 x CH74	6 x CHK-0650-6-DL	4 x CHK-1030-6-DL
NXP41405A0N0SWF	NXP41405A0N0TWF	4140	3763	2760	2150	2700	65.0/3.6/68.6	2 x CH74	6 x CHK-0750-6-DL	4 x CHK-1150-6-DL
2 x NXP24705A0N0SWF	2 x NXP24705A0N0TWF	4700	4300	3100	2450	3050	73.7/4.2/77.9	4 x CH74	12 x CHK-0520-6-DL	8 x CHK-0650-6-DL
2 x NXP29505A0N0SWF	2 x NXP29505A0N0TWF	5600	5100	3700	2900	3600	88/5/93	4 x CH74	12 x CHK-0520-6-DL	8 x CHK-0750-6-DL
2 x NXP37105A0N0SWF	2 x NXP37105A0N0TWF	7000	6400	4700	3600	4500	110.6/5.7/116.3	4 x CH74	12 x CHK-0650-6-DL	8 x CHK-1030-6-DL
2 x NXP41405A0N0SWF	2 x NXP41405A0N0TWF	7900	7200	5300	4100	5150	123.5/6.9/130.4	4 x CH74	12 x CHK-0750-6-DL	8 x CHK-1150-6-DL

l_{th} = Thermal maximum continuous RMS current. Dimensioning can be done according to this current if the process does not require any overloadability or the process does not include any load variation or margin for overloadability.

 I_L = Low overloadability current. Allows +10% load variation. 10% exceeding can be continuous.

 $I_{\rm H}$ = High overloadability current. Allows +50% load variation. 50% exceeding can be continuous.

All values with $\cos \phi = 0.83$ and efficiency = 97%

If some other mains voltage is used, apply the formula P = $\sqrt{3}$ x Un x In x cos ϕ x eff% to calculate the NX Liquid-Cooled drive output power.

The enclosure class for all NX Liquid-Cooled AC drives is IP00.

If the motor is continuously run at frequencies below 5 Hz (besides start and stop ramps), please pay attention to the drive dimensioning for low frequencies, i.e. maximum $I = 0.66* I_{th}$ or choose drive according to I_{H} . It is recommended to check the rating with your distributor or Vacon.

Drive overrating may also be necessary if the process requires high starting torque.

CH3 and CH4 have air cooled choke as standard. CH5 and above have Liquid cooled choke as standard and air cooled choke as option.

^{*)} c = power loss into coolant; a = power loss into air; T = total power loss; power losses of input chokes not included. All power losses obtained using max. supply voltage, Ith and switching frequency of 3.6 kHz and Closed Loop control mode. All power losses are worst case losses.

VACON® NXP Liquid Cooled AC drives, 6-pulse and 12-pulse, mains voltage 525-690 VAC

		Dri	ve out curren	put t	Motor pov	shaft ver				
AC drive type 6-pulse	AC drive type 12-pulse	Ther- mal I _{th} [A]	Rated cont. I _L [A]	Rated cont. I _H [A]	Opti- mum motor at I _{th} (525 V) [kW]	Opti- mum motor at I _{th} (690 V) [kW]	Power loss c/a/T*) [kW]	Chassis	Choke type 6-pulse	Choke type 12-pulse
NXP01706A0T0SWF		170	155	113	110	160	4.0/0.2/4.2	CH61	CHK-0261-6-DL	
NXP02086A0T0SWF		208	189	139	132	200	4.8/0.3/5.1	CH61	CHK-0261-6-DL	
NXP02616A0T0SWF		261	237	174	160	250	6.3/0.3/6.6	CH61	CHK-0261-6-DL	
NXP03256A0T0SWF	NXP03256A0T0TWF	325	295	217	200	300	7.2/0.4/7.6	CH72	CHK-0400-6-DL	2 x CHK-0261-6-DL
NXP03856A0T0SWF	NXP03856A0T0TWF	385	350	257	250	355	8.5/0.5/9.0	CH72	CHK-0400-6-DL	2 x CHK-0261-6-DL
NXP04166A0T0SWF	NXP04166A0T0TWF	416	378	277	250	355	9.1/0.5/9.6	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP04606A0T0SWF	NXP04606A0T0TWF	460	418	307	300	400	10.0/0.5/10.5	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP05026A0T0SWF	NXP05026A0T0TWF	502	456	335	355	450	11.2/0.6/11.8	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP05906A0T0SWF		590	536	393	400	560	12.4/0.7/13.1	CH63	CHK-0650-6-DL	
NXP06506A0T0SWF		650	591	433	450	600	14.2/0.8/15.0	CH63	CHK-0650-6-DL	
NXP07506A0T0SWF		750	682	500	500	700	16.4/0.9/17.3	CH63	CHK-0750-6-DL	
NXP08206A0T0SWF	NXP08206A0T0TWF	820	745	547	560	800	17.3/1.0/18.3	CH74	3 x CHK-0400-6-DL	2 x CHK-0520-6-DL
NXP09206A0T0SWF	NXP09206A0T0TWF	920	836	613	650	850	19.4/1.1/20.5	CH74	3 x CHK-0400-6-DL	2 x CHK-0520-6-DL
NXP10306A0T0SWF	NXP10306A0T0TWF	1030	936	687	700	1000	21.6/1.2/22.8	CH74	3 x CHK-0400-6-DL	2 x CHK-0520-6-DL
NXP11806A0T0SWF	NXP11806A0T0TWF	1180	1073	787	800	1100	25.0/1.3/26.3	CH74	3 x CHK-0400-6-DL	2 x CHK-0650-6-DL
NXP13006A0T0SWF	NXP13006A0T0TWF	1300	1182	867	900	1200	27.3/1.5/28.8	CH74	3 x CHK-0520-6-DL	2 x CHK-0650-6-DL
NXP15006A0T0SWF	NXP15006A0T0TWF	1500	1364	1000	1050	1400	32.1/1.7/33.8	CH74	3 x CHK-0520-6-DL	2 x CHK-0820-6-DL
NXP17006A0T0SWF	NXP17006A0T0TWF	1700	1545	1133	1150	1550	36.5/1.9/38.4	CH74	3 x CHK-0650-6-DL	2 x CHK-1030-6-DL
NXP18506A0T0SWF	NXP18506A0T0TWF	1850	1682	1233	1250	1650	39.0/2.0/41.0	2 x CH74	6 x CHK-0400-6-DL	4 x CHK-0520-6-DL
NXP21206A0T0SWF	NXP21206A0T0TWF	2120	1927	1413	1450	1900	44.9/2.4/47.3	2 x CH74	6 x CHK-0400-6-DL	4 x CHK-0650-6-DL
NXP23406A0T0SWF	NXP23406A0T0TWF	2340	2127	1560	1600	2100	49.2/2.6/51.8	2 x CH74	6 x CHK-0400-6-DL	4 x CHK-0650-6-DL
NXP27006A0T0SWF	NXP27006A0T0TWF	2700	2455	1800	1850	2450	57.7/3.1/60.8	2 x CH74	6 x CHK-0520-6-DL	4 x CHK-0750-6-DL
NXP31006A0T0SWF	NXP31006A0T0TWF	3100	2818	2066	2150	2800	65.7/3.4/69.1	2 x CH74	6 x CHK-0520-6-DL	4 x CHK-0820-6-DL
2 x NXP18506A0T0SWF	2 x NXP18506A0T0TWF	3500	3200	2300	2400	3150	74,2/3,8/77,9	4 x CH74	12 x CHK-0400-6-DL	8 x CHK-0520-6-DL
2 x NXP21206A0T0SWF	2 x NXP21206A0T0TWF	4000	3600	2700	2750	3600	85,4/4,5/89,9	4 x CH74	12 x CHK-0400-6-DL	8 x CHK-0650-6-DL
2 x NXP23406A0T0SWF	2 x NXP23406A0T0TWF	4400	4000	2900	3050	3950	93,4/5,0/98,4	4 x CH74	12 x CHK-0400-6-DL	8 x CHK-0650-6-DL
2 x NXP27006A0T0SWF	2 x NXP27006A0T0TWF	5100	4600	3400	3500	4600	109,7/5,8/115,5	4 x CH74	12 x CHK-0520-6-DL	8 x CHK-0750-6-DL
2 x NXP31006A0T0SWF	2 x NXP31006A0T0TWF	5900	5400	3900	4050	5300	124,8/6,5/131,3	4 x CH74	12 x CHK-0520-6-DL	8 x CHK-0820-6-DL

Standard chokes for VACON® NX Liquid Cooled product range

Choke type	Heat losses [W]	Dimensions W x H x D [mm]	Weight [kg]
CHK0023N6A0	145	230 x 179 x 121	10
CHK0038N6A0	170	270 x 209 x 145	15
CHK0062N6A0	210	300 x 214 x 160	20
CHK0087N6A0	250	300 x 233 x 170	26
CHK0145N6A0	380	200 x 292 x 185	37
CHK-0261-6-DL	323	308 x 500 x 270	70
CHK-0400-6-DL	484	308 x 497 x 276	75
CHK-0520-6-DL	574	450 x 502 x 276	104
CHK-0650-6-DL	468	450 x 505 x 284	121
CHK-0750-6-DL	816	450 x 557 x 284	135
CHK-0820-6-DL	731	450 x 506 x 282	118
CHK-1030-6-DL	777	450 x 642 x 274	124
CHK-1150-6-DL	882	450 x 647 x 308	162

VACON® NXP Liquid Cooled inverter units, DC bus voltage 465-800 VDC

	Dr	ive output curre	ent	Motor sh	aft power	Power loss	
AC drive type	Thermal I _{th} [A]	Rated cont. I _L [A]	Rated cont. I _H [A]	Optimum motor at I _{th} (540 VDC) [kW]	Optimum motor at I _{th} (675 VDC) [kW]	c/a/T*) [kW]	Chassis
NXP00165A0T1IWS	16	15	11	7.5	11	0.4/0.2/0.6	CH3
NXP00225A0T1IWS	22	20	15	11	15	0.5/0.2/0.7	CH3
NXP00315A0T1IWS	31	28	21	15	18.5	0.7/0.2/0.9	CH3
NXP00385A0T1IWS	38	35	25	18.5	22	0.8/0.2/1.0	CH3
NXP00455A0T1IWS	45	41	30	22	30	1.0/0.3/1.3	CH3
NXP00615A0T1IWS	61	55	41	30	37	1.3/0.3/1.5	CH3
NXP00725A0T0IWS	72	65	48	37	45	1.2/0.3/1.5	CH4
NXP00875A0T0IWS	87	79	58	45	55	1.5/0.3/1.8	CH4
NXP01055A0T0IWS	105	95	70	55	75	1.8/0.3/2.1	CH4
NXP01405A0T0IWS	140	127	93	75	90	2.3/0.3/2.6	CH4
NXP01685A0T0IWS	168	153	112	90	110	2.5/0.3/2.8	CH5
NXP02055A0T0IWS	205	186	137	110	132	3.0/0.4/3.4	CH5
NXP02615A0T0IWS	261	237	174	132	160	4.0/0.4/4.4	CH5
NXP03005A0T0IWF	300	273	200	160	200	4.5/0.4/4.9	CH61
NXP03855A0T0IWF	385	350	257	200	250	5.5/0.5/6.0	CH61
NXP04605A0T0IWF	460	418	307	250	315	5.5/0.5/6.0	CH62
NXP05205A0T0IWF	520	473	347	250	355	6.5/0.5/7.0	CH62
NXP05905A0T0IWF	590	536	393	315	400	7.5/0.6/8.1	CH62
NXP06505A0T0IWF	650	591	433	355	450	8.5/0.6/9.1	CH62
NXP07305A0T0IWF	730	664	487	400	500	10.0/0.7/10.7	CH62
NXP08205A0T0IWF	820	745	547	450	560	12.5/0.8/13.3	CH63
NXP09205A0T0IWF	920	836	613	500	600	14.4/0.9/15.3	CH63
NXP10305A0T0IWF	1030	936	687	560	700	16.5/1.0/17.5	CH63
NXP11505A0T0IWF	1150	1045	766	600	750	18.4/1.1/19.5	CH63
NXP13705A0T0IWF	1370	1245	913	700	900	15.5/1.0/16.5	CH64
NXP16405A0T0IWF	1640	1491	1093	900	1100	19.5/1.2/20.7	CH64
NXP20605A0T0IWF	2060	1873	1373	1100	1400	26.5/1.5/28.0	CH64
NXP23005A0T0IWF	2300	2091	1533	1250	1500	29.6/1.7/31.3	CH64
NXP24705A0T0IWF	2470	2245	1647	1300	1600	36.0/2.0/38.0	2 x CH64
NXP29505A0T0IWF	2950	2681	1967	1550	1950	39.0/2.4/41.4	2 x CH64
NXP37105A0T0IWF	3710	3372	2473	1950	2450	48.0/2.7/50.7	2 x CH64
NXP41405A0T0IWF	4140	3763	2760	2150	2700	53.0/3.0/56.0	2 x CH64
2 x NXP24705A0T0IWF	4700	4300	3100	2450	3050	69.1/3.9/73	4 x CH64
2 x NXP29505A0T0IWF	5600	5100	3700	2900	3600	74.4/4.6/79	4 x CH64
2 x NXP37105A0T0IWF	7000	6400	4700	3600	4500	90.8/5.2/96	4 x CH64
2 x NXP41405A0T0IWF	7900	7200	5300	4100	5150	101.2/5.8/107	4 x CH64

The voltage classes for the inverter units used in the tables above have been defined as follows: Input 540 VDC = Rectified 400 VAC supply Input 675 VDC = Rectified 500 VAC supply

16 Danfoss Drives · DKDD.PB.909.A5.02

VACON® NXP Liquid Cooled inverter units, DC bus voltage 640-1100 VDC ¹⁾

	Dr	ive output curre	ent	Motor sh	aft power	Power loss	
AC drive type	Thermal I _{th} [A]	Rated cont. I _L [A]	Rated cont. I _H [A]	Optimum motor at I _{th} (710 VDC) [kW]	Optimum motor at I _{th} (930 VDC) [kW]	c/a/T*) [kW]	Chassis
NXP01706A0T0IWF	170	155	113	110	160	3.6/0.2/3.8	CH61
NXP02086A0T0IWF	208	189	139	132	200	4.3/0.3/4.6	CH61
NXP02616A0T0IWF	261	237	174	160	250	5.4/0.3/5.7	CH61
NXP03256A0T0IWF	325	295	217	200	300	6.5/0.3/6.8	CH62
NXP03856A0T0IWF	385	350	257	250	355	7.5/0.4/7.9	CH62
NXP04166A0T0IWF	416	378	277	250	355	8.0/0.4/8.4	CH62
NXP04606A0T0IWF	460	418	307	300 400		8.7/0.4/9.1	CH62
NXP05026A0T0IWF	502	456	335	355 450		9.8/0.5/10.3	CH62
NXP05906A0T0IWF	590	536	393	400 560		10.9/0.6/11.5	CH63
NXP06506A0T0IWF	650	591	433	450 600		12.4/0.7/13.1	CH63
NXP07506A0T0IWF	750	682	500	500 700		14.4/0.8/15.2	CH63
NXP08206A0T0IWF	820	745	547	560	560 800		CH64
NXP09206A0T0IWF	920	836	613	650	850	17.2/0.9/18.1	CH64
NXP10306A0T0IWF	1030	936	687	700	1000	19.0/1.0/20.0	CH64
NXP11806A0T0IWF	1180	1073	787	800	1100	21.0/1.1/22.1	CH64
NXP13006A0T0IWF	1300	1182	867	900	1200	24.0/1.3/25.3	CH64
NXP15006A0T0IWF	1500	1364	1000	1050	1400	28.0/1.5/29.5	CH64
NXP17006A0T0IWF	1700	1545	1133	1150	1550	32.1/1.7/33.8	CH64
NXP18506A0T0IWF	1850	1682	1233	1250	1650	34.2/1.8/36.0	2 x CH64
NXP21206A0T0IWF	2120	1927	1413	1450	1900	37.8/2.0/39.8	2 x CH64
NXP23406A0T0IWF	2340	2127	1560	1600	2100	43.2/2.3/45.5	2 x CH64
NXP27006A0T0IWF	2700	2455	1800	1850	2450	50.4/2.7/53.1	2 x CH64
NXP31006A0T0IWF	3100	2818	2066	2150	2800	57.7/3.1/60.8	2 x CH64
2 x NXP18506A0T0IWF	3500	3200	2300	2400	3150	64,9/3,5/68,4	4 x CH64
2 x NXP21206A0T0IWF	4000	3600	2700	2750	3600	71,8/3,8/75,6	4 x CH64
2 x NXP23406A0T0IWF	4400	4000	2900	3050	3950	82,1/4,4/86,5	4 x CH64
2 x NXP27006A0T0IWF	5100	4600	3400	3500	4600	95,8/5,1/100,9	4 x CH64
2 x NXP31006A0T0IWF	5900	5400	3900	4050	5300	109,7/5,8/115,5	4 x CH64

¹⁰ High power 525-690V AFE, INU and BCU units available as wide voltage range version (NX_8 models) with DC bus voltage 640-1200 VDC. The units are ordered with the nominal mains voltage code 8 instead of 6 as for the standard version.

The following additional requirements applies to the wide voltage version:

• output filter with an inductance of at least 0.7% needed

• external 24VDC supply for the control unit

The voltage classes for the inverter units used in the tables above have been defined as follows:

Input 710 VDC = Rectified 525 VAC supply

Input 930 VDC = Rectified 690 VAC supply

VACON [®] NXP Liquid Co	oled dimensions: drives	consisting of one modu	le	
Chassis	Width [mm]	Height [mm]	Depth [mm]	Weight [kg]
CH3	160	431	246	15
CH4	193	493	257	22
CH5	246	553	264	40
CH60	246	673	374	55
CH61/62	246	658	372	55
CH63	505	923	375	120
Ch64	746	923	375	180
CH72	246	1076	372	90
Ch74	746	1175	385	280

One-module drive dimensions (mounting base included). Please note that AC chokes are not included.

VACON® NXN Liquid Cooled non regenerative front-end, DC bus voltage 465-800 V DC, 6/12-pulse

		AC current			DC p	ower			
AC drive type	Thermal I _{th} [A]	Rated I _L [A]	Rated I _H [A]	400 VAC mains l _{th} [kW]	500 VAC mains I _{th} [kW]	400 VAC mains I _L [kW]	500 VAC mains I _L [kW]	Power loss c/a/T*) [kW]	Chassis
NXN20006A0T0	2000	1818	1333	1282	1605	1165	1458	5.7/0.5/6.2	CH60

VACON® NXN Liquid Cooled non regenerative front-end, DC bus voltage 640-1100 V DC, 6/12-pulse

		AC current			DC p	ower				
AC drive type	Thermal I _{th} [A]	Rated I _L [A]	Rated I _H [A]	525 VAC mains l _{th} [kW]	690 VAC mains l _{th} [kW]	525 VAC mains I _L [kW]	690 VAC mains I _L [kW]	Power loss c/a/T*) [kW]	Chassis	
NXN20006A0T0	2000	1818	1333	1685	2336	1531	2014	5.7/0.5/6.2	CH60	

VACON® NXN Liquid Cooled non regenerative front-end line filters

Choke type	Suitability	Power loss c/a/T *) [kW]	Dimensions 1 pc W x H x D	Total weight [kg]	Pcs for NXN	Cooling
CHK-1030-6-DL	NXN20006A0T0WWVA1A2BHB100	1.18/0.5/1.68	506 x 676 x 302	237	2	Liquid

VACON® NXA Liquid Cooled active front-end, DC bus voltage 465-800 VDC

		AC current			DC p	ower		Doworloss	
AC drive type	Thermal I _{th} [A]	Rated I∟[A]	Rated I _H [A]	400 VAC mains I _{th} [kW]	500 VAC mains I _{th} [kW]	400 VAC mains I _L [kW]	500 VAC mains I _L [kW]	c/a/T*) [kW]	Chassis
NXA01685A0T02WS	168	153	112	113	142	103	129	2.5/0.3/2.8	CH5
NXA02055A0T02WS	205	186	137	138	173	125	157	3.0/0.4/3.4	CH5
NXA02615A0T02WS	261	237	174	176	220	160	200	4.0/0.4/4.4	CH5
NXA03005A0T02WF	300	273	200	202	253	184	230	4.5/0.4/4.9	CH61
NXA03855A0T02WF	385	350	257	259	324	236	295	5.5/0.5/6.0	CH61
NXA04605A0T02WF	460	418	307	310	388	282	352	5.5/0.5/6.0	CH62
NXA05205A0T02WF	520	473	347	350	438	319	398	6.5/0.5/7.0	CH62
NXA05905A0T02WF	590	536	393	398	497	361	452	7.5/0.6/8.1	CH62
NXA06505A0T02WF	650	591	433	438	548	398	498	8.5/0.6/9.1	CH62
NXA07305A0T02WF	730	664	487	492	615	448	559	10.0/0.7/10.7	CH62
NXA08205A0T02WF	820	745	547	553	691	502	628	10.0/0.7/10.7	CH63
NXA09205A0T02WF	920	836	613	620	775	563	704	12.4/0.8/12.4	CH63
NXA10305A0T02WF	1030	936	687	694	868	631	789	13.5/0.9/14.4	CH63
NXA11505A0T02WF	1150	1045	767	775	969	704	880	16.0/1.0/17.0	CH63
NXA13705A0T02WF	1370	1245	913	923	1154	839	1049	15.5/1.0/16.5	CH64
NXA16405A0T02WF	1640	1491	1093	1105	1382	1005	1256	19.5/1.2/20.7	CH64
NXA20605A0T02WF	2060	1873	1373	1388	1736	1262	1578	26.5/1.5/28.0	CH64
NXA23005A0T02WF	2300	2091	1533	1550	1938	1409	1762	29.6/1.7/31.3	CH64

VACON $^{\circ}$ NXA Liquid Cooled active front-end, DC bus voltage 640-1100 VDC $^{\scriptscriptstyle 1)}$

		AC current			DC p	Powerless			
AC drive type	Thermal I _{th} [A]	Rated I _L [A]	Rated I _H [A]	525 VAC mains I _{th} [kW]	690 VAC mains I _{th} [kW]	525 VAC mains I _L [kW]	690 VAC mains I _L [kW]	c/a/T*) [kW]	Chassis
NXA01706A0T02WF	170	155	113	150	198	137	180	3.6/0.2/3.8	CH61
NXA02086A0T02WF	208	189	139	184	242	167	220	4.3/0.3/4.6	CH61
NXA02616A0T02WF	261	237	174	231	303	210	276	5.4/0.3/5.7	CH61
NXA03256A0T02WF	325	295	217	287	378	261	343	6.5/0.3/6.8	CH62
NXA03856A0T02WF	385	350	257	341	448	310	407	7.5/0.4/7.9	CH62
NXA04166A0T02WF	416	378	277	368	484	334	439	8.0/0.4/8.4	CH62
NXA04606A0T02WF	460	418	307	407	535	370	486	8.7/0.4/9.1	CH62
NXA05026A0T02WF	502	456	335	444	584	403	530	9.8/0.5/10.3	CH62
NXA05906A0T02WF	590	536	393	522	686	474	623 🚄	10.9/0.6/11.5	CH63
NXA06506A0T02WF	650	591	433	575	756	523	687	12.4/0.7/13.1	CH63
NXA07506A0T02WF	750	682	500	663	872	603	793	14.4/0.8/15.2	CH63
NXA08206A0T02WF	820	745	547	725	953	659	866	15.4/0.8/16.2	CH64
NXA09206A0T02WF	920	836	613	814	1070	740	972	17.2/0.9/18.1	CH64
NXA10306A0T02WF	1030	936	687	911	1197	828	1088	19.0/1.0/20.0	CH64
NXA11806A0T02WF	1180	1073	787	1044	1372	949	1247	21.0/1.1/22.1	CH64
NXA13006A0T02WF	1300	1182	867	1150	1511	1046	1374	24.0/1.3/25.3	CH64
NXA15006A0T02WF	1500	1364	1000	1327	1744	1207	1586	28.0/1.5/29.5	CH64
NXA17006A0T02WF	1700	1545	1133	1504	1976	1367	1796	32.1/1.7/33.8	CH64

 $^{\rm D}$ DC bus voltage 640-1200 VDC for wide range voltage version (NX_8). * C = power loss into coolant, A = power loss into air, T = total power loss

VACON® Liquid Cooled regenerative line filters

LCL filter type	Suitability	Power loss c/a/T*) [kW]	Dimensions L _{net} 1pcs WxHxD [mm]	Dimensions L _{drive} 1pcs (total 3pcs) WxHxD [mm]	Dimensions C _{bank} 1pcs WxHxD [mm]	Total weight [kg]
RLC-0385-6-0	CH62/690VAC: 325A & 385A	2,6/0,8/3,4	580 x 450 x 385	410 x 415 x 385	360 x 265 x 150	458
RLC-0520-6-0	CH62/500-690VAC	2,65/0,65/3,3	580 x 450 x 385	410 x 415 x 385	360 x 265 x 150	481
RLC-0750-6-0	CH62/500VAC, CH63/690VAC	3,7/1/4,7	580 x 450 x 385	410 x 450 x 385	360 x 275 x 335	508
RLC-0920-6-0	CH63/500VAC, CH64/690VAC	4,5/1,4/5,9	580 x 500 x 390	410 x 500 x 400	360 x 275 x 335	577
RLC-1180-6-0	CH63/500VAC, CH64/690VAC	6,35/1,95/8,3	585 x 545 x 385	410 x 545 x 385	350 x 290 x 460	625
RLC-1640-6-0	CH64/500-690VAC	8,2/2,8/11	585 x 645 x 385	420 x 645 x 385	350 x 290 x 460	736
RLC-2300-5-0	CH64/500VAC: 2060A & 2300A	9,5/2,9/12,4	585 x 820 x 370	410 x 820 x 380	580 x 290 x 405	896

The RLC filter contains a 3-phase choke on the mains side, capacitors and 3pcs 1-phase chokes on the AFE side.

VACON® NXB Liquid Cooled external brake chopper, DC bus voltage 460-800 VDC

		Cur	rent		Braking			
AC drive type	BCU rated cont. braking current I [A]Rated min resistance 800 VDC (Ω)Rated min resistance 600 VDC (Ω)		Rated max input current (Adc)	Rated cont. braking power 2*R 800 VDC [kW]	Rated cont. braking power 2*R 600 VDC [kW]	Power loss c/a/T*) [kW]	Chassis	
NXB00315A0T08WS	2*31	25.7	19.5	62	49	37	0.7/0.2/0.9	CH3
NXB00615A0T08WS	2*61	13.1	9.9	122	97	73	1.3/0.3/1.5	CH3
NXB00875A0T08WS	2*87	9.2	7.0	174	138	105	1.5/0.3/1.8	CH4
NXB01055A0T08WS	2*105	7.6	5.8	210	167	127	1.8/0.3/2.1	CH4
NXB01405A0T08WS	2*140	5.7	4.3	280	223	169	2.3/0.3/2.6	CH4
NXB01685A0T08WS	2*168	4.7	3.6	336	267	203	2.5/0.3/2.8	CH5
NXB02055A0T08WS	2*205	3.9	3.0	410	326	248	3.0/0.4/3.4	CH5
NXB02615A0T08WS	2*261	3.1	2.3	522	415	316	4.0/0.4/4.4	CH5
NXB03005A0T08WF	2*300	2.7	2.0	600	477	363	4.5/0.4/4.9	CH61
NXB03855A0T08WF	2*385	2.1	1.6	770	613	466	5.5/0.5/6.0	CH61
NXB04605A0T08WF	2*460	1.7	1.3	920	732	556	5.5/0.5/6.0	CH62
NXB05205A0T08WF	2*520	1.5	1.2	1040	828	629	6.5/0.5/7.0	CH62
NXB05905A0T08WF	2*590	1.4	1.1	1180	939	714	7.5/0.6/8.1	CH62
NXB06505A0T08WF	2*650	1.2	1.0	1300	1035	786	8.5/0.6/9.1	CH62
NXB07305A0T08WF	2*730	1.1	0.9	1460	1162	833	10.0/0.7/10.7	CH62

VACON® NXB Liquid Cooled external brake chopper, DC bus voltage 640-1100 VDC ¹⁾

		Curi	rent		Braking			
AC drive type	BCU rated cont. braking current I _{br} [A]	Rated min resistance 1100 VDC (Ω)	Rated min resistance 840 VDC (Ω)	Rated max input current (Adc)	Rated cont. braking power 2*R 1100 VDC [kW]	Rated cont. braking power 2*R 840 VDC [kW]	Power loss c/a/T*) [kW]	Chassis
NXB01706A0T08WF	2*170	6.5	4.9	340	372	282	4.5/0.2/4.7	CH61
NXB02086A0T08WF	2*208	5.3	4	416	456	346	5.5/0.3/5.8	CH61
NXB02616A0T08WF	2*261	4.2	3.2	522	572	435	5.5/0.3/5.8	CH61
NXB03256A0T08WF	2*325	3.4	2.6	650	713	542	6.5/0.3/6.8	CH62
NXB03856A0T08WF	2*385	2.9	2.2	770	845	643	7.5/0.4/7.9	CH62
NXB04166A0T08WF	2*416	2.6	2	832	913	693	8.1/0.4/8.4	CH62
NXB04606A0T08WF	2*460	2.4	1.8	920	1010	767	8.5/0.4/8.9	CH62
NXB05026A0T08WF	2*502	2.2	1.7	1004	1100	838	10.0/0.5/10.5	CH62

1) DC bus voltage 640-1136 VDC for wide range voltage version (NX_8). **NOTE:** The rated currents in given ambient (+50 °C) and coolant (+30 °C) tempera **NOTE:** Braking power: $P_{brake} = 2^*U_{brake}^{-2} / R_{brake}^{-1}$, when 2 resistors are used **NOTE:** Max input DC current: $I_{a_{c},max} = P_{brake,max}^{-1} / U_{brake}^{-1}$ tures are achieved only when the switching frequency is equal to or less than the factory default.

VACON® NXP Liquid Cooled AC drive, internal brake chopper unit, braking voltage 460-800 VDC

	Loadability	Braking capa	acity 600 VDC	Braking capa		
Converter Type	Rated min resistance [Ω]	Rated cont. braking power [kW]	BCU rated cont. braking current, I _{br} [A]	Rated cont. braking power [kW]	BCU rated cont. braking current, I _{br} [A]	Chassis
NX_460-730 5 ¹⁾	1.3	276	461	492	615	CH72
NX_1370-2300 5	1.3	276	461	492	615	CH74

1) Only 6 pulse drives

VACON® NXP Liquid Cooled AC drive, internal brake chopper unit, braking voltage 840-1100 VDC

	Loadability	Braking capa	city 840 VDC	Braking capa		
Converter Type	erter Type Rated min Rated cont. B(resistance Draking power bra [Ω] [kW]	BCU rated cont. braking current, I _{br} [A]	Rated cont. braking power [kW]	BCU rated cont. braking current, I _{br} [A]	Chassis	
NX_325-502 6 ¹⁾	2.8	252	300	432	392	CH72
NX_820-1700 6	2.8	252	300	432	392	CH74

1) Only 6 pulse drives

The internal brake chopper can also be used in motor application where 2...4 x Ch7x drives are used for a single motor, but in this case the DC connections of the power modules must be connected together.

VACON® external brake resistors for liquid cooled CH72 (CH74) drives - IP20

Product code	Voltage range [VDC]	Maximum brake power [kw]	Maximum average power [kW] (1 puls/2min)	Resistance [Ω]	Maximum energy [kJ] (predefined power pulse)	Dimensions W x H x D [mm]	Weight [kg]
BRW-0730-LD-5 1)	465800 VDC	637 ³⁾	13.3	1.3	1594	480 x 600 x 740	55
BRW-0730-HD-5 ²⁾	465800 VDC	637 ³⁾	34.5	1.3	4145	480 x 1020 x 740	95
BRW-0502-LD-6 1)	6401100 VDC	516 ⁴⁾	10.8	2.8	1290	480 x 760 x 530	40
BRW-0502-HD-6 ²⁾	6401100 VDC	516 ⁴⁾	28	2.8	3354	480 x 1020 x 740	85

NOTE: Thermal protection switch included

1) LD = Light Duty: 5s nominal torque braking from nominal speed reduced linearly to zero once per 120s 2) HD = Heavy duty: 3s nominal torque braking at nominal speed + 7s nominal torque braking from nominal speed reduced linearly to zero once per 120s. 3) at 911 VDC

4) at 1200 VDC

Liquid to liquid heat exchangers

	HXL-M/V/R-040-N-P	HXL/M-M/V/R-120-N-P	HXL/M-M/R-300-N-P
Cooling power	040 kW	0120 kW	0300 kW
Mains supply	380420 VAC	380420 VAC	380500 VAC
Flow	40120 l/min	120360 l/min	360900 l/min
Distribution pressure	0.3 bar / l=10 m, DN32*	HXL: 1 bar / I = 40 m, DN50 HXM: 0.7 bar / I = 30 m, DN50	HXL: 1 bar / I = 40 m, DN80 HXM: 0.7 bar / I = 25 m, DN80
Double pump		НХМ	НХМ
Cabinets	VEDA, Rittal	VEDA, Rittal	Rittal
Dimensions W x H x D [mm] (without cabinet)	305 (506) x 1910 x 566	705 (982) x 1885 x 603	1100 x 1900 x 750

VACON® NXP Liquid Cooled Enclosed drive

* I = maximum distribution distance with specific DN diameter VACON® NXP Liquid Cooled Enclosed drive										
AC drive type		Rated curren	t	Electrical ou	tput power	Chassis	Dimensions W x H x D			
Ac unve type	I hermal ITH [A]	[A]	Cont. I _H [A]	Motor at I _{th} (400 VAC) [kW]	Motor at I _{th} (500 VAC) [kW]	Chassis	[in]			
NXP13705A5T0RWN-LIQC	1370	1245	913	700	900	CH64	2000 x 2100 x 900			
NXP16405A5T0RWN-LIQC	1640	1491	1093	900	1100	CH64	2000 x 2100 x 900			
)						

	Í	Rated curren	t	Electrical ou	tput power		Dimensions W x H x D
AC drive type	Thermal ITH [A]	Cont. I _L [A]	Cont. I _H [A]	Motor at I _{th} (525 VAC) [kW]	Motor at I _{th} (690 VAC) [kW]	Chassis	W/O Cooling unit [in]
NXP08206A5T0RWN-LIQC	820	745	547	560	800	CH64	2000 x 2100 x 900
NXP09206A5T0RWN-LIQC	920	836	613	650	850	CH64	2000 x 2100 x 900
NXP10306A5T0RWN-LIQC	1030	936	687	700	1000	CH64	2000 x 2100 x 900
NXP11806A5T0RWN-LIQC	1180	1073	787	800	1100	CH64	2000 x 2100 x 900
NXP13006A5T0RWN-LIQC	1300	1182	867	900	1200	CH64	2000 x 2100 x 900
NXP15006A5T0RWN-LIQC	1500	1364	1000	1000	1400	CH64	2000 x 2100 x 900
NXP17006A5T0RWN-LIQC	1700	1545	1133	1150	1550	CH64	2000 x 2100 x 900

Technical data

Mains connection	Input voltage U _{in}	NX_5: 400500 VAC (-10%+10%); 465800 VDC (-0%+0%) NX_6: 525690 VAC (-10%+10%); 6401100 VDC (-0%+0%) NX_8: 525690 VAC (-10%+10%); 6401136 VDC (-0%+0%) ¹⁾ NX_8: 525690 VAC (-10%+10%); 6401200 VDC (-0%+0%) ²⁾
	Input frequency	4566 Hz
Motor	Output voltage	0-U _{in}
connections	Output frequency	0320 Hz
	Output filter	VACON® liquid cooled NX_8 unit must be equipped with a output filter with an inductance of at least 0.7%.
Control characteristics	Control method	Frequency control U/f Open loop vector control (5-150% of base speed): speed control 0.5%, dynamic 0.3%sec, torque lin. <2%, torque rise time ~5 ms Closed loop vector control (entire speed range): speed control 0.01%, dynamic 0.2% sec, torque lin. <2%, torque rise time ~2 ms
	Switching frequency	NX_5: Up to and including NX_0061: 116 kHz; Factory default 10 kHz From NX_0072: 16 kHz; Factory default 3.6 kHz (110 kHz with special application) NX_6/NX_8: 16 kHz; Factory default 1.5 kHz
	Field weakening point	8320 Hz
	Acceleration time	03000 sec
	Deceleration time	03000 sec
-	Braking	DC brake: 30% of TN (without brake resistor), flux braking
Ambient conditions	Ambient operating temperature	–10 °C (no frost)+50 °C (at I_{th}); The NX liquid cooled drives must be used in an heated indoor controlled environment.
	Installation temperature	0+70 °C
	Storage temperature	-40 °C+70 °C; no liquid in heatsink under 0 °C
	Relative humidity	5 to 96% RH, non-condensing, no dripping water
	Air quality - chemical vapours - mechanical particles"	No corrosive gases IEC 60721-3-3, unit in operation, class 3C2 IEC 60721-3-3, unit in operation, class 3S2 (no conductive dust allowed)
	Altitude	NX_5: (380500 V): 3000 m ASL; in case network is not corner grounded NX_6/NX_8: (525690 V) max. 2000 m ASL. For further requirements, contact factory 100% load capacity (no derating) up to 1,000 m; above 1,000 m derating of maximum ambient operating temperature by 0,5 °C per each 100 m is required.
	Vibration	5150 Hz
	EN50178/EN60068-2-6	Displacement amplitude 0.25 mm (peak) at 3…31 Hz Max acceleration amplitude 1 G at 31…150 Hz
	Shock EN50178, EN60068-2-27	UPS Drop Test (for applicable UPS weights) Storage and shipping: max 15 G, 11 ms (in package)
	Enclosure class	IP00 / standard in entire kW/HP range
EMC	Immunity	Fulfils all EMC immunity requirements
	Emissions	EMC level N, T (IT networks)
Safety		EN 50178, EN 60204-1, IEC 61800-5-1, CE, UL, CUL; (see unit nameplate for more details)
Functional safety *)	STO	EN/IEC 61800-5-2 Safe Torque Off (STO) SIL2, EN ISO 13849-1 PL"d" Category 3, EN 62061: SILCL2, IEC 61508: SIL2.
	SS1	EN /IEC 61800-5-2 Safe Stop 1 (SS1) SIL2, EN ISO 13849-1 PL'd" Category 3, EN /IEC62061: SILCL2, IEC 61508: SIL2.
	ATEX Thermistor input	94/9/EC, CE 0537 Ex 11 (2) GD
	Advance safety option	STO (+SBC),SS1,SS2, SOS,SLS,SMS,SSM,SSR
Approvals	Type tested	SGS Fimko CE, UL
	Type approval	DNV, BV, Lloyd's Register (other marine societies delivery based approvals)
	Approvals our partners have	Ex, SIRA
Liquid cooling	Allowed cooling agents	Drinking water Water-glycol mixture
	Temperature of cooling agent	035 °C (I _{th})(input); 3555 °C, please see manual for further details Temperature rise during circulation max. 5 °C No condensation allowed
	System max. working pressure	6 bar/ 30 bar peak
	Pressure loss (at nominal flow)	Varies according to size, please see manual for further details
Protections		Overvoltage, undervoltage, earth fault, mains supervision, motor phase supervision, overcurrent, unitover- temperature, motor overload, motor stall, motor underload, short-circuit of +24 V and +10 V reference voltages.

*) with OPT-AF board (SS1 requires external safety relay) 1) NX_8 drives only available as Ch6x NXB units. 2) NX_8 drives only available as Ch6x NXA/NXP units.

22 Danfoss Drives · DKDD.PB.909.A5.02

Typecode key

VACON[®] NXP Liquid Cooled drives

NXP	0000	5	A	0	N	1	S	w	V	A1 A2 00 00 C3	-LIQC +HXC	
												_
NXP		Product R	lange		_							
		NXP = AC NXA = Act	drive or inv tive front-ei	verter unit nd unit								
		NXB = Bra	ake-choppe	er unit ativo Front Fr	ad (NEE)							
0000	_	Nominal A		ative riont Li	IU (INFL)							
0000		0007 = 7		000 0								
		0022 = 22 0205 = 20	2 A U	920 = 920	920 A							
5		Nominal	mains volt	ade								
5	- T	5 = 380-5	00 VAC	uge								
		6 = 525-6	90 VAC									
A		Control k A = stand	eypad lard alpha-r	numeric								
		$\mathbf{B} = \text{no loop}$	cal control I	keypad								
		G = graph	nical keypac	ł								
0		Enclosure	<u>c</u> lass					4				
		0 = IP00 5 = IP54										
N		FMC emis	sion levels									
N	-	N = NO EN	MC emission	n protection;	; to be insta	alled on end	losures		•			
		I = Fulfills	s standard 6	51800-3 for I	I-networks							
1		$\mathbf{Brake cho}$ 0 = no brack	ake choppe	er			$\boldsymbol{\wedge}$					
		1 = integr	rated brake	chopper (Cl	H3, CH72 (6	-pulse) & C	H74 only)		\sim			
S		Hardware	e modificat	ions: supply	у							
		2 = Active	e front-end	unit								
		$\mathbf{S} = 6$ -puls $\mathbf{Y} = 6$ -puls	se with A/C se with L/C	C chokes C chokes			· •					
		$\mathbf{N} = 6$ -puls	se, no chok	kes VC chokos								
		U = 12-pu U = 12-pu	ulse, no cho	okes			\sim					
		W = 12-pu R = Low h	ulse with L/ narmonic	C chokes								
W	_	Hardware	modificat	ions: coolin	a							
		$\mathbf{W} = \text{Liquid}$	d-cooled m	odule with a	luminium l	heatsink	m hoatsink					
					licker coate	u aluminu	III IICatsiiik					
V		Hardware F = Fiber	e modificat	ions: board 1. standard (f	l s from CH61)							
		G = Fiber	connection	n, varnished ((from CH61							
		V = Direct	t connectio	n, varnished								
		If OPT-AF	option bo	ard is used								
		$\mathbf{N} = IP54 c$	control box	fiber conne	ction, stand	dard boards	, (from CH61)				
۸1		Ontion by	ontior box,	, liber conne	eccontod b			1)				
A1		$\mathbf{A} = \text{basic}$	1/O boards,	i siot is repr	esenteu b	y two chai	acters.					
A2		$\mathbf{B} = \exp \mathbf{a} \mathbf{r}$ $\mathbf{C} = \operatorname{fieldb}$	nder I/O bo ous boards	ards								
00		D = specia	al boards									
00												
- C3												
-LIQC		Liquid Co	oled Enclo	sed Drive								
+HXC1		Heat Exch +HXC1 = °	hanger opt Stainless ste	ion for encl eel pipina. 1-	osed drive	•						
		+HXC2 = 5	Stainless ste	eel piping, 2-	-pumps							
*) Note, the con	trol unit of NX	_8 drives need t	to be supplied	with a external 2	4 Vdc power so	ource.						

and a state

Delivery based approvals

Option boards

Туре	Description		Ca	d s	ot											1/	/ O s	igna	I									
Particulo		А	в	с	D	E	ā	8	DI DO	AI (mA/V/±V)	AI (mA) isolated	AO (mA/V)	AO (mA) isolated	RO (NO/NC)	RO (NO)	+10Vref	Therm	+24V/ EXT +24 V	pt100	КТҮ84	42-240 VAC input	DI/DO (1024 V)	DI/DO (RS422)	Dl ~ 1Vp-p	Resolver	Out +5 V/+15 V/+24 V Out +15 V/+24 V	Out +5 V/+12 V/+15 V	
DDTA 1							6	1		2		1				1		2										
	DI/DU/AI/AU/ TUV/ 24V Relay output (NO/NC)						0	1		2		1		2		1		2										
OPTA3	Relay output + Thermistor input													2	1		1											
OPTA4	Encoder TTL type						2								,				-				3/0			1	1	
OPTA5	Encoder HTL type						2															3/0				1		
OPTA7	Double encoder HTL type																					6/2		-1		1		
OPTA8	"OPTA1 + Analogue signals galvanically isolated as a						6	1		2		1				1		2										
							6	1		2		1				1		2										
	OPTAT + 2,5mm2 connectors Encoder HTL type (Divider + direction)						0	1		2						-		2				2/0				1		
	STO_ATEX therm						2	2						1	1		1					5/0						
OPTAK	Sin/Cos encoder interface						2								1									3		1		
OPTAN							6			2		2																
I/O expai	nder cards (OPTB)									_		_																
OPTB1	Programmable I/O								6									1										
OPTB2	Relay output + Thermistor input													1	1		1											
OPTB4	"Analog input/output Analogue signals galvanically isolated separately"										1		2					1										
OPTB5	Relay output														3													
OPTB8	"Temperature Measurement option PT100"												_					1	3									
OPTB9	DI + Relay output						2								1						5							
OPTBH	" lemperature Measurement option pt100, pt1000, Ni1000, KTY84"																		3	3								
OPTBB	EnDat + Sin/Cos 1 Vp-p						2																0/2	2			1	
OPTBC	Resolver, 3xDO (Wide range)																				_	3/3			1			
OPTBE	EnDat/SSI/BiSS C																											
OPTBL	Advanced safety option						4	2					_					1			_							
OPTBM	OPTBL+ HIL/IIL encoder						4	2										1										
Fieldbus	OPTBL+ SIN/Cos encoder						4	2																				
OPTE2	RS485 with screw terminal						RS48	85 w	vith s	crev	v ter	mina	al															
OPTE3	PROFIBUS DP with screw terminal		1				PRO	FIBL	JS DI	P wit	th sc	rew	tern	ninal														
OPTE5	PROFIBUS DP with D9-connector						PRO	FIBL	JS DI	P wit	th D	9-со	nne	ctor														
OPTE6	CANopen						CAN	lope	n																			
OPTE7	DeviceNet						Dev	iceN	let																			
OPTE8	RS485 with D9-connector						RS48	85 w	vith [)9-с	onn	ecto	r															
OPTE9	Dual-port Ethernet			_			Dua	l-po	rt Et	hern	et																	
OPTEA	Advanced Dual-port Ethernet						Adv	ance	ed D	ual-p	oort	Ethe	ernet	t														
OPIC2	RS485 with screw terminal						RS48	85 W	ith s	crev	v ter	mina	al															
OPTC3							PRU	Worl	15 DI	PWI	ln sc	rew	tern	ninai	I													
OPTC5									ns Di	Dwit	h D	2-00	nno	ctor														
OPTC6	CANopen						CAN	lone	n n	i vvi	ΠD	9-00	me	CLUI														
OPTC7	DeviceNet						Dev	iceN	let																			
OPTC8	RS485 with D9-connector						RS48	85 w	ith [)9-c	onn	ecto	r															
OPTCI	Modbus/TCP						Мос	bus	TCP																			
OPTCJ	BACnet MS/TP						BAC	net l	MS/	TP																		
OPTCP	PROFINET IO						PRO	FINE	ET IO)																		
OPTCQ	EtherNet/IP						Ethe	erNet	t/IP																			
Commun	ication cards (OPTD)						c					2 6	1															
OPT-D1	systembus adapt, 2xfibre-optic SystemBus (1xfiber), isol. CAN						≥yst Sve+	em E em F	bus a Rus a	adap	oter (oter (2 X fi 1 y fi	iber iber	opti	ic pa	urs) ur) <i>R</i> .	CAN	l-hu	ada	ante	r (aa	alvan	nicall	v de	COUR	led)		
	PS222 adapter (no galvisol.)						RS23	32 ad	dapt	er ca	ard (galva	anica	ally c	decc	uple	ed), u	ised	mai	nly f	or a	pplic	atio	n en	gine	ering :	to	
	CAN Rus (ashy decoursed)						con	nect	and	ther	key	pad	icall		CO	ر سے مام										-		
OPT-D6 OPT-D7	Line voltage measurement						Line	volt	tage	mea	asure	emer	nt	y dê	cou	pied,												

*) OPTE series fieldbus cards provide most recent features on market and they are recommended for new installation 1) Analogue signals galvanically isolated as a group 2) Analogue signals galvanically isolated separately

DrivePro® Life Cycle services Delivering a customized service experience!

DrivePro

OrivePro

We understand that every application is different. Having the ability to build a customized service package to suit your specific needs is essential.

DrivePro[®] Life Cycle Services is a collection of tailormade products designed around you. Each one engineered to support your business through the different stages of your AC drive's life cycle.

From optimized spare-part packages to condition-monitoring solutions, our products can be customized to help you achieve your business goals.

With the help of these products, we add value to your application by ensuring you get the most out of your AC drive.

When you deal with us, we also offer you access to training, as well as the application knowledge to help you in planning and preparation. Our experts are at your service.

You're covered with DrivePro[®] Life Cycle service products

DrivePro® Retrofit Minimize the impact and maximize the benefit

Manage the end of product lifecycle efficiently, with professional help to replace your legacy drives. The DrivePro® Retrofit service ensures optimal uptime and productivity during the smooth replacement process.

DrivePro[®] Spare Parts Plan ahead with your spare part package

In critical situations, you want no delays. With DrivePro® Spare Parts you always have the right parts on hand, on time. Keep your drives running at top efficiency, and optimize system performance.

DrivePro[®] Extended Warranty Long-term peace of mind

Get the longest coverage available in the industry, for peace of mind, a strong business case and a stable, reliable budget. You know the annual cost of maintaining your drives, up to six years in advance.

DrivePro[®] Exchange The fast, most cost-efficient alternative to repair

You obtain the fastest, most cost-efficient alternative to repair, when time is critical. You increase uptime, thanks to quick and correct replacement of the drive.

DrivePro[®] Upgrade

Maximize your AC drive investment

Use an expert to replace parts or software in a running unit, so your drive is always upto-date. You receive an on-site evaluation, an upgrade plan and recommendations for future improvements.

DrivePro[®] Start-up Fine-tune your drive for optimal performance today

Save on installation and commissioning time and cost. Get help from professional drives experts during start-up, to optimize drives safety, availability and performance.

DrivePro[®] Preventive Maintenance Take preventive action

You receive a maintenance plan and budget, based on an audit of the installation. Then our experts perform the maintenance tasks for you, according to the defined plan.

DrivePro® Remote Expert Support You can rely on us every step of the way

DrivePro® Remote Expert Support offers speedy resolution of on-site issues thanks to timely access to accurate information. With the secure connection, our drives experts analyze issues remotely reducing the time and cost involved in unnecessary service visits.

DrivePro[®] Remote Monitoring Fast resolution of issues

DrivePro® Remote Monitoring offers you a system that provides online information available for monitoring in real time. It collects all the relevant data and analyzes it so that you can resolve issues before they affect your processes.

To learn which products are available in your region, please reach out to your local Danfoss Drives sales office or visit our website <u>http://drives.danfoss.com/danfoss-drives/local-contacts/</u>

ENGINEERING TOMORROW

A better tomorrow is **driven by drives**

Danfoss Drives is a world leader in variable speed control of electric motors.

We offer you unparalleled competitive edge through quality, application-optimized products and a comprehensive range of product lifecycle services.

You can rely on us to share your goals. Striving for the best possible performance in your applications is our focus. We achieve this by providing the innovative products and application know-how required to optimize efficiency, enhance usability, and reduce complexity.

From supplying individual drive components to planning and delivering complete drive systems; our experts are ready to support you all the way.

You will find it easy to do business with us. Online, and locally in more than 50 countries, our experts are never far away, reacting fast when you need them. You gain the benefit of decades of experience, since 1968. Our low voltage and medium voltage AC drives are used with all major motor brands and technologies in power sizes from small to large.

VACON® drives combine innovation and high durability for the sustainable industries of tomorrow.

For long lifetime, top performance, and full-throttle process throughput, equip your demanding process industries and marine applications with VACON[®] single or system drives.

- Marine and Offshore
- Oil and Gas
- Metals
- Mining and Minerals
- Pulp and Paper

- Energy
- Elevators and Escalators
- Chemical
- Other heavy-duty industries

VLT[®] drives play a key role in rapid urbanization through an uninterrupted cold chain, fresh food supply, building comfort, clean water and environmental protection.

Outmaneuvering other precision drives, they excel, with remarkable fit, functionality and diverse connectivity.

- Food and Beverage
- Water and Wastewater
- HVAC
- Refrigeration
- Material Handling
- Textile

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

Harmonic Filter

Confidential Information

Page 80

Compressor Motor

Confidential Information

Page 81

SKF Magnetic Mechatronics is pleased to present in this document the main technical characteristics of the SKF high speed AB350 motor for direct and variable-speed drive of centrifugal air blower and /or compressor, along with the main characteristics of the magnetic bearings.

	1.1 Motor Design	(ROTOR AND STATOR)							
Туре	HSPMSM (High Speed Permanent Magnet Synchronous Motor) 2 pole motor Surface mount rare earth permanent magnet type Typical rotor construction								
Motor torque	Service factor 1.0 Aaximum mechanical torque at shaft end : 180 Nm The motor can deliver its rated torque from 4,000 rpm to 21,000 rpm								
	Motor power range	200 to 350k	W						
	Preselected operating points	Power and Speed	Mechanical torque at shaft end						
Motor power range	AB350	350 kW @ 18,500 rpm	180 N.m						
For 380V/50Hz	AB350-bis	250 kW @ 20,500 rpm	116 N.m						
market	AB350-ter	200 kW @ 21,000 rpm	91 N.m						
	Other different combinations of power levels inverter current or voltage limitation.	s and speed are possible depending on coo	ling conditions and possible						
Power and Torque versus speed	350kW Shaft Po 200kW Shaft Po 200kW Shaft To 250kW Shaft To 350 300 300 300 300 300 300 300 300 300	ower [kW] 	ver que [N.m] que 180 150 12 W 90 90 60 12						

	50		30 م	
	0	Speed [rpm]	20000	
Speed range	Motor operating speed range : 4,000 rpm Across the 20 to 100% range of the speed In the very low speed range (0 to 20%), synchronization scheme due to the sens SKF.	n to 21,000 rpm ed, the motor can deliver up to its ra the torque capability is limited by the orless operation. For application wit	ted torque. e VFD control algorithm and h a high starting torque, please contact	

CONFIDENTIAL

SPEC-005203 v1.xx

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

	The rotor med	chanica	l com	ponents	s and the	rotor as	sembly	without i	mpeller	is desig	ined to v	withstand	10% overs	peed
	with respect t	o 21 00)0 rpm											
Over speed capability	The system (when considering the addition of the impeller on the rotor, the electrical components such as motor and filters) withstands as a minimum over speed up to +5% of the maximum operating speed without any damage to the motor and electrical component.									or and to the				
	Motor losses consis in air a vary w As an example	and mo sts in iro at 1 bar vith spe le, belo	otor eff on core a) eed and w is th	iciency e losses d torque	: s, copper e (or pow ency at c	r losses, ver) oper	magnet rating po power le	i losses, l bints evels for	Magneti the 350	c bearir kW/185	ng losse 500rpm i	s, windaç motor, plo	ge losses (ty otted for 2 s	/pically peeds:
						A+ 1	2500 rpm		15500 rm					
			1	100.0		ALIO	sourpin	A	1330010					
Motor losses				95.0									0	
				00.0									•	
				50,0										
			%]	85,0										
				80,0							111			
				75,0										
				70,0	1111	HIL	(*) E	xpected,	IEC marg	in not in	ncluded	Ξ.		
					0 50	100	150	200	250	300	350	400		
								[KVV]						
Motor rated volta	ge and current V	orsus	nower	/sneed	level			9						
		<u></u>			F			>						
			GRII		NAL VOLT	ГAGE (Vr	ms) : 460)						
AB Motor model				0.05				AB350					0.50	
Shaft Power (kW)		200	250	300	350	200	250	300	350	200	250	300	350	
Rated speed (krpm)		208 18.5	18.5	403	18.5	208	20	20	470 20	208	21	21	21	
Motor input voltage ph	n-ph (Vrmsph-ph)	286	299	313	328	306	318	331	346	320	331	344	358	
Motor input current (Arms)	445	555	665	775	412	514	615	717	393	490	586	683	
Max. Motor current TH	ID (THDi in %)	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	
Motor power factor		0.92	0.88	0.84	0.8	0.93	0.9	0.86	0.82	0.94	0.9	0.87	0.84	
Defluxing (yes/no)		No	No	No	No	No	No	No	No	No	No	No	No	
		•												
			CDI				$mc) \cdot 100$							

GRID NOMINAL VOLTAGE (Vrms) : 400										
AB Motor model						А	B350			

336 18,5	403	470	268	336	403	470	268	226	402	470
18,5	18 5					· •	200	550	403	470
	10,5	18,5	20	20	20	20	21	21	21	21
299	313	328	306	318	331	346	320	331	344	358
555	665	775	412	514	615	717	393	490	586	683
5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%
0.88	0.84	0.8	0.93	0.9	0.86	0.82	0.94	0.9	0.87	0.84
No	No	No	No	No	No	No	No	No	No	No
	299 555 5% 0.88 No	299 313 555 665 5% 5% 0.88 0.84 No No	299 313 328 555 665 775 5% 5% 5% 0.88 0.84 0.8 No No No	299 313 328 306 555 665 775 412 5% 5% 5% 5% 0.88 0.84 0.8 0.93 No No No No	299 313 328 306 318 555 665 775 412 514 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 No No No No No	299 313 328 306 318 331 555 665 775 412 514 615 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 No No No No No No	299 313 328 306 318 331 346 555 665 775 412 514 615 717 5% 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 0.82 No No No No No No No	299 313 328 306 318 331 346 320 555 665 775 412 514 615 717 393 5% 5% 5% 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 0.82 0.94 No No No No No No No No	299 313 328 306 318 331 346 320 331 555 665 775 412 514 615 717 393 490 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 0.82 0.94 0.9 No No No No No No No No No	299 313 328 306 318 331 346 320 331 344 555 665 775 412 514 615 717 393 490 586 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 0.82 0.94 0.9 0.87 No No No No No No No No No

Page 2 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

GRID NOMINAL VOLTAGE (Vrms) : 380												
AB Motor model			1			A	AB350					
Shaft Power (kW)	200	250	300	350	200	250	300	350	200	250	300	350
Shaft Power (HP)	268	336	403	470	268	336	403	470	268	336	403	470
Rated speed (krpm)	18,5	18,5	18,5	18,5	20	20	20	20	21	21	21	21
Motor input voltage ph-ph (Vrmsph-ph)	308	308	308	308	333	333	333	333	350	350	350	350
Motor input current (Arms)	286	299	313	322	306	318	331	325	320	331	338	332
Max. Motor current THD (THDi in %)	445	555	665	776	412	514	615	725	393	490	590	695
Max. Motor current THD (THDi in %)	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%
Motor power factor	0.92	0.88	0.84	0.82	0.93	0.9	0.86	0.87	0.94	0.9	0.88	0.89
Defluxing (yes/no)	No	No	No	Yes	No	No	No	Yes	No	No	Yes	Yes

Motor to be operated with a VFD equipped with a control strategy and algorithm that (in conjunction most of the time with the use of a sine filter), allow meeting the motor input current distortion as specified below :

- Current total harmonic distortion < 5%
- DC component ≤ 3% max
- Sum of harmonics below $11^{th} \leq 3\%$,
- Sum of harmonics 11^{th} and above $\leq 1\%$

All values are in percentage of the RMS fundamental (i.e. first harmonic) component of motor rated current, the motor rated current being defined for operation at rated speed, rated torque and at motor rated power factor

Note : By experience, such low level of motor current distortion is required to reliably stay within the maximum allowable temperature indicated below.

Motor	 IP 00 Non magnetic alloy (aluminum) housing : with lifting eyebolts Built-in water jacket Designed for installation in horizontal position.
Housing	(<i>Can be mounted vertically as well</i>)
Motor stator	Equipped with 3 RTD devices (PT100 temperature probes) embedded in the winding heads to allow winding temperature monitoring.
Motor	The motor is equipped with an integrated junction box, in order to connect the power cables (supplied by the customer).
power	Cross section of power cable to be defined by customer according to rating of motor phase current
connection	(see table in section § 1.5) and cable characteristics (cable amperage capacity).
and	Shielding of the power cables is required to comply with EMC regulations (the conductors of the 3 phases shall be inside the

Motor cable	same shield).
Maximum	 The motor part shall not be operated at higher continuous temperature than indicated hereafter: Rotor less than 140°C Motor stator less than 150°C
temperature	 Motor cooling consists in: Liquid cooling over the outer diameter of the motor stator lamination stack (water jacket) Gas cooling in the motor cavity along rotor airgap and over stator winding heads

CONFIDENTIAL

SPEC-005203 v1.xx

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

	Forced cooling air (in rotor airgap and stator winding heads):
	• Flow: 380 Nm³/h minimum
	Pressure drop : 3.5 kPa
	Liquid cooling in water jacket :
Cooling details	• Water (or Water – Glycol mix (~20%))
	 Flow : 18 – 20 l/min (temperature rise less than 5°C) Max pressure : 4 barg
	Interfaces for air cooling please refer to interface drawing. Interfaces for water cooling inlet/outlet connections: please refer to interface drawing.
	The complete (air & water) cooling system is in the Customer scope of supply, based on the SKF cooling requirement and specification to be provided during the course of the project.
	A solution with EBM Papst air cooling fans has been identified and qualified by SKF (Part number of EBM Papst cooling fan available upon request).
Air quality	 Filtered (98% of filtration of 2 µm particles) Dry
Motor	
Cavity Pressure	Nominal Atmospheric Pressure (1 bar abs)
Motor weight	Approx. 350 kg
	Motor back-EMF constant Vrms ph-ph/Hz 0,9 Na load Back EMF Valtage Vrms ph ph at rated around (21/mm) 215
Motor	Motor synchronous inductance Ls=Lg=Lg (uH) 75
electrical	Motor phase resistance (mOhm)
data	Motor phase connection (Star or delta) Star
	Motor shaft spin inertia (kg.m ²) 0.09

	A A
	1.2 IMPELLER AND SEAL (CUSTOMER SUPPLIED)
	A sufficient separation margin (25% minimum) must be maintained between the shaft 1 st bending frequency
ROTORDYNAMIC	and the rotating frequency to guarantee sub-critical operation in all its operation range and up to the maximum operation speed
Characteristics	The design of the impeller, seal and impeller attachment (which have direct impact on the rotor dynamic) must be jointly optimized between customer and SKF to achieve sub-critical operation.
Impeller size, Mass, S	A rotor dynamic modeling and calculation done by SKF is required with impeller and seal characteristics (weight, spin and transverse inertia, location of center of gravity, materials) to be communicated to SKF prior

and transverse inertia,	to the project for approval.
center of mass, material	The design and definition of the impeller and seal is under the customer responsibility.
	As a guide line, for a single stage configuration with a single impeller, the typical maximum impeller can be up to 9 kg
	The shaft end diameter on impeller side is maximized to improve stiffness and allow a wide range of impellers.
	Impeller is axially held in place thanks to a tension bolt. Impeller is centered in shaft spacer thanks to pilot
Impollor attachmont and shaft	outer diameter (STD Diameter 44 h6; extendable with added spacer (See example in Appendix 1).
end outer diameter	Transmission of torque to the spacer by a key and from the spacer to the impeller by friction.
	Please refer to the appendix 1: Mechanical Interfaces.

Page 4 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Tension bolt (Customer	Impeller is pressed and kept into contact with SKF shaft spacer by a tension bolt, installed with a hydraulic tensioner tool.
Supplied	Please refer to the shaft end figure in Appendix 1 : Mechanical Interfaces
Impeller clearance	Shall be compatible with the clearance of the auxiliary bearings as defined in section 1.3
Axial and radial load	Balanced equally in both directions and to be minimized. <u>Characteristics to be communicated to SKF prior to</u> <u>the project for approval.</u> General guideline: steady state loads should not exceed 50% of the bearing design capacity as outlined in section 1.3
Seals (Customer Supplied)	To be defined by the Customer including axial load balancing and leakage venting. Hot air leakage into the motor must be minimized. Seal clearance shall be compatible with the clearance of the auxiliary bearings as defined in section 1.3

	Rotor and impeller to be balanced independently to G2.5 level (as per ISO 1940 definition).
MECHANICAL BALANCING OF	Final balancing of the rotor with its impeller and seals is not required.
ROTATING PARTS	

1.3 ACTIVE MAGNETIC BEARINGS (AMB)

Radial bearing	Bearing coil rated for 150V and 4 Amp Temperature class of Isolation material : class F
Radial load capacity	900 N per axis
Displacement and monitoring sensor	SKF-S2M inductive type sensor with built-in harmonics rejection For a G2.5 quality level of balancing, rotor vibration (orbit) during steady state operation is typically less than 20 μm peak-peak in radial direction and less than 10 μm peak-peak in axial direction.

Axial bearing	Bearing coil rated for 150V and 16 Amp Temperature class of Isolation material : class F
Туре	The axial bearing is designed for optimum dynamic response in an effort to cope with operation close to the surge line.
Axial peak load capacity	2,700 N for side 1 = impeller side axial bearing (at 0.5mm nominal airgap) 3,200 for side 2 = axial bearing on impeller opposite side (*) Axial bearings of AB350 are slightly different between side and side 2, which explains the difference in load capacity.
	The axial position sensor is located close to the impeller so to better control its axial position (minimum impact on impeller clearance)

Displacement and monitoring sensor	Rotor side 1 (at impeller side) acts as positioning end during motor rotation and rotor elongation at non- impeller side due to heat and float does not affect rotor end at impeller side.
	SKF inductive type position sensor, rotor elongation sensor, Temperature sensor integrated in each thrust bearing side (KTY 84) used for internal monitoring

CONFIDENTIAL

SPEC-005203 v1.xx

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Auxiliary bearings	Integrated in the magnetic bearing cartridge with the axial bearing acting as the auxiliary bearing carrier.
	Angular contact ball bearings, soft mounted and axially preloaded with damping devices.
Туре	Dry lubrication.
	Minimum maintenance
Clearances	± 0.15 mm radial + floating ring tolerance 0.07mm → Total diametrical clearance = $2x(0.15+0.07)=0.44$ mm
	\pm 0.20 mm axiai \rightarrow 0.4 mm totai axiai fioat
	The auxiliary bearings are at standstill and not spinning during normal operation. They are only (and rarely) used in case of gross overload of the magnetic bearing and in case of major electronic failure of the bearing controller.
	Note : During a black-out (loss of AC mains voltage) event, the UPS function built-in the controller maintains the levitation active during the deceleration of the rotating motor and consequently the rotor only safely drops on the auxiliary bearing below a low speed threshold with no induced wear.
	The auxiliary bearing are designed to withstand :
	 Several hundredth of high speed contact of short duration (less than 0.5sec) between the rotating shaft and aux. bearing
	 Several dozens of high speed contact of longer duration (0.5 to 2 sec) between the rotating shaft and aux. bearing
	Five (5) to ten (10) 'full speed complete coast down' landings
	Assessment of the health of the Auxiliary bearings is facilitated with 2 features built-in the monitoring software of the bearing controller :
	 Counters of high speed 'Rotor Landing' (with a soft-landing counter and a hard-landing one)

	1 cable for the front end bearing / 1 cable for the rear end bearing									
	Aulti conductors and shielded conductor pairs with overall shield									
Bearing cables	ength : typical 3m (25m maximum)									
	The cables are in the customer scope of supply.									
	On specific request from the Customer, the cables can be supplied by SKF as an option.									
X										

Page 6 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Appendix 1 : Rotor mechanical Interfaces

Page 11 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Appendix 2 : Motor interface drawing

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Appendix 3 : 150/4-16 Bearing controller interface

TING CONNECTOR on USER alde (CONNECTEUR gold CLIENT)
WAGO 231-302/025-000 (2 alms)
WAGO 231-303/026-090 (8 clns)
HARTING HAN 42 DD 10A
+ HARTING HAN 42 DD 10A
WAQO 2091-1106/002-000
WAGO 2091-1106/002-000
WAGO 2091-1104/002-000
CONNECTION BORNIER
g to UL/CSA : AWG 24 - 10 Mostlen UL/CSA : AWG 24 - 10)
1. A. S.
MBC 150/8-16)
3
+40°C
condensing" condensation")
+55°C
)0m
(m000
N
750V DC max.
AC max : 50 - 60 Hz,
or references (user side)
LTERATION
NIZED Directive
Approuve : PLE
4 Date: 07/07/14
SERVITUDES
-16
UTILITIES
13 M3 D PAGE:

SKF

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Appendix 4 : Sine filter and VFD data

	100		<u></u>									
GRID NOMINAL VOLTAGE (Vrms)	460											
AB Motor model		1	1	1		AB	350	1		1		
Shaft Power (kW)	200	250	300	350	200	250	300	350	200	250	300	350
Shaft Power (HP)	268	336	403	470	268	336	403	470	268	336	403	470
Rated speed (krpm)	18,5	18,5	18,5	18,5	20	20	20	20	21	21	21	21
Rated torque (Nm)	103,2	129,0	154,9	180,7	95,5	119,4	143,2	167,1	90,9	113,7	136,4	159,2
Number of pair of pole	1	1	1	1	1	1	1	1	1	1	1	1
Rated frequency (Hz)	308	308	308	308	333	333	333	333	350	350	350	350
Motor input voltage ph-ph (Vrmsph-ph)	286	299	313	328	306	318	331	346	320	331	344	358
Motor input current (Arms)	445	555	665	775	412	514	615	717	393	490	586	683
Recommended Sine filter data					1							
Filter 'L' component (μH)		3	0	1		3	0			3	0	
Filter 'C' component (µF) - Delta connection	250	250	300	300	200	200	250	250	150	200	250	250
Capacitor current at rated frequency (Arms)	139	144	145	190	128	133	173	173	106	145	190	197
Capacitor current with 10% margin (Arms)	153	158	160	209	141	146	190	190	117	160	209	217
Capacitor max voltage (Vrms)		3	35			35	54			41	10	
Filter resonance 1 (Hz)	670	670	611	611	750	750	670	670	865	750	670	670
Filter resonance 2 (Hz)	1255	1255	1145	1145	1403	1403	1255	1255	1620	1403	1255	1255
VFD requirements (when used with above mentioned sine filte	er)											
Output voltage ph-ph (Vrms ph-ph)	283	303	322	347	302	321	337	362	317	330	344	368
Output current at rated frequency (Arms)	415	490	562	636	390	461	531	600	370	446	513	573
Output current with 10% margin for harmonics (Arms)	457	539	618	700	429	507	584	660	407	491	564	630
Min switching frequency (kHz)	3,4	3,4	3,4	3,4	3,7	3,7	3,7	3,7	3,9	3,9	3,9	3,9
Recommended practical min switching frequency (kHz)	4	4	4	4	5	5	5	5	5	5	5	5
DC bus voltage (Vdc) min value under load						62	20					
VFD max output voltage assumption			·	·	<u> </u>	41	10			·	·	

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

GRID NOMINAL VOLTAGE (Vrms)	400											
AB Motor model	AB350											
Shaft Power (kW)	200	250	300	350	200	250	300	350	200	250	300	350
Shaft Power (HP)	268	336	403	470	268	336	403	470	268	336	403	470
Rated speed (krpm)	18,5	18,5	18,5	18,5	20	20	20	20	21	21	21	21
Rated torque (Nm)	103,2	129,0	154,9	180,7	95,5	119,4	143,2	167,1	90,9	113,7	136,4	159,2
Number of pair of pole	1	1	1	1	1	1	1		1	1	1	1
Rated frequency (Hz)	308	308	308	308	333	333	333	333	350	350	350	350
Motor input voltage ph-ph (Vrmsph-ph)	286	299	313	328	306	318	331	346	320	331	344	358
Motor input current (Arms)	445	555	665	775	412	514	615	717	393	490	586	683
Recommended Sine filter data					1							
Filter 'L' component (µH)		3	30			3	0			3	0	
Filter 'C' component (µF) - Delta connection	250	250	300	300	200	200	250	250	150	200	250	250
Capacitor current at rated frequency (Arms)	139	144	145	190	128	133	173	173	106	145	190	197
Capacitor current with 10% margin (Arms)	153	158	160	209	141	146	190	190	117	160	209	217
Capacitor max voltage (Vrms)		3	35			3!	54		410			
Filter resonance 1 (Hz)	670	670	611	611	750	750	670	670	865	750	670	670
Filter resonance 2 (Hz)	1255	1255	1145	1145	1403	1403	1255	1255	1620	1403	1255	1255
VFD requirements (when used with above mentioned sine filter))											
Output voltage ph-ph (Vrms ph-ph)	283	303	322	347	302	321	337	360	317	330	344	368
Output current at rated frequency (Arms)	415	490	562	636	390	461	531	600	370	446	513	573
Output current with 10% margin for harmonics (Arms)	457	539	618	700	429	507	584	660	407	491	564	630
Min switching frequency (kHz)	3,4	3,4	3,4	3,4	3,7	3,7	3,7	3,7	3,9	3,9	3,9	3,9
Recommended practical min switching frequency (kHz)	4	4	4	4	5	5	5	5	5	5	5	5
DC bus voltage (Vdc) min value under load			-			52	23					
VFD max output voltage assumption			<u>.</u>			3	50					
			·							•		

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

GRID NOMINAL VOLTAGE (Vrms)	380											
AB Motor model						AB	350					
Shaft Power (kW)	200	250	300	350	200	250	300	350	200	250	300	350
Shaft Power (HP)	268	336	403	470	268	336	403	470	268	336	403	470
Rated speed (krpm)	18,5	18,5	18,5	18,5	20	20	20	20	21	21	21	21
Rated torque (Nm)	103,2	129,0	154,9	180,7	95,5	119,4	143,2	167,1	90,9	113,7	136,4	159,2
Number of pair of pole	1	1	1	1	1	1	1	1	1	1	1	1
Rated frequency (Hz)	308	308	308	308	333	333	333	333	350	350	350	350
Motor input voltage ph-ph (Vrmsph-ph)	286	299	313	322	306	318	331	325	320	331	338	332
Motor input current (Arms)	445	555	665	776	412	514	615	725	393	490	590	695
Recommended Sine filter data												
Filter 'L' component (µH)			30			3	0			3	0	-
Filter 'C' component (µF) - Delta connection	250	250	300	300	200	200	250	250	150	200	250	250
Capacitor current at rated frequency (Arms)	139	144	145	186	128	133	173	170	106	145	185	185
Capacitor current with 10% margin (Arms)	153	158	160	205	141	146	190	187	117	160	204	204
Capacitor max voltage (Vrms)		3	55		35	54	38	80	410			
Filter resonance 1 (Hz)	670	670	611	611	750	750	670	670	865	750	670	670
Filter resonance 2 (Hz)	1255	1255	1145	1145	1403	1403	1255	1255	1620	1403	1255	1255
VFD requirements (when used with above mentione	d sine filter)											
Output voltage ph-ph (Vrms ph-ph)	283	303	322	340	302	321	337	340	317	330	340	340
Output current at rated frequency (Arms)	415	490	562	650	390	461	531	632	370	446	521	618
Output current with 10% margin for harmonics (Arms)	457	539	618	715	429	507	584	695	407	491	573	680
Min switching frequency (kHz)	3,4	3,4	3,4	3,4	3,7	3,7	3,7	3,7	3,9	3,9	3,9	3,9
Recommended practical min switching frequency (kHz)	4	4	4	4	5	5	5	5	5	5	5	5
				Sh'								
DC bus voltage (Vdc) min value under load						5	00					
VFD max output voltage assumption						34	40					

CONFIDENTIAL

SPEC-005203 v1.xx

Enclosure Disconnecting means

Confidential Information

Page 82
Product data sheet

Specifications

Circuit breaker, PowerPacT P, unit mount, Micrologic 5.0, 800A, 3 pole, 25kA, 600VAC, 80% rated

1

PJF36080U33A

Main	
Range	PowerPact
Product name	PowerPact P
Product or Component Type	Circuit breaker
Device Application	Distribution
Complementary	
Line Rated Current	800 A
Number of Poles	3P
Control Type	Toggle
Breaking capacity code	
Breaking capacity	AIR 100 kA 240 V AC 50/60 Hz UL 489 AIR 65 kA 480 V AC 50/60 Hz UL 489 AIR 25 kA 600 V AC 50/60 Hz UL 489 Icu 65 kA 240 V AC 50/60 Hz IEC 60947-2 Icu 50 kA 380/415 V AC 50/60 Hz IEC 60947-2
[Ue] rated operational voltage	600 V AC 50/60 Hz UL 489
Network Frequency	50/60 Hz
[Ics] rated service breaking capacity	35 kA 240 V AC 50/60 Hz IEC 60947-2 25 kA 380/415 V AC 50/60 Hz IEC 60947-2
[Uimp] rated impulse withstand voltage	8 kV IEC 60947-2
Trip unit technology	Electronic, standard, Micrologic 5.0, LSI
Continuous current rating	80 %
[Ui] rated insulation voltage	750 V IEC 60947-2
Trip unit name	Micrologic 5.0
AWG gauge	3 x AWG 3/03 x 500 kcmil aluminium/copper
Local signalling	Overload 1 trip indicator green) 1 trip indicator green)
Mounting mode	Unit mount busbar)
Mounting Support	Busbar
Electrical connection	Busbar connection line Busbar connection load

* Price is "List Price" and may be subject to a trade discount – check with your local distributor or retailer for actual price.

Terminal identifier	AL800M23K
Long time pick-up adjustment range	0.41 x lr
Tightening torque	442.54 lbf.in (50 N.m) 0.150.37 in² (95240 mm²) (3 x AWG 3/03 x 500 kcmil) 8.8511.51 lbf.in (1.01.3 N.m)
Number of slots	2 auxiliary switch OF plug-in) 1 alarm switch SD plug-in) 1 overcurrent trip switch SDE plug-in) 1 voltage release MN or MX plug-in)
Power wire stripping length	0.98 in (25 mm)
Height	12.86 in (326.64 mm)
Width	8.27 in (210.06 mm)
Depth	8.05 in (204.47 mm)
Net Weight	32 lb(US) (14.51 kg)
Quantity per Set	1
Environment	N CV
Quality labels	CE
Standards	UL CSA NEMA NOM-003-SCFI-2000 IEC 60947-2
Product certifications	UL CSA NOM
IP degree of protection	Front cover IP40
Pollution degree	3 IEC 60947-1
Ambient air temperature for operation	28158 °F (-270 °C)
Ambient Air Temperature for Storage	-58185 °F (-5085 °C)
Operating altitude	< 6561.68 ft (2000 m) without derating 13123.36 ft (4000 m) with derating
Ordering and shipping d	etails
Category	01215 - PG,H,J,K,L,N UNIT MT BREAKERS
Discount Schedule	DE2
GTIN	NULL
Nbr. of units in pkg.	1
Package weight(Lbs)	32.00 lb(US) (14.515 kg)
Returnability	Yes
Country of origin	US
Packing Units	
Unit Type of Package 1	PCE
Package 1 Height	11.75 in (29.845 cm)
Package 1 width	11.63 in (29.528 cm)
Package 1 Length	20.25 in (51.435 cm)

Offer Sustainability	
ustainable offer status	Green Premium product
California proposition 65	WARNING: This product can expose you to chemicals including: DINP, which is known to the State of California to cause cancer, and DIDP, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov
EACh Regulation	REACh Declaration
U RoHS Directive	Compliant EU RoHS Declaration
lercury free	Yes
RoHS exemption information	Yes
China RoHS Regulation	China RoHS declaration Product out of China RoHS scope. Substance declaration for your information.
Environmental Disclosure	Product Environmental Profile
Sircularity Profile	End of Life Information
PVC free	Yes
Contractual warranty	-
Narranty	18 months
	CRIMING'S
4	

Product data sheet Characteristics

YA600P5 PowerPact M/P-FRAME MOULDED CASE **CIRCUIT BREAKER 600A AL COMPRESSION** LUG KIT

	ON ON OSIC	ili. S.
Range of Product	PowerPact M	ication
.	PowerPact P	ntaine r appli + to th
Product or Component Type	Mechanical lug	ots cu cusei seneri
Accessory / separate part category	Connection accessory	roauc pecific
Quantity per Set	Set of 2	for sp for sp
Circuit breaker type	M-frame P-frame	products
Complementary Product compatibility	PowerPact PowerPact PowerPact P PowerPact	ristics or the perior r reliability of these ation and testing of
Line Rated Current	600 A	ility o
Material	Aluminium	al cria suitab
Mounting Mode	Compression Unit mount	rmining s rick and
AWG gauge	AWG 4/0500 kcmil aluminium/copper	anu/u r dete
Tightening torque	247.82 Lbf.In (28 N.m) 0.150.37 in ² (95240 mm ²) (AWG 4/0500 kcmil)	ed fo
		it descript to be us
Environment		enera is no
Product Certifications	CSA UL	e for and
		ion cu stitute
Ordering and shipping details		entar a sub
Category	01250-M,P,R FRAME ACCESSORIES ONLY	d as a
Discount Schedule	DE2	tende fende
Package weight(Lbs)	32.00 Oz (907.185 g)	int int
Returnability	Yes	oviae n is n
Country of origin	US	tioripi ∋ntatio
		ume ume

Green Premium product
WARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov
REACh Declaration
Compliant Compliant Complexity Co
Yes
₫ Yes
China RoHS Declaration
Product Environmental Profile
End Of Life Information
Yes
18 months
alised

Electrical Equipment

Confidential Information

Page 83

Low-Peak[™] Class J

LPJ – 600Vac/300Vdc, 1-60A, Dual Element, Time-Delay Fuses

Available with easyIDTM

open fuse indication

Description: Ultimate protection Class J dual element,

current-limiting, time-delay fuses available with optional open fuse indication. Time-delay – 10 seconds (minimum) at 500% of rated current.

Catalog Symbol: LPJ-(amp)SP (non-indicating)

LPJ-(amp)SPI (indicating)

Ratings:

Volts - 600Vac, 300Vdc

Amps - 1-60A

- IR 300kA Vac RMS Sym.
- 100kA Vdc

Agency Information:

CE, UL Listed, Guide JDDZ, File E4273

CSA Certified, Class 1422-02, File 53787,

Class J per CSA 22.2 No. 248.

Catalog Numbers (amps) – Non-indicating Fuses

LPJ-1SP	LPJ-3SP	LPJ-7SP*	LPJ-25SP*
LPJ-1 ¹ / ₄ SP	LPJ-3 ² / ₁₀ SP	LPJ-8SP*	LPJ-30SP*
LPJ-1%SP	LPJ-3½SP	LPJ-9SP*	LPJ-35SP*
LPJ-1%SP	LPJ-4SP	LPJ-10SP*	LPJ-40SP*
LPJ-2SP	LPJ-4½SP	LPJ-12SP*	LPJ-45SP*
LPJ-2 ¹ / ₄ SP	LPJ-5SP	LPJ-15SP*	LPJ-50SP*
LPJ-2½SP	LPJ-5%SP	LPJ-17½SP*	LPJ-60SP*
LPJ-2%0SP	LPJ-6SP*	LPJ-20SP*	

* Open fuse indication available by inserting the suffix "I," e.g., LPJ-15SPI. Requires 75Vac minimum voltage.

Carton Quantity:

Amp Rating	Carton Qty.
1_60	10

Dimensions - in

Features:

- Industry's only UL Listed and CSA Certified fuse with a 300kA interrupting rating that allows for simple, worry-free installation in virtually any application.
- Fast short-circuit protection and dual-element, time-delay performance provide ultimate protection.
- Reduces existing fuse inventory by up to 33% when upgrading to Low-Peak fuses.
- Consistent 2:1 ampacity ratios for all Low-Peak fuses make selective coordination easy.
- Long time-delay minimizes needless fuse openings due to temporary overloads and transient surges.
- Current-limitation protects downstream components against damaging thermal and magnetic effects of short-circuit currents.
- Dual-element fuses have lower resistance than ordinary fuses so they run cooler. Can often be sized for back-up protection against motor burnout from overload or single-phasing if other overload protective devices fail.
- Proper sizing can provide "no damage" Type 2 coordinated protection for NEMA and IEC motor controllers.
- Space-saving package for equipment downsizing.

Recommended Fuse Blocks and Holders

Fuse Amps	1-Pole	2-Pole	3-Pole			
Open Blocks						
0-30	J60030-1_	J60030-2_	J60030-3_			
35-60	J60060-1_	J60060-2_	J60060-3_			
	"Pyram	id" Blocks				
0-30	—	_	JP60030-3_			
CH Series Holders						
0-30	CH30J1_	CH30J2_	CH30J3_			
35-60	CH60J1_	CH60J2_	CH60J3_			
Safety J™ Holders						
0-30	JT60030_	_	_			
35-60	JT60060_	_	—			

For additional information on the Class J fuse blocks and holders, see data sheets # 1114 (open blocks), #1108 (pyramid blocks), # 2144 (CH Series) and # 1152 (Safety J).

Fuse Reducers For Class J Fuses

Equipment	Desired Fuse	Catalog Numbers
Fuse Clips	(Case) Size	(Pairs)
60A	30A	J-63
1004	30A	J-13
100A —	60A	J-16
200A	60A	J-26 [†]

† Not for bolt-in applications.

LPJ – 600Vac/300Vdc, 1-60A, Dual Element, Time-Delay Fuses

Time-Current Curves - Average Melt

0813 BU-SB13688

Low-Peak[™] Class J

LPJ – 600Vac/300Vdc, 1-60A, Dual Element, Time-Delay Fuses

Current-Limitation Curves

Current-Limiting Effects

Prosp.	Let-Through Current						
S.C.C.	(Apparent RMS	(Apparent RMS Symmetrical Vs. Fuse Rating)					
—	15A	30A	60A				
1000	1000	1000	1000				
3000	1000	1000	1000				
5000	1000	1000	1000				
10,000	1000	1000	2000				
15,000	1000	1000	2000				
20,000	1000	1000	2000				
25,000	1000	1000	2000				
30,000	1000	1000	2000				
35,000	1000	1000	2000				
40,000	1000	2000	3000				
50,000	1000	2000	3000				
60,000	1000	2000	3000				
80,000	1000	2000	3000				
100,000	1000	2000	4000				
150,000	1000	2000	4000				
200,000	2000	3000	4000				
250,000	2000	3000	5000				
300,000	2000	3000	5000				

The only controlled copy of this Data Sheet is the electronic read-only version located on the Bussmann Network Drive. All other copies of this document are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Bussmann reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Bussmann also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

FSPDB Finger-Safe Power Distribution Blocks

POWER DISTRIBUTION BLOCKS

SAFETY EVOLVING

Mersen FSPDBs introduce a new level of safety and ease for installing power distribution blocks. An IP20 level of finger-safe protection is achieved using FSPDBs, eliminating the need for special covers or custom plexiglass sheets to protect your panels. FSPDBs (sizes 1 to 4) simply snap onto 35mm DIN rail to provide the quickest installation. Modular design also allows for multi pole applications by use of assembly pins. FSPDBs provide a safe, convenient way of splicing cables, splitting primary power into a variety of secondary circuits or providing a fixed junction tap-off point.

FEATURES/BENEFITS

- **Finger-safe protection:** Fully insulated block ensures touch safe isolation of live parts. Recessed termination screws and wire openings provide IP20 grade protection and qualify as "finger-safe" per IEC 529.
- **Compact modularity:** Single or multiple pole configurations in the most compact footprint. Allows users to build smaller or higher density panels.
- **Snap on DIN-rail mounting:** Sizes 1 to 4 feature integral DIN rail adaptors allowing for quick and easy installations on 35mm DIN rail yielding lower installed costs.
- **Captive termination screws:** Unique channel design ensures captive metric wire termination screws. Screws can never be lost.
- **Available accessories:** For multi-pole panel mounting, simply snap in pins for rigid fit. Cap plugs provide the ability to maintain touch safety on unused openings. Circuit identification markers simply snap into blocks to ID circuits. End anchors provide rigid end stops. (Continued on next page.)

RATINGS:

- Volts: FSPDB1,2,3— 1500VAC/DC; FSPDB4,5— 600VAC/DC
- **Amps:** 175 to 840A
- SCCR: 600V or less, 100kA with proper fuse; Over 600V, 10kA

Contact Technical Services for instruction sheet.

APPROVALS:

- UL Recognized Component Guide XCFR2, File E73571
- CSA Certified: Class 6228, File 69363
- IEC-947-7-1, 529, 68-2-6, CE Marked

FEATURES/BENEFITS (CONTINUED):

- **Multiple wire ratings:** Provide users more versatility by offering capability of using multiple conductors in #2 and 2/0 openings.
- AC & DC ratings: FSPDB1, 2, and 3 have been evaluated for use at 1500V (AC or DC) provided they are installed on DIN-rails only and with proper barriers and spacing between poles of opposite polarity.

CATALOG NUMBERS

Catalog	Number	Ampere Rating		Line			Line Load			
Aluminum	Copper	(Based on NEC	Wire	Range		Wire	Range	0	Short Circuit	
(Connector rated for 90° C Cu/AL wire)	(Connector rated for 75° C Cu wire only)	Table 310-16 for 75° C Cu wire only)	AWG/	mm²	Openings	AWG/ kcmil	mm²	Pole	Current Rating	
FSPDB1A	FSPDB1C	175	2/0-#14	70-2.5	1	2/0-#14	70-2.5	1	100kA*	
FSPDB2A	FSPDB2C	175	2/0-#14	70-2.5	1	#2-#14	35-2.5	4	100kA*	
FCDDDDA	FORDAG	24.0	350-#6	185-16		112 1144	25.2.5		4001.4*	
F25DR34	F2DDB3C	310	2/0-#14	70-2.5	1	#2-#14	35-2.5	8	100KA**	
FSPDB4A	FSPDB4C	335	400-#6	185-16	1	400-#6	185-16	1	100kA*	
FSPDB5A**	FSPDB5C	840	600-#4	300-25	2	600-#4	300-25	2	100kA*	

*Contact Mersen Technical Services at technicalservices.nby@mersen.com for fuse type and maximum ampere required.

** FSPDB5A is not DIN-rail mountable.

Multiple Wire Ratings (Same Size & Type Wires Only)						
	2/0 Openings			#2 Openings		
(2) #4 AWG	(2) #8 AWG	(2) #12 AWG	(2) #6 AWG	(2-4) #10 AWG (2-4) #14 AWG		
(2) #6 AWG	(2) #10 AWG	(2)#14 AWG	(2) #8 AWG	[2-4] #12 AWG		

DIMENSIONS

Dimension	FSPI FSPI Figu	DB1A DB1C Ire 1 in	FSPI FSPI Figu	DB2A DB2C Ire 1 in	FSPI FSPI Figu	DB3A DB3C re 2 in	FSPI FSPI Figu mm	DB4A DB4C Ire 1 in	FSPI FSPI Figu	DB5A DB5C Ire 2 in
А	25.4	1.00	28.4	1.12	46.9	1.85	39	1.54	72	2.84
В	43.3	1.70	57.8	2.28	64.3	2.53	108	4.25	91	3.58
С	49.5	1.95	56.0	2.21	64.3	2.53	80	3.15	80	3.15
D	45.1	1.78	51.6	2.03	59.8	2.36	75.5	2.97	-	-
Е	39.4	1.55	39.4	1.55	51.5	2.03	50.1	1.97	50.1	1.97
F	72.6	2.86	87.7	3.45	100.8	3.97	145.5	5.73	145	5.71
G	59.6	2.35	74.6	2.94	82.4	3.24	120.6	4.75	127.5	5.02
Н	5.3	0.21	5.1	0.20	6.5	0.26	7	0.28	3	0.12
1		-	-		31.5	1.24	-	-	52	2.04
J	5.3	0.21	6.4	0.25	6.5	0.26	6.5	0.26	6.5	0.26
K	10	0.40	11.7	0.46	8.9	0.35	16	0.63	8.5	0.34

ACCESSORIES

Catalog No.	Description
FSPIN1	Accessory pin to form multiple pole block
FSCIM1	Circuit identification marker for 2/0 & #2 max. conductors (80 per card)
FSCIM2	Circuit identification marker for 350, 400 & 600 kcmil max. conductors (56 per card)
FSCAP1	Cap plug for spare 2/0 openings
FSCAP2	Cap plug for spare 350 kcmil openings
FSCAP3	Cap plug for spare 600 kcmil opening
FSEA	Pair of end anchors

Figure 2

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany Fon: +49 5231 14-0 Fax: +49 5231 14-292083 www.weidmueller.com

Weidmüller VPU I (Type I), VPU II (Type II) and VPU III (Type III) surge protection products effectively reduce the interference coupling that can occur due to transient surge voltages, even significantly below the limits prescribed by insulation co-ordination according to EN 60664-3 / DIN VDE 0110-3. This means that the whole installation is exposed to fewer malfunctions. The arresters are co-ordinated using technical means. This means that decoupling between Types I, II and III is unnecessary. The arresters are tested according to product standard IEC 61643-11 / DIN EN 61643-11 and can be installed in systems according to IEC 61643-12 / VDE V0675-6-12 and IEC 62305-4 / VDE 0185-4. This lightning and surge protection device is suited for installation in power supply systems. Weidmüller offers different products depending on the particular mains network type and voltage level. A special Type I and Type II protective device is even available for photovoltaic applications.

General ordering data

Туре	VPU AC II 3 R 480/50
Order No.	<u>2591260000</u>
Version	Surge voltage arrester, Low voltage, Surge protection, with remote contact, TN-C, $U_P(L/N-PE) \le 2.3 \text{ kV}$
GTIN (EAN)	4050118599671
Qty.	1 pc(s).

Technical data

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany Fon: +49 5231 14-0 Fax: +49 5231 14-292083 www.weidmueller.com

Dimensions and weights			
Width	54 mm	Width (inches)	2.126 inch
Height	95 mm	Height (inches)	3.74 inch
Depth	68 mm	Depth (inches)	2.677 inch
Depth including DIN rail	76 mm	Net weight	410 g
Temperatures			
Humidity	5 - 95% rel. humidity	Operating temperature, max.	85 °C
Operating temperature, min.	-40 °C	Storage temperature, max.	85 °C
Storage temperature, min.	-40 °C	Operating temperature	-40 °C85 °C
Storage temperature	-40 °C85 °C		
Rated data UL		20	
Voltage type	٨٢	Certificate No. (cl IRus)	F35//261
Bated Voltage Llu			2 500 V
	400 V	SCCP	2,500 V
		Category	
'n	20 KA	category	SFD TIPE ICA
Connection data, remote aler	t		
Connection type		Ctrinning longth	9 mm
Connection type	POSHIN	Crease assistion for compacted wire, calid	8 11111
core, min.	0.14 mm²	core, max.	1.5 mm²
General data			
Altitude	< 4000 m	Colour	orange black
	Installation housing: 2TE	Ontical function display	areen = OK red = arrestor
Design	InstallP 20	Optical function display	is defective - replace
Protection degree	IP20 in installed state	Rail	TS 35
Segment	Power distribution	UL 94 flammability rating	V-0
Version	Surge protection, with		
	remote contact		
Insulation coordination acc. t	o EN 50178		
Pollution severity	2	Surge voltage category	111

Technical data

Rated data IEC / EN

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany Fon: +49 5231 14-0 Fax: +49 5231 14-292083 www.weidmueller.com

Discharge current I _{max} (8/20µs) wire-PE	50 kA	Discharge current I _n (8/20µs) wire-PE	20 kA
Energy coordination (≤10 m)		Follow-on current extinguishing	Follow current need not be
	Type II, Type III	capability I _{fi}	taken into account
Frequency range, max.	60 Hz	Frequency range, min.	50 Hz
Fuse	250 gG @50 kA lsccr, 315 gG @25 kA lsccr	Leakage current at U _n	0.7 mA
Low voltage network	TN-C	Max. continuous voltage, Uc (AC)	480 V
Number of poles	3	Protection level U _P (typ.)	≤ 2.3 kV
Rated voltage (AC)	400 V	Requirements category acc. to IEC 61643-11	Type II
Requirements class, acc. to EN		Response time	
61643-11	T2		≤ 25 ns
SPD type	T2	Short-circuit current rating I _{SCCR}	50 kA
Signalling contact	250 V 1A 1CO	Standards	IEC61643-11, EN61643-11
Temporary surge voltage (over-voltage) TOV	581 V	Voltage type	AC
Composition data			

nnection data

Wire connection method	Screw connection	Type of connection	Screw connection
Stripping length, rated connection	15 mm	Tightening torque, min.	2 Nm
Tightening torque, max.	4.5 Nm	Clamping range, rated connection	16 mm²
Clamping range, min.	4 mm ²	Clamping range, max.	35 mm²
Wire cross-section, solid, min.	2.5 mm ²	Wire cross-section, solid, max.	35 mm²
Wire connection cross-section, finely stranded, min.	4 mm ²	Wire connection cross section, finely stranded, max.	35 mm²
Conductor cross-section, flexible, AEH (DIN 46228-1), min.	2.5 mm ²	Conductor cross-section, flexible, AEH (DIN 46228-1), max.	35 mm²
Connection cross-section, stranded, mir	1. 2.5 mm ²	Connection cross-section, stranded, max.	35 mm²

Classifications

ETIM 6.0	EC000941	ETIM 7.0	EC000941
eClass 9.0	27-13-08-05	eClass 9.1	27-13-08-05
eClass 10.0	27-13-08-05	UNSPSC	30-21-19-21

Approvals

Approvals

	,
--	---

ROHS	Conform	
Downloads		
Approval/Certificate/Document of	EAC VPU SERIES	
Conformity	Declaration of Conformity	
Engineering Data	<u>STEP</u>	
User Documentation	Instruction sheet	

Instruction sheet

Drawings

Electric symbol

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany Fon: +49 5231 14-0 Fax: +49 5231 14-292083 www.weidmueller.com

SIEMENS

Data sheet

3UG4513-1BR20

ANALOG MONITORING RELAY PHASE FAILURE AND -SEQUENCE ADJUSTABLE UNDERVOLTAGE UNBALANCE 20% FIXED 3X 160 TO 690V AC 50 TO 60 HZ HYSTERESIS 5% FIXED DELAY TIME 0-20S 2 CHANGEOVER CONTACTS SCREW TERMINAL REPLACEMENT PRODUCT FOR 3UG3013-1B...

Product	function

Phase monitoring relay

Measuring circuit:		
Type of voltage for monitoring		AC
Number of poles for main current circuit	_	3
Measurable voltage at AC	V	160 690
Adjustable voltage range	V	200 690
Relative metering precision	%	5
Relative repeat accuracy	%	1
General technical data:		
Display version LED		Yes
Product function		
 undervoltage detection 		Yes
Overvoltage detection		No
 phase sequence recognition 		Yes
 Phase failure detection 		Yes
Phase unbalance		Yes
 Overvoltage detection 3 phase 		No
 undervoltage detection 3 phases 		Yes

 Voltage window recognition 3 phase 		No	
Auto-reset		Yes	
Adjustable open/closed-circuit current principle		No	
Starting time after the control supply voltage has been applied	ms	1 000	
Response time maximum	ms	450	
Type of voltage of the control supply voltage		AC	
Control supply voltage			
● at AC			
— at 50 Hz rated value	V	160 690	
— at 60 Hz rated value	V	160 690	
Operating range factor control supply voltage rated value			
• at AC			
— at 50 Hz		11	
— at 60 Hz		11	
Surge voltage resistance rated value	kV	6	
Consumed active power	W	2	
Protection class IP	-	IP20	
Electromagnetic compatibility	-	IEC 60947-1 / IEC 61000-6-2 / IEC 61000-6-4	
Vibration resistance acc. to IEC 60068-2-6	-	1 6 Hz: 15 mm, 6 500 Hz: 2g	
Shock resistance acc. to IEC 60068-2-27		sinusoidal half-wave 15g / 11 ms	
Installation altitude at height above sea level maximum	m	2 000	
Conducted interference due to burst acc. to IEC 61000-4-4		2 kV	
Conducted interference due to conductor-earth surge acc. to IEC 61000-4-5		2 kV	
Conducted interference due to conductor-conductor surge acc. to IEC 61000-4-5		1 KV	
Electrostatic discharge acc. to IEC 61000-4-2		6 kV contact discharge / 8 kV air discharge	
Field-bound parasitic coupling acc. to IEC 61000-4-3	-	10 V/m	
Insulation voltage for overvoltage category III according to IEC 60664 with degree of pollution 3 rated value	V	690	
Degree of pollution	-	3	
Ambient temperature			
 during operation 	°C	-25 +60	
 during storage 	°C	-40 +85	
 during transport 	°C	-40 +85	
Galvanic isolation			
 between entrance and outlet 		Yes	
 between the outputs 		Yes	
 between the voltage supply and other circuits 		Yes	

Mechanical data:			
Width	mm	22.5	
Height	mm	92	
Depth	mm	91	
Mounting position		any	
Required spacing for grounded parts			
• forwards	mm	0	
Backwards	mm	0	
• at the side	mm	0	
● upwards	mm	0	
downwards	mm	0	
Required spacing with side-by-side mounting			
• forwards	mm	0	
Backwards	mm	0	
• at the side	mm	0	
● upwards	mm	0	
• downwards	mm	0	
Required spacing for live parts			
• forwards	mm	0	
Backwards	mm	0	
• at the side	mm	0	
● upwards	mm	0	
• downwards	mm	0	
Mounting type		snap-on mounting	
Product function removable terminal for auxiliary and		Yes	
control circuit			
Type of electrical connection		screw-type terminals	
Type of connectable conductor cross-sections			
• solid		1x (0.5 4 mm2), 2x (0.5 2.5 mm2)	
 finely stranded 			
— with core end processing		1x (0.5 2.5 mm2), 2x (0.5 1.5 mm2)	
 at AWG conductors 			
— solid		2x (20 14)	
— stranded		2x (20 14)	
Tightening torque with screw-type terminals	N∙m	0.8 1.2	
Outputs:			
Number of NO contacts delayed switching		0	1
Number of NC contacts delayed switching		0	
Number of CO contacts delayed switching		2	
Ampacity of the output relay			
• at AC-15			
			4

А	3	
А	3	
A	1	
A	0.2	
A	0.1	
А	5	
mA	5	
А	4	
	10 000 000	
	100 000	
1/h	5 000	
	A A A A A mA A 1/h	A 3 A 3 A 1 A 0.2 A 0.1 A 5 mA 5 I 10 000 000 100 000 100 000 1/h 5 000

o = -1	
L Antiticates/	annrovais:
UCI lineales/	

ertineates/ approva					
General Product	Approval		EMC	Declaration of	Test
				Conformity	Certificates
CCC		EAE	C-Tick	EG-Konf.	<u>Type Test</u> Certificates/Test <u>Report</u>
Test	Shipping	other	Railway		
Certificates	Approval				
Special Test Certificate	LRS	Confirmation	Vibration and Shock		
Further information					
Information- and Dov http://www.siemens.com	vnloadcenter (Catalo n/industrial-controls/ca	gs, Brochures,) talogs			

Industry Mall (Online ordering system) http://www.siemens.com/industrymall

Cax online generator http://support.automation.siemens.com/WW/CAXorder/default.aspx?lang=en&mlfb=3UG4513-1BR20

Service&Support (Manuals, Certificates, Characteristics, FAQs,...) https://support.industry.siemens.com/cs/ww/en/ps/3UG4513-1BR20

Image database (product images, 2D dimension drawings, 3D models, device circuit diagrams, EPLAN macros, ...) http://www.automation.siemens.com/bilddb/cax_de.aspx?mlfb=3UG4513-1BR20&lang=en

Effective October 2017 Supersedes February 2016

Low-Peak[™] LP-CC Class CC 600 Vac/300 Vdc, 1/2-30 A time-delay fuses

Catalog symbol:

• LP-CC-(amp)

Description:

Bussmann[™] series Ultimate protection Low-Peak Class CC current-limiting, time-delay fuses. Timedelay – 12 seconds (minimum) at 200% of rated current.

Specifications:

Ratings

Volts

IR

• 600 Vac

- 300 Vdc (1/2 to 2-8/10 A, 20-30 A)
- 150 Vdc (3-15 A)
- Amps 1/2-30 A
 - 200 kA Vac RMS Sym.
 - 20 kA Vdc

Agency information

- UL[®] Listed Class CC, Std. 248-4, Guide JDDZ, File E4273
- CSA® Certified; Class 1422-02, File 53787
- CE
- RoHS compliant (20-30A)

Catalog numbers (amps)							
LP-CC-1/2	LP-CC-1-1/2	LP-CC-3	LP-CC-6	LP-CC-12			
LP-CC-6/10	LP-CC-1-6/10	LP-CC-3-2/10	LP-CC-6-1/4	LP-CC-15			
LP-CC-8/10	LP-CC-1-8/10	LP-CC-3-1/2	LP-CC-7	LP-CC-20			
LP-CC-1	LP-CC-2	LP-CC-4	LP-CC-7-1/2	LP-CC-25			
LP-CC-1-1/8	LP-CC-2-1/4	LP-CC-4-1/2	LP-CC-8	LP-CC-30			
LP-CC-1-1/4	LP-CC-2-1/2	LP-CC-5	LP-CC-9				
LP-CC-1-4/10	LP-CC-2-8/10	LP-CC-5-6/10	LP-CC-10				

BUSSMAN

Carton quantity:

 Amp rating
 Carton qty.

 1/2-30
 10

Dimensions - in (mm)

Features:

- 200kA interrupting rating complies with NEC[®] Section 110.9 for today's large capacity systems.
- Fast short-circuit protection and dual-element, time-delay performance provide ultimate protection.
- Reduces existing fuse inventory by up to 33% when upgrading to Low-Peak fuses.
- Consistent 2:1 amp rating ratios for all Low-Peak fuses make selective coordination easy.
- Time-delay characteristic avoids unwanted fuse openings from surge currents while fast response speed under fault conditions provides a high degree of current limitation.
- Current-limitation protects downstream components against damaging thermal and magnetic effects of fault currents.
- A superior, all-purpose, space-saving branch circuit fuse that meets most protection requirements up to 30 A.
- Very compact physical size that's only $13/32'' \times 1-1/2''$ (10 x 38mm) with rejction tip.
- Proper sizing can provide "No Damage" Type 2 coordinated protection for NEMA and IEC motor controllers.
- Can be used where either a time-delay or a fast-acting fuse is needed, making selection easier and reducing spare fuse inventories for substantial cost reduction.
- Superior protection for small horsepower motor circuits.

Recommended fuse blocks and holders:

Fuse amps	1-pole	2-pole	3-pole	
Modular open b	locks			
up to 30	BCM603-1_	BCM603-2_	BCM603-3_	
DIN-Rail holders	;			
	CHCC1D_	CHCC2D_	CHCC3D_	
Lin to 20	_	—	OPM-NG	
Up to 30	_	—	OPM-1038_	
		_	OPM-1038_SW	
Panel mount ho	Iders			
Lin to 20	HPS-RR	_	_	
Up to 30	HPF-RR	—	_	
In-line holders				
Lin to 20		HEY	_	
Up to 30	HEZ	_		

For additional information on Class CC fuse blocks and holders, see data sheets:

- Modular open blocks no. 10241 (BCM)
- DIN-Rail holders No. 10430 (CHCC), No. 1109 (OPM-NG), No. 1102 (OPM-1038), No. 1103 (OPM-1038_SW)
- Panel mount holders No. 2113 (HPS), No. 2114 (HPF)
- In-line holders No. 2126 (HEY), No. 2130 (HEZ)

Time-current curves - average melt:

Current-limitation curves:

Current-limiting effects:

10000		В			Prospective	Let-throug (apparent	jh current RMS symr	netrical v	s. fuse ra	ating)	
5000			25		S.C.C.	1-1/4 A	2-8/10 A	15 A	20 A	25 A	30 A
3000			15	8/10	1000	100	135	240	305	380	435
2000				0,10	3000	140	210	350	440	575	580
1000			1-1	1/4	5000	165	255	420	570	690	710
700				ס	10,000	210	340	540	700	870	1000
300			o Rat		20,000	260	435	680	870	1090	1305
200					30,000	290	525	800	1030	1300	1520
100					40,000	315	610	870	1150	1390	1700
70					50,000	340	650	915	1215	1520	1820
50					60,000	350	735	1050	1500	1650	1980
30 A					100,000	420	020	1210	1600	2000	2100
20					200,000	525	1100	1600	2000	2000	3050
		8 8				020		1000	2000	2020	
			2				2				
	2	J.									

The only controlled copy of this data sheet is the electronic read-only version located on the Eaton network drive. All other copies of this document are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Eaton 1000 Eaton Boulevard Cleveland, OH 44122 Eaton.com

Bussmann Division 114 Old State Road Ellisville, MO 63021 United States Eaton.com/bussmannseries

© 2017 Eaton All Rights Reserved Printed in USA Publication No. 1023 — BU-SB13732 October 2017 Eaton, Bussmann and Low-Peak are valuable trademarks of Eaton in the US and other countries. You are not permitted to use the Eaton trademarks without prior written consent of Eaton.

UL is a registered trademark of the Underwriters Laboratories, Inc. CSA is a registered trademark of the Canadian Standards Group. NEC is a registered trademark of the National Fire Protection Association, Inc. For Eaton's Bussmann series product information, call **1-855-287-7626** or visit: **Eaton.com/bussmannseries**

Follow us on social media to get the latest product and support information.

GUARDIAN/GUARDIANX SERIES DP53 480 VOLT 3-PHASE NEMA 4 or 4X AIR CONDITIONERS

DESCRIPTION

The *Guardian/GuardianX* Indoor/Outdoor Air Conditioners are designed specifically for **NEMA 4** and **4X** enclosure applications that require washdown or are subject to outdoor storm conditions. All *Guardian* models have a **NEMA 4** Rating, offering protection against the hazards of unwanted environmental penetration. The *GuardianX*, with the *NEMA 4X* Rating, is offered with a Stainless Steel Shell and Internal Corrosion Protection.

With Epoxy-coated condenser coils and a closed-loop cooling system, the *Guardian Series* offers added security by providing an operating environment safe from harsh ambient conditions.

The features engineered into all of the *Guardian Series* models make them a tamper-resistant choice for external applications. Combined with a NEMA 4 Rating, with all models UL/CUL Listed, the *Guardian Series* is an excellent choice for telecommunications or other outdoor cabinet applications.

FEATURES AND BENEFITS (STANDARD)

All models UL and cUL Listed, a standard of safety.

CFC-free refrigerant provides a zero ozone depletion potential.

Condenser blower controller installed in the refrigerant liquid line, controlling the condenser fan.

Closed-loop cooling provides stable temperature control while excluding dust and humidity from the electrical enclosure

Condenser impeller cycling provides stable capacity and temperature control.

Condenser filtration to maintain peak thermal performance extends compressor life.

Internal corrosion protection to increase reliability in hostile environments.

Low Temperature Control Thermostat provides energy-efficient operations.

NEMA 12, 3R & 4 ratings for compatibility with listed electrical enclosures.

Stainless steel shell for NEMA 4X corrosive environments (NEMA 4X models).

Both evaporator and condenser coils are epoxy coated, prolonging unit life.

FEATURES AND BENEFITS (OPTIONAL)*

Compressor short-cycling protection extends compressor life. (Standard Feature on models with a Programmable Thermostat).

Enclosure heater eliminates damaging condensation, increasing reliability of electrical enclosure components.

Lead-lag control for two air conditioners provides for capacity control, and alternates usage, increasing reliability.

Mounting adapter plates are offered to replace another manufacturer's unit.

Programmable thermostat capable of remote monitoring and control is available.

Programmable temperature alarm to alert if early action required.

Remote monitoring provides temperature data for warning of early action required.

Remote thermostat relay for control by a user-supplied control system.

Special paint finishes*

*Contact KOOLTRONIC for more information.

REPLACEMENT FILTERS

The DP53L-LV filter Part No. 6382F (16.88" x 6.38" x 0.34" [428.7mm x 162.0mm x 8.6mm]). The DP53L-LV uses two filters.

Effective August 2015 Supersedes January 2014

LIMITRON[™] FNQ-R Class CC 600Vac, 1/4-30A, time-delay fuses

Catalog symbol:

· FNQ-R-(amp)

Description:

Advanced protection Class CC current-limiting, time-delay fuses.

Specifications:

Ratings

- Volts
- 600Vac 300Vdc (15 & 20A)
- Amps 1/4-30A

IR

- · 200kA Vac RMS Sym.
- 20kA Vdc (15 & 20A)

Agency information

- UL® Listed, Std. 248-4, Class CC, Guide JDDZ, File E4273
- CSA[®] Certified, Class CC CSA, Class 1422-01, File 53787–HRC-MISC
 - CE
- RoHS compliant*
- * FNQ-R-1/4 not RoHS complaint.

Catalog nur	nbers (amps)			
FNQ-R-1/4	FNQ-R-1-3/10	FNQ-R-3-2/10	FNQ-R-8	
FNQ-R-3/10	FNQ-R-1-4/10	FNQ-R-3-1/2	FNQ-R-9	
FNQ-R-4/10	FNQ-R-1-1/2	FNQ-R-4	FNQ-R-10	
FNQ-R-1/2	FNQ-R-1-6/10	FNQ-R-4-1/2	FNQ-R-12	
FNQ-R-6/10	FNQ-R-1-8/10	FNQ-R-5	FNQ-R-15	
FNQ-R-3/4	FNQ-R-2	FNQ-R-5-6/10	FNQ-R-17-1	1/2
FNQ-R-8/10	FNQ-R-2-1/4	FNQ-R-6	FNQ-R-20	
FNQ-R-1	FNQ-R-2-1/2	FNQ-R-6-1/4	FNQ-R-25	
FNQ-R-1-1/8	FNQ-R-2-8/10	FNQ-R-7	FNQ-R-30	
FNQ-R-1-1/4	FNQ-R-3	FNQ-R-7-1/2		

BUSSMAN

Carton quantity:

Amp rating	Carton qty.
1/4-30	10

Dimensions - in:

Features:

- Provides 10X better current limitation to help prevent equipment damage caused by shortcircuit events.
- 200kA interrupting rating complies with NEC[®] Section 110.9 for today's large capacity systems.
- Fast-acting fuse helps prevent equipment damage caused by short-circuit events.
- Rejection type fuse fits both standard and rejection-style holders.
- The Class CC FNQ-R Limitron fuse meets the needs of control circuit transformer protection.
- FNQ-R fuses can be sized according to NEC[®] and UL requirements and still allow the high inrush currents, with significantly more timedelay than the UL minimum value of 12 seconds at 200% for Class CC fuses.
- Ideal for critical industrial or commercial applications that have specific current limitation requirements.

Applications:

- Branch circuits
- · Line protection
- Small control transformers
- Industrial control

Recommended fuse blocks and holders:

Fuse amps	1-Pole	2-Pole	3-Pole
	Modula	ir open blocks	
0-30	BCM603-1_	BCM603-2_	BCM603-3_
	DIN-f	Rail holders	
	CHCC1D_	CHCC2D_	CHCC3D_
0-30	_	_	OPM-NG
	_	_	OPM-1038_
		_	OPM-1038_SW
	Panel n	nount holders	
0-30	HPS	_	_
	HPF	_	_
	In-lii	ne holders	
0-30		HEY	_
	HEZ	_	_

For additional information on Class CC fuse blocks and holders, see data sheets:

- Modular open blocks # 10241 (BCM)
- DIN-Rail holders No. 3185 (CHCC), No. 1109 (OPM), No. 1102 (OPM-1038), No. 1103 (OPM-1038_SW)
- · Panel mount holders No. 2113 (HPS), No. 2114 (HPF)
- · In-line holders No. 2126 (HEY), No. 2130 (HEZ)

Time-current curves - average melt:

1/2 to 71/2 amps

Time-current curves - average melt:

15 to 30 Amps

Current-limitation curves:

1-1/2 to 7-1/2 amps

Current-limitation curves:

10 to 30 amps

The only controlled copy of this data sheet is the electronic read-only version located on the Eaton network drive. All other copies of this document are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Eaton 1000 Eaton Boulevard Cleveland, OH 44122 Eaton.com

Bussmann Division 114 Old State Road Ellisville, MO 63021 United States Eaton.com/bussmannseries

© 2015 Eaton All Rights Reserved Printed in USA Publication No. 1014 — BU-SB14042 August 2015 Eaton, Bussmann and Limitron are valuable trademarks of Eaton in the US and other countries. You are not permitted to use the Eaton trademarks without prior written consent of Eaton. UL[®] is a registered trademark of the Underwriters Laboratories, Inc. CSA[®] is a registered trademark of the Canadian Standards Group. NEC[®] is a registered trademark of the National Fire Protection Association. Inc.

Transformers				1	
Bulletin	1497	1497A	1497B	1497D	
Туре	Control Circuit Transformer	Machine Tool Transformer	Control Power Transformer	General Purpose Transformer	
Features	 Single, dual, and multi-tap primary voltages Single phase EN 60-529 finger-safe protection RoHS compliant 50/60 Hz, 50 Hz, or 60 Hz Optional Fusing 	 Dual/Multi-tap RoHS compliant Single phase 50/60 Hz Optional Fusing 	 Dual/Multi-tap RoHS compliant Single phase 60 Hz only Optional Fusing 	 Indoor/outdoor non-ventilated enclosure Single phase Exceeds requirements of the Uniform Building Code (UBC) and California Code Title 24 Copper windings provided for all transformers rated 2 kVA and below Aluminum windings provided for all transformers rated 2 kVA and above NEMA Type 3R rated enclosures 50/60 HZ or 60 Hz 	
Output Power	632000VA	503000VA	503000VA	0.0525 kVA	
Input Voltage/ Primary Voltage	208600V 220550 (50 Hz)	208575V (50/60 Hz)	120600V	208600V	
Output Voltage/ Secondary Voltage	24120V 24230V (50 Hz)	24120V (50/60 Hz)	24240V	120240V	
Insulation	632000VA — Class 130 °C (5580 °C temp. rise)	50150VA — Class 1 2001500VA — Class 20003000VA — Class	Class 180 °C (115 °C temp. rise)		
Certifications	cULus, CE	cULus	cULus	UL, CSA	
Standards	CSA C22.2 No. 66.1, EN 61558, UL 5085-1, 5085-2	CSA C22.2 No. 66.1, UL 5085-1, 5085-2	CSA C22.2 No. 66.1, UL 5085-1, 5085-2	CSA C22.2 No. 47 — M90, UL 1561	
Page	Page 4	Page 9	Page 14	Page 19	

Rockwell Automation Publication 1497-TD001A-EN-P

Catalog Number Explanation Bulletin 1497B Control Power Transformers

1497B - A3 - M11 - 0 - N a - $\frac{M11}{b}$ - 0 - N

h

	a
	VA Rating
Code	Description [VA]
A1	50
A2	75
A3	100
A4	150
A5	200
A6	250
A7	300
A9	500
A10	750
A11	1000
A12	1500
A13	2000
A14	3000

	Primary and Secondary Voltage							
Code	Primary	Secondary						
M11	600/575/550V	120X240V (60 Hz)						
M12	120X240V	120X240V (60 Hz)						
M13	120X240V	24V (60 Hz)						
M14	240X480V	120X240V (60 Hz)						
M15	380/400/416V	115X230V (60 Hz)						
M16	240X480V	24V (60 Hz)						
M17	208/240V	24V (60 Hz)						

	Fuse Block Options*						
	Code	Block Options					
I	0	0 Primary, 0 Secondary					
	1	0 Primary, 1 Secondary					
	2	2 Primary, 0 Secondary					
	3	2 Primary, 1 Secondary					
	d						
		Factory Installed Options					

Code	Description	
Ν	No Taps	

Note: For complete list of valid transformer configurations, see Product Selection.

Transformers rated 350VA and below use secondary fuse clips. Transformers rated 500VA and above use secondary fuse blocks.

Selecting a Control Power Transformer

For proper transformer selection, three characteristics of the load circuit must be determined in addition to the minimum voltage required to operate the circuit. These are total steady-state (sealed) VA, total inrush VA, and inrush load power factor.

- Total steady-state (sealed) VA is the volt-amperes that the transformer must deliver to the load circuit for an extended period of time the amount of current required to hold the contact in the circuit.
- Total inrush VA is the volt amperes that the transformer must deliver upon initial energization of the control circuit. Energization of electromagnetic devices takes 30...50 milliseconds. During this inrush period, the electromagnetic control devices draw many times normal current — 3...10 times normal is typical.
- Inrush load power factor is difficult to determine without detailed vector analysis of all the load components. Such an analysis is generally not feasible. Therefore, a safe assumption is 40% power factor.

Selection Process

- Determine the total inrush VA of the control circuits from the table below, *Typical Magnetic Motor Starter and Contactor Data 60 Hz*, *120 Volt, 3-Pole*. Do not neglect the current requirements of indicating lights and other devices that do not have an inrush VA but are re-energized at the same time as the other components in the circuit. Their total VA should be added to the total inrush VA.
- 2. Refer to the table below, *Regulation Data Inrush VA*. If the supply circuit voltage (Step 1) is reasonably stable and fluctuates not more than ± 5%, refer to the 90% secondary voltage column. If it fluctuates as much as ± 10%, refer to the 95% secondary voltage column. Go down the column selected until at the inrush VA closest to, but not less than, the inrush VA of the control circuit.
- 3. Read to the far left side of the chart. The transformer's continuous nominal VA rating is now selected. The secondary voltage that will be delivered under inrush conditions will be either 85%, 90%, or 95% of the rated secondary voltage, depending on the column selected from the table below, *Regulation Data Inrush VA*. The total sealed VA of the control circuit must not exceed the nominal VA rating of the transformer selected from the table below, *Typical Magnetic Motor Starter and Contactor Data 60 Hz, 120 Volt, 3-Pole.*
- Refer to the specification tables on the following pages to select a transformer according to the required continuous nominal VA, and primary and secondary voltage combinations.

Regulation Data - Inrush VA

Inr	ush VA at 40°	Power Factor Adjustments			
Nominal VA Rating	85%	90%	95%	Power Factor	Multiply By
50	158	139	116	100%	0.63
75	242	213	177	90%	0.65
100	346	302	249	80%	0.70
150	528	461	379	70%	0.75
200	869	743	585	60%	0.82
250	1057	904	719	50%	0.90
300	1418	1200	937	40%	1.00
500	2681	2221	1648	20%	1.27
750	4560	3718	2700	10%	1.45
1000	7568	6118	4185	—	—
1500	15724	12423	8203	—	_
2000	16941	13660	9484	_	_
3000	25680	20180	13797	—	—

Dimensions are shown in inches (millimeters). Dimensions are not intended to be used for manufacturing purposes.

Transformer with 2 Primary Fuse Blocks and 0 or 1 Secondary Fuse Block/Clip (Top View)

Transformer with 0 Primary Fuse Blocks and 0 or 1 Secondary Fu Block/Clip (Top View)

Transformer with 2 Primary Fuse Blocks and 1 Secondary Fuse Block/Clip (Side View)

Transformer with 2 Primary Fuse Blocks and 1 Secondary Fuse Block/Clip

(Side View)

Transformer with 0 Primary Fuse Block and 1 Secondary Fuse Block/Clip (Side View)

Transformer with 0 Primary Fuse Blocks and 1 Secondary Fuse Clip (Side View)
					2	F	F				Approx. Shipping Wt.
VA		A	В	C	D	E	F	G	H	J	ID (KG)
50	1497B-A1-W13-U-N	3-25/32	3	2-23/32	1-31/32	2-1/2	15/32	1/5	3-9/64	4-1/32	2 (1 4)
50	1497 B-AT-WITO-U-N	(96)	(76)	(69)	(50)	(64)	(12)	(5)	(80)	(102)	3 (1.4)
	1437 D-AT-IVIT7-0-IN	4-1/32	3	2-23/32	2-27/64	2-1/2	15/32	1/5	3-9/64	4-1/32	
75	1497B-A2-M13-0-N	(102)	(76)	(69)	(61)	(64)	(12)	(5)	(80)	(102)	4 (1.8)
	1/07B_03_M11_0_N	4-1/16	3-3/4	3-23/64	2-13/32	3-1/8			3-49/64	4-21/32	
		(103)	(95)	(85)	(61)	(80)			(96)	(118)	
	1497B-A3-M12-0-N						15/20	1/5			
100	1497B-A3-M13-0-N	4	3-3/8	3-3/64	2-27/64	2-13/16	(12)	(5)	3-15/32	4-23/64	5 (2.3)
	1497B-A3-M14-0-N	(102)	(86)	(77)	(61)	(71)			(88)	(110)	
	1497B-A3-M16-0-N										
	1497B-A3-M17-0-N										
	1497B-A4-M13-0-N										
150	1497B-A4-M14-0-N	4-1/16	3-3/4	3-23/64	2-13/16	3-5/16	15/32	1/5	3-49/64	4-21/32	6 (2.7)
	1497B-A4-M16-0-N	(103)	(95)	(00)	(71)	(00)	(12)	(5)	(96)	(110)	· · ·
	1497B-A4-M17-0-N										
000	1497B-A5-M11-0-N	4-3/8	4-1/2	3-31/32	2-5/8	3-3/4	15/32	1/5	4-2/5	5-9/32	10 (4 5)
200	1497B-A5-M12-0-N	(111)	(114)	(101)	(67)	(95)	(12)	(5)	(112)	(134)	10 (4.5)
	1497B-A5-M13-0-N										
	1497B-A6-M13-0-N										
250	1497B-A6-M14-0-N	4-3/8	4-1/2	3-31/32 (101)	2-53/64 (72)	3-3/4 (95)	15/32 (12)	1/5 (5)	4-2/5 5- (112) (1	5-9/32	10 (4.5)
	1497B-A6-M16-0-N	(111)	(114)							(134)	
	1497B-A6-M17-0-N										
	1497B-A7-M11-0-N	4-3/4	4-1/2	3-31/32	3-3/16	3-3/4	15/32	1/5	4-2/5	5-9/32	10 (5.1)
300	1497B-A7-M12-0-N	(120)	(114)	(101)	(81)	(95)	(12)	(5)	(112) (134)	12 (5.4)	
	1497B-A7-M13-0-N										
	149/B-A9-M11-0-N				0 7/0			5/16 (8)	_	5-15/16 (151)	18 (8.2)
500	1497B-A9-M12-U-N	6-7/64	5-1/4	4-5/8	3-7/8	4-3/8	1-1/16				
	1497B-A9-M14-0-N	(155)	(133)	(110)	(90)	(11)	(27)				
	1497B-A9-M15-U-N										
	1497B-A10-M12-0-N	7-39/64	5-1/4	4-5/8	5-7/8	4-3/8	1-1/16	5/16		5-15/16	00 (10 7)
750	1497B-A10-M14-0-N	(193)	(193) (133) (118)	(118)	(149)	(111)	(27)	(8)		(151)	28 (12.7)
	1497B-A10-M15-0-N										
	1497B-A11-M10 0 N										40 (10 1)
1000	1497B-A11-M14 0 N	7-7/64	6-3/4	5-55/64	4-31/32	(155)	9/10	5/16	_	7-3/16	40 (18.1)
	1497B-A11-M14-0-N		(171)	(140)	(120)	(100)	(20)	(0)		(100)	41 (19 6)
	1497B-ATT-IVIT5-U-IN						- 10	- // -			41 (18.0)
1500	1497B-A12-IVI14-0-IN	8-7/64	6-3/4	5-55/64	6-1/8	6-1/8	7/8	5/16	_	7-3/16	53 (24)
	1497B-A12-W15-U-N	0.7/04		(110)	(100)	(100)	(22)	(0)		(100)	61 (07 7)
	1497B-A13-W11-0-N	8-7/64									01 (27.7)
0000	1-9/D-A13-WI12-U-N	()	6-3/4	5-55/64	6-1/8	6-1/8	7/8	5/16		7-3/16	_
2000	1497B-A13-M14-0-N	(229)	(171)	(149)	(155)	(155)	(22)	(8)	_	(183)	53 (24)
	1497B-A13-M15-0-N	8-7/64 (206)									
	1497B-A14-M11-0-N	· •									
	1497B-A14-M12-0-N	8-9/16	a	7-41/64	5-13/16	7-1/2	9/10	7/16		8-61/64	
3000	1497B-A14-M14-0-N	(217)	(229)	(194)	(148)	(191)	(23)	(11)	—	(227)	78 (35.4)
	1497B-A14-M15-0-N										
			1	1	1	I	1	1	I		1
	\sim										

Product data sheet Characteristics

GV2P08

Motor circuit breaker, TeSys GV2, 3P, 2.5-4 A, thermal magnetic, screw clamp terminals

Main	ecfic user applications
Range	TeSys
Product name	TeSys GV2
Product or component type	Circuit breaker
Device short name	GV2P
Device application	Motor ō
Trip unit technology	Thermal-magnetic
Complementary	a suitability or
Poles description	3P
Network type	AC
Utilisation category	AC-3 conforming to IEC 60947-4-1
Network frequency	50/60 Hz conforming to IEC 60947-4-1
Fixing mode	35 mm symmetrical DIN rail: clipped Panel: screwed (with 2 x M4 screws)
Operating position	Any position
Motor power kW	1.1 kW at 400/415 V AC 50/60 Hz 9 1.5 kW at 500 V AC 50/60 Hz 9 2.2 kW at 690 V AC 50/60 Hz 9
Breaking capacity	100 kA Icu at 230/240 V AC 50/60 Hz conforming to IEC 60947-2 % 100 kA Icu at 400/415 V AC 50/60 Hz conforming to IEC 60947-2 % 100 kA Icu at 440 V AC 50/60 Hz conforming to IEC 60947-2 % 100 kA Icu at 500 V AC 50/60 Hz conforming to IEC 60947-2 % 100 kA Icu at 500 V AC 50/60 Hz conforming to IEC 60947-2 % 8 kA Icu 690 V AC 50/60 Hz IEC 60947-2 %
[Ics] rated service short-circuit breaking capacity	100 % at 690 V AC 50/60 Hz conforming to IEC 60947-2 Image: Conforming to IEC 60947-2 Image: Conforming to IEC 60947-2 100 % at 230/240 V AC 50/60 Hz conforming to IEC 60947-2 Image: Conforming to IEC 60947-2 Image: Conforming to IEC 60947-2 100 % at 440 V AC 50/60 Hz conforming to IEC 60947-2 Image: Conforming to IEC 60947-2 Image: Conforming to IEC 60947-2 100 % at 400/415 V AC 50/60 Hz conforming to IEC 60947-2 Image: Conforming to IEC 60947-2 Image: Conforming to IEC 60947-2
Control type	Rotary knob

[In] rated current	4 A
Thermal protection adjustment range	2.54 A
Magnetic tripping current	51 A
[Ue] rated operational voltage	690 V AC 50/60 Hz conforming to IEC 60947-2
[Ui] rated insulation voltage	690 V AC 50/60 Hz conforming to IEC 60947-2
[Ith] conventional free air thermal current	4 A conforming to IEC 60947-4-1
[Uimp] rated impulse withstand voltage	IEC 60947-2 6 kV
Power dissipation per pole	2.5 W
Mechanical durability	100000 cycles
Electrical durability	100000 cycles for AC-3 at 440 V
Maximum operating rate	25 cyc/h
Rated duty	Continuous conforming to IEC 60947-4-1
Tightening torque	1.7 N.m on screw clamp terminals
Suitability for isolation	Yes conforming to IEC 60947-1
Phase failure sensitivity	Yes conforming to IEC 60947-4-1
Height	3.50 in (89 mm)
Width	1.77 in (45 mm)
Depth	3.82 in (97 mm)
Environment	
Standards	EN/IEC 60947-2
Standards	EN/IEC 60947-4-1
	UL 60947-4-1
Deschust soutifications	
Product certifications	UL
	CSA
	ATEX
	BV
	DNV-GL
	RINA
Protective treatment	тн
IP degree of protection	IP20 conforming to IEC 60529
IK degree of protection	IK04
Ambient air temperature for operation	-4140 °F (-2060 °C)
Ambient air temperature for storage	-40176 °F (-4080 °C)
Fire resistance	960 °C conforming to IEC 60695-2-1
Operating altitude	2000 m
Packing Units	
Unit Type of Package 1	PCE
Number of Units in Package 1	1
Package 1 Weight	11.46 oz (325 g)
Package 1 Height	1.81 in (4.6 cm)
Package 1 width	3.66 in (9.3 cm)
Package 1 Length	3.94 in (10 cm)
Unit Type of Package 2	S02
Number of Units in Package 2	20
Package 2 Weight	15.01 lb(US) (6.808 kg)
Package 2 Height	5.91 in (15 cm)
Package 2 width	11.81 in (30 cm)
Package 2 Length	15.75 in (40 cm)

Unit Type of Package 3	P06
Number of Units in Package 3	320
Package 3 Weight	264.07 lb(US) (119.78 kg)
Package 3 Height	31.50 in (80 cm)
Package 3 width	31.50 in (80 cm)
Package 3 Length	23.62 in (60 cm)

Offer Sustainability

Sustainable offer status	Green Premium product	
REACh Regulation	REACh Declaration	
EU RoHS Directive	Compliant EU RoHS Declaration	
Mercury free	Yes	
RoHS exemption information	Yes	
China RoHS Regulation	China RoHS declaration Product out of China RoHS scope. Substance declaration for your information	
Environmental Disclosure	Product Environmental Profile	
WEEE	The product must be disposed on European Union markets following specific waste collection never end up in rubbish bins	and

18 months

Contractual warranty

Warranty

Product data sheet

GV2P08

Performance Curves

Current Limitation on Short-Circuit for GV2ME and GV2P (3-Phase 400/415 V))

Dynamic Stress

I peak = f (prospective Isc) at 1.05 Ue = 435 V

Limited peak current (kA)

11 1-1.6 A

Limit of rated ultimate breaking capacity on short-circuit of GV2ME (14, 18, 23, and 25 A ratings).

Thermal Limit on Short-Circuit for GV2P

Thermal Limit in kA²s in the Magnetic Operating Zone

Sum of l^2 dt = f (prospective lsc) at 1.05 Ue = 435 V

Product data sheet Dimensions Drawings

GV2P +	LC1D09D18	LC1D25 and D32
b	176.4	186.8
c1	100.1	106.4

GV2P +	LC1D09D18	LC1D25 and D32
c	105.6	111.9
d1	95	95
d	100.5	100.5

Mounting

Mounting of External Operator GV2APN01, GV2APN02 or GV2APN04 for Motor Circuit Breakers GV2P

Door cut-out

(1) For IP65 only.

Mounting of External Operator GVAPH02 for Motor Circuit Breakers GV2P

	а		b	
	Minimum	Maximum	Minimum	Maximum
GV2APN	140	250	-	-
GV2APN + GVAPH02		-	151	250
GV2APN•• + GVAPK11	250	434	-	_
GV2APN + GVAPH02 + GVAPK11	-	-	250	445

Door cut-out

Product data sheet

GV2P08

Connections and Schema

9

Product data sheet Characteristics

LC1D09BD

TeSys D contactor - 3P(3 NO) - AC-3 - <= 440 V 9 A - 24 V DC coil

	ser aplication
Main	pecific u
Range	TeSys 5
Product name	TeSys D
Product or component type	Contactor
Device short name	LC1D t
Contactor application	Motor control Resistive load
Utilisation category	AC-4 AC-1 AC-3
Poles description	3P g
Power pole contact composition	3 NO
[Ue] rated operational voltage	Power circuit <= 690 V AC 25400 Hz
[le] rated operational current	9 A (at <60 °C) at <= 440 V AC AC-3 for power circuit
Motor power kW	2.2 kW at 220230 V AC 50/60 Hz (AC-3) 10 4 kW at 380400 V AC 50/60 Hz (AC-3) 10 4 kW at 415440 V AC 50/60 Hz (AC-3) 10 5.5 kW at 500 V AC 50/60 Hz (AC-3) 10 5.5 kW at 660690 V AC 50/60 Hz (AC-3) 10 2.2 kW at 400 V AC 50/60 Hz (AC-4) 10
Motor power HP (UL / CSA)	1 hp at 230/240 V AC 50/60 Hz for 1 phase motors 5 2 hp at 200/208 V AC 50/60 Hz for 3 phases motors 5 2 hp at 230/240 V AC 50/60 Hz for 3 phases motors 5 5 hp at 460/480 V AC 50/60 Hz for 3 phases motors 5 7.5 hp at 575/600 V AC 50/60 Hz for 3 phases motors 5 0.33 hp at 115 V AC 50/60 Hz for 1 phase motors 5
Control circuit type	DC standard
[Uc] control circuit voltage	24 V DC 5
Auxiliary contact composition	1 NO + 1 NC
[Uimp] rated impulse withstand voltage	6 kV IEC 60947
	Disclaime

Green Premium"

Overvoltage category	III
[Ith] conventional free air thermal current	25 A 140 °F (60 °C) power circuit 10 A 140 °F (60 °C) signalling circuit
Irms rated making capacity	250 A 440 V power circuit IEC 60947 140 A AC signalling circuit IEC 60947-5-1 250 A DC signalling circuit IEC 60947-5-1
Rated breaking capacity	250 A 440 V power circuit IEC 60947
[Icw] rated short-time withstand current	105 A 104 °F (40 °C) - 10 s power circuit 210 A 104 °F (40 °C) - 1 s power circuit 30 A 104 °F (40 °C) - 10 min power circuit 61 A 104 °F (40 °C) - 1 min power circuit 100 A - 1 s signalling circuit 120 A - 500 ms signalling circuit 140 A - 100 ms signalling circuit
Associated fuse rating	10 A gG signalling circuit IEC 60947-5-1 25 A gG <= 690 V type 1 power circuit 20 A gG <= 690 V type 2 power circuit
Average impedance	2.5 mOhm - Ith 25 A 50 Hz power circuit
[Ui] rated insulation voltage	Power circuit 690 V IEC 60947-4-1 Power circuit 600 V CSA Power circuit 600 V UL Signalling circuit 690 V IEC 60947-1 Signalling circuit 600 V CSA Signalling circuit 600 V UL
Electrical durability	0.6 Mcycles 25 A AC-1 at Ue <= 440 V 2 Mcycles 9 A AC-3 at Ue <= 440 V
Power dissipation per pole	1.56 W AC-1 0.2 W AC-3
Front cover	With
Mounting support	Plate Rail
Standards	CSA C22.2 No 14 EN 60947-4-1 EN 60947-5-1 IEC 60947-4-1 IEC 60947-5-1 UL 508
Product certifications	LROS (Lloyds register of shipping) CSA UL GOST DNV CCC GL BV RINA
Connections - terminals	Power circuit screw clamp terminals 1 0.000.01 in ² (14 mm ²)flexible without cable end Power circuit screw clamp terminals 2 0.000.01 in ² (14 mm ²)flexible without cable end Power circuit screw clamp terminals 1 0.000.01 in ² (14 mm ²)flexible with cable end Power circuit screw clamp terminals 2 0.000.00 in ² (12.5 mm ²)flexible with cable end Power circuit: screw clamp terminals 1 cable(s) 14 mm ² solid without cable end Power circuit: screw clamp terminals 2 cable(s) 14 mm ² solid without cable end Power circuit: screw clamp terminals 2 cable(s) 14 mm ² solid without cable end Control circuit screw clamp terminals 1 0.000.01 in ² (14 mm ²)flexible without cable end Control circuit screw clamp terminals 2 0.000.01 in ² (14 mm ²)flexible without cable end Control circuit screw clamp terminals 2 0.000.01 in ² (14 mm ²)flexible with cable end Control circuit screw clamp terminals 1 0.000.01 in ² (14 mm ²)flexible with cable end Control circuit screw clamp terminals 1 0.000.01 in ² (14 mm ²)flexible with cable end Control circuit screw clamp terminals 2 0.000.00 in ² (12.5 mm ²)flexible with cable end Control circuit screw clamp terminals 1 0.000.01 in ² (14 mm ²)solid without cable end Control circuit screw clamp terminals 2 0.000.01 in ² (14 mm ²)solid without cable end
Tightening torque	Power circuit 15.05 lbf.in (1.7 N.m) screw clamp terminals flat Ø 6 mm Power circuit 15.05 lbf.in (1.7 N.m) screw clamp terminals Philips No 2 Control circuit 15.05 lbf.in (1.7 N.m) screw clamp terminals flat Ø 6 mm Control circuit 15.05 lbf.in (1.7 N.m) screw clamp terminals Philips No 2
Operating time	53.5572.45 ms closing 1624 ms opening
Safety reliability level	B10d = 1369863 cycles contactor with nominal load EN/ISO 13849-1 B10d = 20000000 cycles contactor with mechanical load EN/ISO 13849-1
Mechanical durability	30 Mcycles

Complementary

Coil technology	Built-in bidirectional peak limiting diode suppressor
Control circuit voltage limits	0.10.25 Uc (-4070 °C):drop-out DC 0.71.25 Uc (-4060 °C):operational DC 11.25 Uc (6070 °C):operational DC
Time constant	28 ms
Inrush power in W	5.4 W (at 20 °C)
Hold-in power consumption in W	5.4 W at 20 °C
Auxiliary contacts type	Mechanically linked 1 NO + 1 NC IEC 60947-5-1 Mirror contact 1 NC IEC 60947-4-1
Signalling circuit frequency	25400 Hz
Minimum switching current	5 mA signalling circuit
Minimum switching voltage	17 V signalling circuit
Non-overlap time	1.5 ms on de-energisation between NC and NO contact 1.5 ms on energisation between NC and NO contact
Insulation resistance	> 10 MOhm signalling circuit
Contact compatibility	M4
Compatibility code	LC1D
Motor power range	1.12 kW 200240 V 3 phases 2.23 kW 380440 V 3 phases 46 kW 380440 V 3 phases 46 kW 480500 V 3 phases
Motor starter type	Direct on-line contactor
Contactor coil voltage	24 V DC standard
Environment	NG
IP degree of protection	IP20 front face IEC 60529
Protective treatment	TH IEC 60068-2-30
Pollution degree	3
Ambient air temperature for operation	-40140 °F (-4060 °C) 140158 °F (6070 °C) with derating
Ambient air temperature for storage	-76176 °F (-6080 °C)
Operating altitude	03000 m
Fire resistance	1562 °F (850 °C) IEC 60695-2-1
Flame retardance	V1 UL 94
Mechanical robustness	Vibrations contactor open2 Gn, 5300 Hz Vibrations contactor closed4 Gn, 5300 Hz Shocks contactor open10 Gn for 11 ms Shocks contactor closed15 Gn for 11 ms
Height	3.03 in (77 mm)

Width		1.77 in (45 mm)
Depth		3.74 in (95 mm)
Net weight		1.06 lb(US) (0.48 kg)

Packing Units

Unit Type of Package 1	PCE
Number of Units in Package 1	1
Package 1 Weight	18.77 oz (532 g)
Package 1 Height	1.97 in (5 cm)
Package 1 width	3.62 in (9.2 cm)
Package 1 Length	4.41 in (11.2 cm)

Offer Sustainability	
Sustainable offer status	Green Premium product
REACh Regulation	REACh Declaration
EU RoHS Directive	Compliant EU RoHS Declaration
Mercury free	Yes
RoHS exemption information	Yes
China RoHS Regulation	China RoHS declaration Product out of China RoHS scope. Substance declaration for your information
Environmental Disclosure	Product Environmental Profile
Circularity Profile	End of Life Information
WEEE	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins
PVC free	Yes
Contractual warranty Warranty	18 months
	SR BIDDING'S

Product data sheet Dimensions Drawings

LC1D09BD

Approximate Dimensions

Company name: Created by: Phone:

		Date:	26/08/2	021		
Description	Value	H			CRI 5-4, 60Hz	eta
General information:	Value		Pumped liquid	= Water		[/0]
Product name:	CRI 5-4 A-CA-A-E-HQQE	40	Liquid tempera Density = 998	ature during op 2 kg/m ³	peration = 20 °C	
Product No:	96084445					
EAN number:	5700395192834	35 -				
Price:						
Technical:		30 -				
Pump speed on which pump data are based:	3466 rpm	25 -			ľ	- 100
Rated flow:	6.9 m³/h					
Rated head:	28.9 m	20 -				- 80
Maximum head:	41.7 m					
Actual impeller diameter:	73.2 mm	15 -				- 60
Stages:	4					
- Impellers:	4	10 -				- 40
Number of reduced-diameter impellers	0	_				
Low NPSH:	N	5-				- 20
Pump orientation:	Vertical	-				
Shaft seal arrangement	Single	0	2 4	6 8	3 Q [m³/h]	L 0
Code for shaft seal:	HOOF	— <u>Р</u> [NPSH
		[W]			P1	[m]
Approvals.						
		1000 -			P2	- 10
	1909900:2012 3B	800 -				-8
Pump version:	A	600				
	A	000-			/	- 0
Cooling:	TEFC	400 -				-4
Materials:		200				2
Base:	Stainless steel	200-				1
Base:	EN 1.4408	10				Lo
Base:	AISI 316					
Impeller:	Stainless steel		117			
Impeller:	EN 1.4301		142			
Impeller:	AISI 304					
Material code:	A	82				
Code for rubber:	E					
Bearing:	SIC					
Installation:		_	G 1/2 G 1/2			
Maximum ambient temperature:	60 °C					
Maximum operating pressure:	25 bar	38	6.12			
Max pressure at stated temp:	25 bar / 120 °C				4	
Max pressure at stated temp:	25 bar / -20 °C				4 x 13	
Type of connection:	FlexiClamp	_		32		
Size of inlet connection:	DN 32		150	180		
Size of outlet connection:	DN 32		L.			
Pressure rating for connection:	PN 25					
Flange size for motor:	56C			ו		
Connect code:	CA	- C				
Liquid:		_				
Pumped liquid:	Water					
Liquid temperature range:	-20 120 °C	- *-				
Selected liquid temperature:	20 °C	- .				
Density:	998 2 kg/m ³	_ ≻				
Electrical data:	550.2 kg/m			4		
Electrical data:		62	DIRECTION OF ROTATION			
Motor turo:		_ `、	[[]			
wotor type:						
IE Efficiency class:	NEMA Premium / IE3	♥4 '				
Rated power P2:	1 1 1/1/	_				
(D2) = T2.						
Power (PZ) required by pump:	I.I KVV	1 (1	22(a) Fan 5	1		

Printed from Grundfos Product Centre [2021.21.005]

Company name: Created by: Phone:

		Date: 26/08/2021	
Description	Value		
Mains frequency:	60 Hz	-	
Rated voltage:	3 x 208-230YY/460Y V	-	
Service factor:	1.15		
Rated current:	4,45-4,3/2,16 A	-	
Starting current:	720 %	-	
Full load SF current:	5.1-4.95/2.48 A	-	
Cos phi - power factor	0.84-0.78		
Pated speed:	3440 3480 rpm	-	
Efficiency:	1E2 04 10/		· 🔺
Emclency:			
Motor efficiency at full load:	84.1-83.5 %		
Motor efficiency at 3/4 load:	81.0 %		
Motor efficiency at 1/2 load:	78.5 %		
Number of poles:	2		
Enclosure class (IEC 34-5):	55 Dust/Jetting		
Insulation class (IEC 85):	F		
Built-in motor protection:	NONE		
Motor No:	98976607		
Controls:			
Frequency converter:	NONE		
Othere:	NUNE		
	0.00		
DUE Pump Energy Index CL:	0.89		
Net weight:	20.7 kg		
Gross weight:	25.7 kg		
Shipping volume:	0.14 m ³		
\sim \sim \sim			
\cap			
7			
Ŧ			

Bulletin 1492 Screw Connection Terminal Blocks Standard Feed-Though Blocks

	1492-J3			1492-J4				1492-J6				
Dimensions are not intended to be used for manufacturing purposes. Note: Height dimension is measured from top of rail to top of terminal block.	(inc) (392 mm)			→ 0.20" .1 mm)	,20" 1 mm) (E 90 90 90 90 90 90 90 90 90 90 90 90 90			(E) (B) (B) (B) (B) (B) (B) (B) (B				
Specifications	Feed-Through Terminal Bl			Block	Fee	d-Through	Terminal	Block	Eeed-Through Terminal Block			
Certifications	9 1	CSA	IEC	ATEX	Al'	CSA	IEC	ATEX		IEC	ATEX	
Voltage Bating	6001/		800V	550V	6001/		800V	690V		800V	550V	•
	00007		AC/DC	AC/DC	00001	-0/00	AC/DC	AC/DC	0007 40/20	AC/DC	AC/DC	
Maximum Current	65 A	50 A	24 A	21 A	35 A	25 A	32 A	28 A	50 A	41 A	36 A	
Wire Range (Rated Cross Section)	#22 12 AWG	#26 12 AWG	2.5 mm ²	(#20 14 AWG)	#22 10 AWG	#26 10 AWG	4 mm ²	4 mm² (#20 12 AWG)	#228 AWG	6 mm ²	6 mm² (#20 10 AWG)	
Wire Strip Length		0.39 in.	(10 mm)			0.39 in.	(10 mm)		0.47 in	(12 mm)		
Recommended Tightening Torque	4.5	.7.1 lb•in.	(0.50.8	N∙m)		9.0 lb∙in.	(1.0 N•m)		14.2 lb•ir	n (1.6 N∙m		
Density		59 pcs/ft ((196 pcs/n	n)		49 pcs/ft (163 pcs/n	n)	37 pcs/ft ((123 pcs/n	n)	
Housing Temperature Range	-58.	+248 °F	(-50+12	20 °C)	-58.	+248 °F	(–50…+12	20 °C)	–58…+248 °F	(-50+12	20 °C)	
Short-Circuit Current Rating						See pa	ge 12-43					
Terminal Blocks		Cat No.		Pkg Otv		Cat No.		Pkg Oty	Cat No.		Pkg Oty	
Color: Grev		1492-J3		100		1492-J4		100	1492-J6		100	
Red	1	492-J3-R	E	100		492-J4-R	E	100	1492-J6-R	E	100	
Blue		1492-J3-B	3	100		1492-J4-B		100	1492-J6-E	3	100	
Black	1	492-J3-B	L	100		492-J4-B	L	100	1492-J6-B	L	100	
Green		1492-J3-G	à	100		1492-J4-G	ì	100	1492-J6-0	à	100	
Yellow		1492-J3-Y	1	100		1492-J4-Y	·	100	1492-J6-Y	1	100	
Orange	1	492-J3-O	R	100	1	492-J4-O	R	100	1492-J6-O	R	100	
Brown	1	492-J3-BI	R	100	1	492-J4-B	3	100	1492-J6-B	R	100	
White		1492-J3-W	/	100		1492-J4-W	/	100	1492-J6-W	V	100	
Accessories		Cat. No.		Pkg Qty.	Cat. No.		Pkg Qty.	Cat. No.		Pkg Qty.		
Mounting Rails: 1 m Symmetrical DIN (Steel)		199-DR1		10	199-DR1		10	199-DR1		10		
1 m Symmetrical DIN (Aluminum)	1492-DB5		10	1492-DB5		10	1492-DB5	i	10			
1 m Hi-Rise Svm. DIN (Aluminum)		1492-DR6	, ;	2	1492-DR6		2	1492-DR6		2		
1 m Angled Hi-Rise Sym. DIN (Steel)	1492-DR7		2	1492-DR7		2	1492-DR7		2			
End Barriers Grey	1492-EBJ3		50	1492-EBJ3		50	1492-EBJ	3	50			
Blue	1492-EBJ3-B		50	1	492-EBJ3-	В	50	1492-EBJ3-	-В	50		
Yellow	1492-EBJ3-Y		50	1	492-EBJ3-	Y	50	1492-EBJ3-	-Y	50		
End Anchors and Retainers: Screwless End Retainer	1	492-ERL3	5	20	1492-ERL35		20	1492-ERL35		20		
DIN Rail — Normal Duty	1	492-EAJ3	5 05	100	1492-EAJ35		100	1492-EAJ3	5	100		
DIN Rail — Heavy Duly	14	192-EANJ	30	50	14	492-EAHJ	50	50	1492-EARJ33		50	
Screw Center Jumper — 10-pole	14	492-CJJ5-	10 -4	20	1492-CJJ6-10		20 50	1492-CJJ8-10		20		
Screw Center Jumper — 3-pole	1	492-CJJ5-	-3	50	1492-CJJ6-3		50	1492-CJJ8-3		50		
Screw Center Jumper — 2-pole	1	492-CJJ5-	-2	50	1	492-CJJ6-	2	50	1492-CJJ8-2		50	
Plug-in Center Jumper — 50-Pole	14	92-CJLJ5-	-50	10	1492-C	JLJ6-41 (4	1-pole)	10	—		—	
Plug-in Center Jumper — 10-Pole	14	92-CJLJ5	-10	20	14	92-CJLJ6-	10	20	—			
Plug-in Center Jumper — 9-Pole	14	92-CJLJ5	5-9	20		—		—				
Plug in Center Jumper — 8-Pole	14	192-CJLJ5	-8	20		_					<u> </u>	
Plug-in Center Jumper — 7-Pole	14	192-CJLJ5	5-6	20								
Plug-in Center Jumper — 5-Pole	14	92-CJLJ5	i-5	20				_				
Plug-in Center Jumper — 4-Pole	14	92-CJLJ5	j-4	60	14	192-CJLJ6	-4	60	_			
Plug-in Center Jumper — 3-Pole	1492-CJLJ5-3		60	1492-CJLJ6-3		60	-		_			
Plug-in Center Jumper — 2-Pole	14	92-CJLJ5	5-2	60	1492-CJLJ6-2		60	-		—		
Insulated Side Jumper — 24-Pole	14	92-SJ5B-	24	50		_			_			
Insulated Side Jumper — 10-Pole	14	92-SJ5B-	10	50				<u> </u>	_		<u> </u>	
Screw Type Jumper Notching Tool		1492-T1		1		1492-T1		1	1492-T1		1	
Partition Plate	1	492-EBJ1	6	20	1492-EBJ16		6	20	1492-EBJ16		20	
Test Plug	1	492-1PS2	3	20	1	492-TPS23		20	1492-1252	3L 2	20	
Test Plug (Stackable)		1492-TP.IP	5	25		1492-TP.IA	,	20				
Electrical Warning Plate	1.	492-EWPJ	J5	25	1	492-EWPJ	5	25	1492-EWP	J8	50	
Group Marking Carrier	1	492-GM3	5	25		492-GM3	5	25	1492-GM35		25	
Marking Systems:	1492-N	//5X12 (14	4/card)	5	1492-1	M6X12 (12	0/card)	5	1492-MR8X12 (8	4/card)	5	
Snap-in Marker Cards	1492-	M5X5 (200)/card)	5	1492-	M6X5 (200	/card)	5	1492-M8X5 (160	0/card)	5	

* Use of center jumpers may affect spacings, requiring derating of terminal blocks. See page 12-78 for details.

12-8

12

Bulletin 1492 Screw Connection Terminal Blocks Grounding Blocks

	1492-JC	G2Q		1492-JO	3 3			1492-JG3T	w		
Dimensions are not intended to be used for manufacturing purposes. Note: Height dimension is measured from top of rail to top of terminal block.	(imm 266) 99.1 0.20" (5.1 mm)			(uu 			(mu 36) 				
Specifications	2. Feed-Thi with 2 co	36" (60 mm) rough Grou onnection µ) Ind Block points on	2.36" (60 mm) Feed-Through Ground Block			ock	2.36" (60 mm) Feed-Through Ground Block with 2 connection points on one side			with 2 side
Certifications	0 ľ	CSA	IEC	ar	CSA	IEC	ΔΤΕΧ			IFC	ATEX
Voltage Bating	74			74		-		74			
Maximum Current		Grounding			Grou	Inding			Groun	ding	
Wire Range (Rated Cross Section)	#221	4 AWG	1.5 mm ²	#221	2 AWG	2.5 mm ²	2.5 mm ² (#20 14 AWG)		Girduit		7
Wire Range (Single Side for JG3TW)		—			-	-		#2212 A	WG	2.5 mm ²	2.5 mm ² (#20 14 AWG)
Wire Range (Twin Side for JG3TW)					\sim			#2612 A	WG	1.5 mm ²	1.5 mm² (#20 16 AWG)
Wire Strip Length/Tightening Torque	0.28 in. (7 mm)			0.39 in. (10 mm)			Single Side: 0.39 in. (10 mm)/ 7.1 lb-in. (0.8 N•m) Twin Side: 0.28 in. (7 mm)/ 4.5 lb-in. (0.5 N•m)			n)/	
Recommended Tightening Torque	5.0	lb•in. (0.6 l	N∙m)	7.1 lb∙in. (0.8 N∙m)				_	-		
Mounting Torque — Center Screw	3.55.3	lb•in. (0.4	0.6 N∙m)	3.56.2 lb∙in. (0.40.6 N∙m)			3.55.3 lb∙in. (0.40.6 N•m)				
Density	59 pc	cs/ft (196 p	ocs/m)	59 pcs/ft (196 pcs/m)			59	pcs/ft (1	96 pcs/m)		
Housing Temperature Range	-58+24	l8 °F (–50	+120 °C)	-58	+248 °F	(-50+120	°C)	-58+	248 °F (-	-50+120	°C)
Short-Circuit Current Rating				See page 12-43							
Terminal Blocks	Cat.	No.	Pkg Qty.		Cat. No.		Pkg Qty.	Ca	at. No.		Pkg Qty.
Color: Green/Yellow	1492-	JG2Q	100		1492-JG3		100	1492-JG3TW			100
Accessories	Cat.	No.	Pkg Qty.		Cat. No.		Pkg Qty.	Cat. No.			Pkg Qty.
Mounting Rails: 1 m Symmetrical DIN (Steel)	199-	DR1	10		199-DR1		10	199-DR1			10
1 m Symmetrical DIN (Aluminum)	1492	-DR5	10		1492-DR5	;	10	149	2-DR5		10
1 m Hi-Rise Sym. DIN (Aluminum)	1492	-DR6	2		1492-DR6	;	2	149	2-DR6		2
1 m Angled Hi-Rise Sym. DIN (Steel)	1492	-DR7	2		1492-DR7		2	149	2-DR7		2
End Barrier Yellow	1492-E	BJ3-Y	50	1	492-EBJ3	·Y	50	1492	-EBJ3-Y	,	50
End Anchors and End Retainers: Screwless End Retainer_	1492-	ERL35	20		1492-ERL3	5	20	1492	2-ERL35		20
DIN Rail — Normal Duty	1492-	EAJ35	100		1492-EAJ3	5	100	1492	2-EAJ35		100
DIN Rail — Heavy Duty	1492-E	AHJ35	50	1	492-EAHJ	35	50	1492-EAHJ35		5	50
Other Accessories: Group Marking Carrier	1492-	GM35	25		1492-GM3	5	25	1493	2-GM35		25
Marking Systems: Snap-in marker cards	1492-I (144/	M5X12 (card)	5	1492-1	M5X12 (14	4/card)	5	1492-M5X	(12 (144/	/card)	5
Snap-in marker cards	1492- (200/	M5X5 'card)	5	1492-	M5X5 (200)/card)	5	1492-M52	X5 (200/	card)	5
								l			

StructuredGround[™] Universal Ground Bar System

specifications

Provide a field wiring terminal for the connection of an equipment grounding conductor in each control panel and enclosure. The terminal shall be UL 467 Listed or CSA 22.2 certified. The equipment grounding conductor shall have electrical continuity with the enclosure or sub-panel. The field wiring terminal may also provide multiple locations or ports for terminating equipment ground conductors from devices inside the panel or enclosure, functioning as the ground bar within the panel or enclosure. The ground bar shall provide a means to attach and to identify the main equipment grounding conductor. PATENT PENDING

technical information

Performance level:	UL 467 Listed and CSA 22.2 Certified for grounding and bonding an equipment grounding conductor up to 2/0 AWG; meets UL 508A requirements
Main:	Provides a location for the main equipment grounding conductor using a compression or mechanical connector
Wire ports:	Accept bare stripped copper wire from #14 to #4 AWG Accept wire ferrules from #14 AWG to #6 AWG
	Top of ground bar accepts ring terminals, compression connectors or mechanical connectors with a $\frac{1}{4}$ " stud hole size and maximum width of 0.55"
Materials:	Ground bars and bonding stand-offs precision machined from 110 electrolytic copper with a 99.9% copper content and then tin-plated for additional corrosion resistance
Packaging:	Each part is provided with all fasteners required for terminating wires and for each mounting option

key features and benefits

Works with all types of wire termination methods including stripped wire, ferrules, terminals, and compression or mechanical connectors; compatible with over 140 Panduit connectors
In addition to surface mounting, two mounting stand-off options are available, one that bonds to the mounting surface and one that isolates from the mounting surface; both options provide additional finger wiring space in tight places
The unique shape of the universal ground bar allows more surface contact between the wire connectors and the ground bar

applications

The StructuredGround[™] Universal Ground Bar System (UGB) offers multiple termination methods and mounting options making it ideal for any control panel or enclosure application. The UGB enables the end user to choose the method in which to terminate conductors with connectors of their choice or simply cut and strip the wires. The UGB system will help reduce the types of ground bars that a panel shop or distributor needs to keep in stock to meet the various applications and customer requirements.

Universal Ground Bar System

6-port ground bar:	UGB2/0-414-6
12-port ground bar:	UGB2/0-414-12
18-port ground bar:	UGB2/0-414-18
Isolation standoffs:	UGB-IN-SO
Bonding standoffs:	UGB-B-SO

Recommended Connectors for Main Equipment Ground Conductor, Maximum 2/0 AWG

Copper Mechanical with Anti-Rotation

#14 - 2/0 AWG: CLMAR2/0-14-Q

Two-Hole Copper Compression, 1/4" Stud Hole with 5/8" Spacing; #14 to 2/0 AWG

#14 – 10 AWG:	LCA10-14A-L
#8 AWG:	LCD8-14A-L
#6 AWG:	LCD6-14A-L
#4 AWG:	LCD4-14A-L
#2 AWG:	LCD2-14A-Q
#1 AWG:	LCD1-14A-E
1/0 AWG:	LCD1/0-14A-X
2/0 AWG:	LCD2/0-14A-X

One-Hole Copper Compression, 1/4" Stud Hole; #14 to 2/0 AWG

#14 – 10 AWG:	LCA10-14-L
#8 AWG:	LCAS8-14-L
#6 AWG:	LCAS6-14-L
#4 AWG:	LCAS4-14-L
#2 AWG:	LCAS2-14-Q
#1 AWG:	LCAS1-14-E
1/0 AWG:	LCAS1/0-14-X
2/0 AWG:	LCAS2/0-14-X

One and two-hole copper compression connectors available for both code and flex conductors, with narrow tongue and bent tongue configurations.

Recommended Connectors for Port Connections

Ring Terminals, ¼" Stud Hole, Maximum Width of 0.55"; #22 to #4 AWG

Ring terminals available with vinyl, nylon, KYNAR*, high-temp, or heavy duty insulation or non-insulated.

Compression Connectors, Maximum Width of 0.55"; up to #4 AWG Typical

Ferrules, Minimum Pin Depth of 12mm; #14 to #6 AWG

*KYNAR is a registered trademark of Atofina Chemicals, Inc.

StructuredGround[™] Universal Ground Bar System

Markham, Ontario cs-cdn@panduit.com Phone: 800.777.3300 PANDUIT EUROPE LID. London, UK cs-emea@panduit.com Phone: 44.20.8601.7200

Republic of Singapore cs-ap@panduit.com Phone: 65.6305.7575 PANDUIT JAPAN PA Tokyo, Japan Gu cs-japan@panduit.com cs Phone: 81.3.6863.6000 Ph

PANDUIT LATIN AMERICA Guadalajara, Mexico cs-la@panduit.com Phone: 52.33.3777.6000 PANDUIT AUSTRALIA PTY. LTD. Victoria, Australia cs-aus@panduit.com Phone: 61.3.9794.9020

For a copy of Panduit product warranties, log on to www.panduit.com/warranty

For more information

Visit us at www.panduit.com

Contact Customer Service by email: cs@panduit.com or by phone: 800.777.3300 and reference GRSP08 ©2011 Panduit Corp. ALL RIGHTS RESERVED. Printed in the U.S.A. **SA-GRSP08** 5/2011

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Weidmüller VPU I (Type I), VPU II (Type II) and VPU III (Type III) surge protection products effectively reduce the interference coupling that can occur due to transient surge voltages, even significantly below the limits prescribed by insulation co-ordination according to EN 60664-3 / DIN VDE 0110-3. This means that the whole installation is exposed to fewer malfunctions. The arresters are co-ordinated using technical means. This means that decoupling between Types I, II and III is unnecessary. The arresters are tested according to product standard IEC 61643-11 / DIN EN 61643-11 and can be installed in systems according to IEC 61643-12 / VDE 0675-6-12 and IEC 62305-4 / VDE 0185-4. This lightning and surge protection device is suited for installation in power supply systems. Weidmüller offers different products depending on the particular mains network type and voltage level. A special Type I and Type II protective device is even available for photovoltaic applications.

General ordering data

Version	Surge voltage arrester, Low voltage, Surge protection, with remote contact, Single-phase, U _P (L/N-PE) ≤ 1.25 kV
Order No.	<u>2591660000</u>
Туре	VPU AC II 1 R 150/50
GTIN (EAN)	4050118599282
Qty.	1 pc(s).

Technical data

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

Double	60		0.077 in th
Deptn	<u> </u>	Depth (Inches)	2.677 Inch
Depth Including Div rail	10 mm	Netwoight	111.0 mm
Height (inches)	4.394 Inch		152 g
Width	10 11111	width (inches)	0.709 Inch
Temperatures			
Storage temperature	-40 °C85 °C	Operating temperature	-40 °C85 °C
Humidity	5 - 95% rel. humidity		
Rated data UL			
Operating altitude	≤ 4000 m	Ambient temperature (operational), max	≪.85 °C
Rated Voltage U _N	120 V	VPR (N-PE)	600 V
SCCR	200 kA		20 kA
Category	SPD TYPE 1CA	Ambient temperature (operational), min	40 °C
Certificate No. (cURus)	E354261	MODE	all modes
VPR (L-PE)	600 V	Voltage type	AC
Connection data, remote aler	۲		
Connection type		Cross-section for connected wire, solid	
	PUSH IN	core, max.	1.5 mm²
Cross-section for connected wire, solid	0 14 mm ²	Stripping length	8 mm
	0.1411		
General data			
Colour	orange, black	Design	Installation housing; 1TE, Insta IP 20
Operating altitude	≤ 4000 m	Optical function display	green = OK; red = arrester is defective - replace
Protection degree	IP20 in installed state	Rail	TS 35
Segment	Power distribution	UL 94 flammability rating	V-0
Version	Surge protection, with remote contact		
Insulation coordination acc. to	o EN 50178		
Operating altitude	≤ 4000 m	Pollution severity	2

Technical data

Rated data IEC / EN

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

Discharge current I _{max} (8/20µs) wire-PE	50 kA	Discharge current In (8/20µs) wire-PE	20 kA	
Energy coordination (≤10 m)		Follow-on current extinguishing	Follow current need not be	
	Type II, Type III	capability I _{fi}	taken into account	
Frequency range, max.	60 Hz	Frequency range, min.	50 Hz	
Fuse	No Fuse neccessary ≤315 A gG, 250 A gG @50 kA Isccr, 315 A gG @25 kA	Leakage current at Un		
Low voltage network	Single-phase	Max continuous voltage Llc (AC)	150 V	
Number of poles	1	Protection level Up (typ.)		
Bated voltage (AC)	1	Bequirements category acc. to IEC	- 1.20 KV	
hated voltage (AC)	120 V	61643-11	Type II	
Requirements class, acc. to EN 61643-11	Τ2	Response time	≤ 25 ns	
SPD type	T2	Short-circuit current rating I _{SCCB}	50 kA	
Signalling contact	250 V 1A 1CO	Standards	IEC61643-11, EN61643-11, UL 1449 Ed.4	
Temporary surge voltage (over-voltage) - TOV	229 V	Voltage type	AC	
Connection data				
Wire connection method	Screw connection	Type of connection	Screw connection	
Stripping length, rated connection	15 mm	Tightening torgue, min.	2 Nm	
Tightening torque, max.	4.5 Nm	Clamping range, rated connection	16 mm ²	
Clamping range, min.	4 mm ²	Clamping range, max.	35 mm ²	
Wire cross-section, solid, min.	2.5 mm ²	Wire cross-section, solid, max.	35 mm ²	
Wire connection cross-section, finely stranded, min.	4 mm ²	Wire connection cross section, finely stranded, max.	35 mm²	
Conductor cross-section, flexible, AEH (DIN 46228-1), min.	2.5 mm ²	Conductor cross-section, flexible, AEH (DIN 46228-1), max.	35 mm²	
Connection cross-section, stranded, min.	2.5 mm ²	Connection cross-section, stranded, max.	35 mm²	
Ratings IECEx/ATEX/cUL	\wedge			
Certificate no. (cULus)	E354261			
Guarantee)			
Time interval	5 years			
Classifications	-			
	50000044	57114.7.0	50000044	
	EC000941		EC000941	
	27-13-08-05		27-13-08-05	
eclass 10.0	27-13-08-05		27130805	
Important note				

Technical data

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

Approvals	
Approvals	
ROHS	Conform
UL File Number Search	E354261
Downloads	
Approval (Cartificate (Decument of	
Conformity	Declaration of Conformity
Engineering Data	STEP
User Documentation	Instruction sheet
	S BIDDING PU
20	

Drawings

Electric symbol

Weidmüller Interface GmbH & Co. KG Klingenbergstraße 26 D-32758 Detmold

Germany

Product data sheet

Specifications

Motor circuit breaker, TeSys Deca, 3P, 2.5-4 A, thermal magnetic, screw clamp terminals

GV2ME08

Main	
Range of product	TeSys GV2
Range	TeSys TeSys Deca
Device short name	GV2ME
Product name	TeSys GV2 TeSys Deca
Product or component type	Circuit breaker
Device application	Motor
Trip unit technology	Thermal-magnetic
Complementary	
Poles description	ЗР
Network type	AC
Utilisation category	AC-3 IEC 60947-4-1 Category A IEC 60947-2
Network frequency	50/60 Hz IEC 60947-4-1
Fixing mode	35 mm symmetrical DIN rail clipped Panel screwed with adaptor plate)
Operating position	Any position
Motor power kW	1.1 kW 400/415 V AC 50/60 Hz 1.5 kW 400/415 V AC 50/60 Hz 1.5 kW 500 V AC 50/60 Hz 3 kW 690 V AC 50/60 Hz 2.2 kW 500 V AC 50/60 Hz 2.2 kW 690 V AC 50/60 Hz
Breaking capacity	100 kA lcu 230/240 V AC 50/60 Hz IEC 60947-2 100 kA lcu 400/415 V AC 50/60 Hz IEC 60947-2 100 kA lcu 440 V AC 50/60 Hz IEC 60947-2 100 kA lcu 500 V AC 50/60 Hz IEC 60947-2 3 kA lcu 690 V AC 50/60 Hz IEC 60947-2
[Ics] rated service short-circuit breaking capacity	100 % 500 V AC 50/60 Hz IEC 60947-2 100 % 230/240 V AC 50/60 Hz IEC 60947-2 100 % 440 V AC 50/60 Hz IEC 60947-2 100 % 400/415 V AC 50/60 Hz IEC 60947-2 75 % 690 V AC 50/60 Hz IEC 60947-2
Control type	Push-button
[In] rated current	4 A
Thermal protection adjustment range	2.54 A

Magnetic tripping current	51 A
[Ue] rated operational voltage	690 V AC 50/60 Hz IEC 60947-2
[Ui] rated insulation voltage	690 V AC 50/60 Hz IEC 60947-2
[Ith] conventional free air thermal current	4 A IEC 60947-4-1
[Uimp] rated impulse withstand voltage	6 kV IEC 60947-2
Power dissipation per pole	2.5 W
Mechanical durability	100000 cycles
Electrical durability	100000 cycles AC-3 440 V
Maximum operating rate	25 cyc/h
Rated duty	Continuous IEC 60947-4-1
Tightening torque	15.05 lbf.in (1.7 N.m) screw clamp terminals
Suitability for isolation	Yes IEC 60947-1
Phase failure sensitivity	Yes IEC 60947-4-1
Height	3.50 in (89 mm)
Width	1.77 in (45 mm)
Depth	3.09 in (78.5 mm)
Net weight	0.57 lb(US) (0.26 kg)
Colour	Dark grey
Environment	
Standards	EN/IEC 60947-2 EN/IEC 60947-4-1 CSA C22.2 No 60947-4-1 UL 60947-4-1
Product certifications	IECEE CB Scheme UL CSA CCC EAC ATEX BV LROS (Lloyds register of shipping) DNV-GL RINA UKCA
Protective treatment	тн
IP degree of protection	IP20 IEC 60529
IK degree of protection	IK04
Ambient air temperature for operation	-4140 °F (-2060 °C)
Ambient air temperature for storage	-40176 °F (-4080 °C)
Fire resistance	1760 °F (960 °C) IEC 60695-2-1
Operating altitude	2000 m

Packing Units

Unit Type of Package 1	PCE
Number of Units in Package 1	1
Package 1 Weight	9.14 oz (259 g)
Package 1 Height	1.77 in (4.5 cm)

Package 1 width	3.35 in (8.5 cm)		
Package 1 Length	3.54 in (9 cm)		
Unit Type of Package 2	S02		
Number of Units in Package 2	24		
Package 2 Weight	14.25 lb(US) (6.465 kg)		
Package 2 Height	5.91 in (15 cm)		
Package 2 width	11.81 in (30 cm)		
Package 2 Length	15.75 in (40 cm)		
Unit Type of Package 3	P06		
Number of Units in Package 3	384		
Package 3 Weight	245.68 lb(US) (111.44 kg)		
Package 3 Height	29.53 in (75 cm)		
Package 3 width	31.50 in (80 cm)		
Package 3 Length	23.62 in (60 cm)		
Offer Sustainability			
Sustainable offer status	Green Premium product		
REACh Regulation	REACh Declaration		
EU RoHS Directive	Compliant EU RoHS Declaration		
Mercury free	Yes		
RoHS exemption information	Yes		
China RoHS Regulation	China RoHS declaration Product out of China RoHS scope. Substance declaration for your information		
Environmental Disclosure	Product Environmental Profile		
WEEE	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins		
Contractual warranty			
Warranty	18 months		

Product data sheet

GV2ME08

Performance Curves

Thermal-Magnetic Tripping Curves for GV2ME and GV2P Average Operating Times at 20 °C Related to Multiples of the Setting Current

- 1 3 poles from cold state
- 2 3 2 poles from cold state
- 3 poles from hot state

Current Limitation on Short-Circuit for GV2ME and GV2P (3-Phase 400/415 V))

Dynamic Stress

I peak = f (prospective lsc) at 1.05 Ue = 435 V

11 1-1.6 A
12 Limit of rated ultimate breaking capacity on short-circuit of GV2ME (14, 18, 23, and 25 A ratings).

Thermal Limit on Short-Circuit for GV2ME

Thermal Limit in $\mathbf{kA}^{2}\mathbf{s}$ in the Magnetic Operating Zone

Sum of I^2 dt = f (prospective lsc) at 1.05 Ue = 435 V

Product data sheet

GV2ME08

Dimensions Drawings

Dimension

(1) Maximum

X1 Electrical clearance = 40 mm for Ue ≤ 690 V

	b		
GV2ME	89	X	
GV2ME3	101		

Mounting

GV2ME

On 35 mm rail

c = 78.5 on AM1 DP200 (35 x 7.5) c = 86 on AM1 DE200, ED200 (35 x 15) On panel with adapter plate GV2AF02

On pre-slotted plate AM1 PA

AF1 EA4

On rails DZ5 MB201

GV2AF01

Combination GV2ME + TeSys k contactor

Combination GV2ME + TeSys d contactor

GV2ME +	LC1D09D18	LC1D25 and D32
b	176.4	186.8
c1	94.1	100.4
с	99.6	105.9

GV2AF4 + LAD311

Combination GV2ME + TeSys d contactor

23 P

4,5
A St
A R

N		
GV2ME +	LC1D09D18	LC1D25 and D32
b	176.4	186.8
c1	103.1	136.4
c	135.6	141.9
d1	107	107
d	112.5	112.5

GV2ME + GV1L3 (Current Limiter)

X1 = 10 mm for Ue = 230 V or 30 mm for 230 V < Ue \leq 690 V

Product data sheet

GV2ME08

Connections and Schema

GV2ME •• and GV2RT

Connection of Undervoltage Trip for Dangerous Machines (Conforming to INRS) on GV2ME Only

G1G170-AB05-20

EC centrifugal fan

backward curved, single inlet with housing (flange), Gas blower for gas-condensing heating

ebm-papst Mulfingen GmbH & Co. KG Bachmühle 2 D-74673 Mulfingen Phone: +49(0)7938/81-0 Fax: +49(0)7938/81-110 info1@de.ebmpapst.com www.ebmpapst.com

Nominal data

Туре	G1G170-AB05-20					
Motor	M1G074-CF					
Phase		1~				
Nominal voltag	VAC	115				
Frequency		Hz	50/60			
Type of data d		rfa				
Speed	min ⁻¹	5730				
Power input		W	345			
Current draw		А	4.0			
Min. ambient to	emperature	°C	- 25			
Max. ambient	°C	+ 55				
Min. temp. of f	°C	-25				
Max. temp. of	flow medium	°C	+80			

ml = max. load \cdot me = max. efficiency \cdot rfa = running at free air \cdot cs = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot customer specs \cdot cu = customer specs \cdot cu = customer specs \cdot customer specs

Subject to alterations

backward curved, single inlet

with housing (flange), Gas blower for gas-condensing heating

Technical features

K X

Leackage current	<= 3.5 mA
Size	170 mm
Direction of rotation	Clockwise, seen on rotor
Mounting position	Any
Electrical leads	With plug
EMC interference emission	Acc. to EN 61000-6-3 (household environment)
EMC interference immunity	Acc. to EN 61000-6-2
Insulation class	"B"
Cooling bore / aperture	Rotor-side
Motor bearing	Ball bearing
Mass	4.35 kg
Material of protective cover	Polyflam RPP 374-ND CS1 (UL 97-V0)
Housing material	Die-cast aluminium
Material of impeller	Aluminium sheet
Motor protection	Thermal overload protector (TOP) wired internally
Surface of rotor	Coated in black
Type of protection	IP 20
Technical features	- Control input PWM
	- Motor current limit
	- Tach output
	- Overtemperature-protected motor
Max. permissible ambient	+80 °C
motor temp. (transp./ storage)	
Min. permissible ambient	-40 °C
motor temp. (transp./storage)	
Approval	CSA C22.2 Nr.113; UL 507

Item no.: 50103-5-9980 · Revision status: KM70943 · Print-out on 08/04/2011 · Y. Uhlmann (VM-TDO) · Page 2 of 5

backward curved, single inlet

with housing (flange), Gas blower for gas-condensing heating

Z	View Z
2	3-pole strip; mating connector (not included in delivery): tyco No. 350 766-1; female connector: No. 926 884-1
2.1	L
2.2	Ν
2.3	PE
3	5-pole strip; mating connector (not included in delivery) Molex No. 39-01-4050, female connector Molex No. 39-00-0059
3.1	(+)
3.2	Speed monitoring
3.3	Not assigned
3.4	PWM input
3.5	(-)
4	Bleeder connection for pressure relief possible

Item no.: 50103-5-9980 · Revision status: KM70943 · Print-out on 08/04/2011 · Y. Uhlmann (VM-TDO) · Page 3 of 5

backward curved, single inlet

with housing (flange), Gas blower for gas-condensing heating

backward curved, single inlet

with housing (flange), Gas blower for gas-condensing heating

Measured values

	U	f	n	P ₁	1	qv	p _{sf}
	V	Hz	min ⁻¹	W	А	m³/h	Ра
1	115	50	5730	345	4.00	645	0
2	115	50	5750	342	3.97	525	800
3	115	50	5970	317	3.70	375	1600
4	115	50	6205	292	3.42	230	2200
5	115	50	5400	288	3.33	605	0
6	115	50	5400	283	3.28	495	715
7	115	50	5400	235	2.75	340	1314
8	115	50	5400	193	2.26	200	1664
9	115	50	4300	145	1.68	485	0
10	115	50	4300	143	1.66	395	454
11	115	50	4300	119	1.39	270	834
12	115	50	4300	98	1.14	160	1055
13	115	50	3200	60	0.69	360	0
14	115	50	3200	59	0.68	295	251
15	115	50	3200	49	0.57	200	462
16	115	50	3200	40	0.47	120	584

Item no.: 50103-5-9980 · Revision status: KM70943 · Print-out on 08/04/2011 · Y. Uhlmann (VM-TDO) · Page 5 of 5

NOTES 1.FUSES:

-PS1 is a self-resetting fuse. -Refer to publication PUB002-065 for approved fuses FS1 and FS2. -Actuator rated voltage specified on nameplate. Voltage tolerance +/-10% applies for rated torque performance; duty cycle is not guaranteed. 2.REMOTE CONTROL:

-For typical remote control circuits refer to:

-RWS indicated or PUB002-041.

-For DC and AC control, connect -ve/0V to terminal 36.

-(For negative switch / positive common, refer to RWS indicated). -Control signal threshold voltages:

-DC: "on" ≥16Vdc / "off" ≤8Vdc, max 60Vdc. -AC: "on" ≥60Vac / "off" ≤40Vac, max 120Vac.

-Control signal duration to be 300ms minimum. -Maximum current drawn from remote control signals is:

-8mA at 24Vdc or 12mA at 120Vac.

-Supply provided on terminals 4 & 5:

-Intended for remote control. -Max external load 5W at 24Vdc / 5VA at 120Vac

3.INDICATION:

-For typical position, status and alarm indication see PUB002-041. -"S" contacts are user configurable and are shown in their default setting.

-Refer to PUB002-040 for functions and configuration instructions. -Monitor Relay indicates actuator availability for remote control (shown "unavailable"). It can be configured to exclude local/remote selection. -Refer to PUB002-040 for monitored functions and configuration instructions.

-Voltage applied to indication contacts must not exceed 150Vac -Individual Switch current must not exceed 3.5A inductive, 5A resistive and no more than 8A in total for all 4 contacts.

4.BATTERY:

-Battery maintains local and remote "S" contact indication only. -Refer to installation manual for approved replacement battery types.

See Sheet 1 for all Revision details/information

IQ3

Bulletin 1492 Screw Connection Terminal Blocks Standard Feed-Though Blocks

1492-J3				1492-J4			1492-J6						
Dimensions are not intended to be used for manufacturing purposes. Note: Height dimension is measured from top of rail to top of terminal block.			(5 0 mm)	→ 0.20" 5.1 mm) (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2			(mu geg) .991 2 36" (60 mm)						
Specifications	Fee	d-Through	Terminal	Block	Fee	d-Through	Terminal	Block	Feed	l-Through	Terminal	Block	
Certifications	SA IEC					CSA	IFC						
			800V	550V			800V	690V			550V		
Voltage Rating	600V /	AC/DC	AC/DC	AC/DC	600V	AC/DC	AC/DC	AC/DC	600V A	AC/DC	AC/DC	AC/DC	
Maximum Current	65 A	50 A	24 A	21 A	35 A	25 A	32 A	28 A	50	Α	41 A	36 A	
Wire Range (Rated Cross Section)	#22 12 AWG	#26 12 AWG	2.5 mm ²	2.5 mm ² (#20 14 AWG	#22 10 AWG	#26 10 AWG	4 mm ²	4 mm ² (#20 12 AWG)	#228	8 AWG	6 mm ²	6 mm ² (#20 10 AWG)	
Wire Strip Length		0.39 in.	(10 mm)			0.39 in.	(10 mm)			0.47 in	(12 mm)		
Recommended Tightening Torque	4.5	.7.1 lb•in.	(0.50.8	N∙m)		9.0 lb•in.	(1.0 N•m)		14.2 lb•in	ı (1.6 N∙m		
Density		59 pcs/ft ((196 pcs/n	n)		49 pcs/ft (163 pcs/n	n)	3	37 pcs/ft (123 pcs/n	ר)	
Housing Temperature Range	-58.	+248 °F	(-50+12	20 °C)	-58.	+248 °F	(-50+12	20 °C)	-58.	+248 °F	(-50+12	20 °C)	
Short-Circuit Current Rating						See pa	ge 12-43						
Terminal Blocks		Cat No		Pkg Otv		Cat No		Pkg Oty		Cat No		Pkg Otv	
Color: Grey		1492-13		100		149214		100		149216		100	
Bed	1	492-J3-R	E	100	-	492-J4-R	E	100	1	492-J6-BI	E	100	
Blue		1492-J3-E	-	100		1492-J4-B	-	100		1492-J6-B	;	100	
Black	1	492-J3-B	L	100	1	492-J4-B	L	100	1	492-J6-BI	L	100	
Green		1492-J3-G	à	100		1492-J4-G	ì	100	1	1492-J6-G	ì	100	
Yellow		1492-J3-Y	/	100		1492-J4-Y	,	100		1492-J6-Y	,	100	
Orange	1	492-J3-O	R	100	1	492-J4-O	R	100	1.	492-J6-OI	R	100	
Brown	1	492-J3-B	R	100	1	492-J4-B	R	100	1	492-J6-Bl	R	100	
White		1492-J3-W	V	100		1492-J4-W	/	100	1	492-J6-W	/	100	
Accessories	Cat. No.		Pkg Qty	Cat. No.		Pkg Qty.	Cat. No.		Pkg Qty.				
Mounting Rails:	199-DR1		10	199-DR1		10		199-DR1		10			
1 m Symmetrical DIN (Steel)		1/02-005		10		1/02-005		10		1/02_005		10	
1 m Hi-Bise Sym DIN (Aluminum)		1492-DR6	, ;	2	1492-DR5		2		1492-DR6	·	2		
1 m Angled Hi-Rise Sym. DIN (Steel)		1492-DR7	, ,	2	1492-DR7		2		1492-DR7	·	2		
End Barriers Grey		1492-EBJ	3	50	1492-EBJ3 5		50	1492-EBJ3		50			
Blue	14	492-EBJ3-	-B	50	1492-EBJ3-B 50		50	1492-EBJ3-B		50			
Yellow	1492-EBJ3-Y		50	1492-EBJ3-Y		50	14	92-EBJ3-	·Y	50			
End Anchors and Retainers: Screwless End Retainer	1	492-ERL3	5	20	1	492-ERL3	5	20	14	492-ERL3	5	20	
DIN Rail — Normal Duty	1	492-EAJ3	5	100	1	492-EAJ3	<mark>5</mark>	100	1.	492-EAJ3	5	100	
DIN Rail — Heavy Duly	14	192-EAHJ	30	50	14	492-EAHJ	30	50	14	92-EAHJ	30	50	
Screw Center Jumper — 10-pole	14	492-CJJ5-	10 -4	20 50	14	492-CJJ6-	<mark>10</mark> -4	20 50	14	92-CJJ8- 192-CJJ8-	10 -4	20 50	
Screw Center Jumper — 3-pole	1	492-CJJ5	-3	50	1	492-CJJ6-	-3	50	14	192-CJJ8-	-3	50	
Screw Center Jumper — 2-pole	1	492-CJJ5	-2	50	1	492-CJJ6-	-2	50	14	192-CJJ8-	-2	50	
Plug-in Center Jumper - 50-Pole	14	92-CJLJ5	-50	10	1492-C	JLJ6-41 (4	41-pole)	10	_			_	
Plug-in Center Jumper — 10-Pole	14	92-CJLJ5	-10	20	14	92-CJLJ6-	-10	20	—			—	
Plug-in Center Jumper — 9-Pole	14	92-CJLJ5	i-9	20		-		-	—				
Plug-in Center Jumper — 8-Pole	14	92-CJLJ5	5-8	20		—		-	-				
Plug-in Center Jumper — 7-Pole	14	92-CJLJ5)-7 ; c	20		_		-	-				
Plug in Center Jumper — 6-Pole	14	92-CJLJ5)-0 : =	20		_			-				
Plug-in Center Jumper — 4-Pole	14	192-CJLJ5	5-5	20 60	1/		-1	60					
Plug-in Center Jumper — 3-Pole	14	92-CJLJ5	i-3	60	14	192-CJLJ6	-3	60		_		_	
Plug-in Center Jumper — 2-Pole	14	92-CJLJ5	j-2	60	14	192-CJLJ6	-2	60				_	
Insulated Side Jumper — 24-Pole	14	92-SJ5B-	24	50		_		_		_		_	
Insulated Side Jumper — 10-Pole	14	92-SJ5B-	10	50		_		-		_		_	
Screw Type Jumper Notching Tool		1492-T1		1		1492-T1		1		1492-T1		1	
Other Accessories:	1	492-EB.11	6	20	1	492-EB.11	6	20	1.	492-EB.11	6	20	
Partition Plate		400 2001	-				-				-	50	
Iest Plug Socket	1	492-TPS2	3	20	1	492-TPS23	3L	50	14	92-TPS23		50	
Test Plug		1492-1P23	5	20		1492-TP23	5	20	1	1492-1123	5	20	
Electrical Warning Plate	4	1492-1PJ	, 15	20	4	492-FWD	, 15	20	47		18	50	
Group Marking Carrier	1	492-GM3	5	25	-	492-GM3	5	25	14	492-GM3	5	25	
Marking Systems:	1492-	//5X12 (14	4/card)	5	1492-	M6X12 (12)	0/card)	5	1492-M	IR8X12 (8	4/card)	5	
Snap-in Marker Cards	1492-	M5X5 (200)/card)	5	1492-	M6X5 (200)/card)	5	1492-1	N8X5 (160)/card)	5	

* Use of center jumpers may affect spacings, requiring derating of terminal blocks. See page 12-78 for details.

Visit our website: www.ab.com/catalogs

12

Preferred availability cat. nos. are printed in **bold**

1489-M Circuit Breakers

Bulletin 1489-M thermal-magnetic Circuit Breakers are approved for branch circuit protection in the United States and Canada, and are certified as Miniature Circuit Breakers for IEC applications.

These branch protectors are compatible with many accessories to meet diverse application needs, including UL 508 Listed bus bars for convenience in panel assembly, auxiliary contacts, signal contacts and shunt trips for versatility, and lockout attachments for safety during maintenance.

Features

- Current limiting
- Fast breaking time
- High rated voltage
- Superior shock and vibration resistance to help prevent nuisance tripping
- Dual terminals allow a more secure connection of two wires, or both a wire and bus bar
- Terminal design helps prevent wiring misses by directing wires into the terminal openings, even while tightening
- Reversible line and load connections
- Single and multi-pole toggle mount lock out attachments available for Lockout/Tagout (LOTO)
- RoHS compliant and fully recyclable device
- Suitable for extreme ambient conditions

1489-M Circuit Breakers				
Rated Voltage	UL/CSA: Max. 480Y/277V AC IEC: U _e 230/400V AC			
Interrupting Capacity	UL/CSA: 10 kA IEC: 15 kA			
Current Ratings	0.563 A			
Poles	1, 2, 3			
Trip Curves	C, D			
	UL 489			
Standards	CSA C22.2 No. 5.1			
Compliance	EN 60947-2			
	GB 14048.2			
	UL Listed, File No. E197878			
	CSA Certified, File No. 259391			
Cortifications	CE Marked			
Certifications	VDE Certified			
	CCC Certified			
	RoHS Compliant			
_				

Catalog Number Explanation

Note: Examples given in this section are for reference purposes. This basic explanation should not be used for product selection; some combinations may not produce a valid catalog number.

Product Selection

1-Pole Circuit Breakers

				Trip Curve C	Trip Curve D Highly Inductive					
			Continuous Current Rating	510 /	1020 <i>I</i>					
Photo/Wiring Diagram	UL/CSA Max. Voltage	IEC/EN Max. Voltage	(I_n) [A]	Cat. No.	Cat. No.					
			0.5	1489-M1C005	1489-M1D005					
			1	1489-M1C010	1489-M1D010	7				
			1.6	1489-M1C016	1489-M1D016					
			2	1489-M1C020	1489-M1D020					
-			3	1489-M1C030	1489-M1D030					
E			4	1489-M1C040	1489-M1D040					
			5	1489-M1C050	1489-M1D050					
			6	1489-M1C060	1489-M1D060					
			7	1489-M1C070	1489-M1D070					
N Netter	277V AC, 48V DC		8	1489-M1C080	1489-M1D080					
-	TOV DC		10	1489-M1C100	1489-M1D100					
		230V AC	13	1489-M1C130	1489-M1D130					
		250V AC	15.	1489-M1C150	1489-M1D150					
			16	1489-M1C160	1489-M1D160					
			20	1489-M1C200	1489-M1D200					
			25	1489-M1C250	1489-M1D250					
			30	1489-M1C300	1489-M1D300					
		2	2				32	1489-M1C320	1489-M1D320	
. [1				35	1489-M1C350	1489-M1D350				
ny 2	C Curve: 277V AC, 48V DC D Curve: 240V AC, 48V DC		40	1489-M1C400	1489-M1D400					
1-pole			50	1489-M1C500	1489-M1D500					
	240V AC, 48V DC		60	1489-M1C600	1489-M1D600					
			63	1489-M1C630	1489-M1D630					

Product Selection

2-Pole Circuit Breakers

				Trip Curve C	Trip Curve D Highly Inductive	
			Continuous Current	510 <i>I</i>	1020 /	
Photo/Wiring Diagram	UL/CSA Max. Voltage	IEC/EN Max. Voltage	Rating (I_n) [A]	Cat. No.	Cat. No.	
			0.5	1489-M2C005	1489-M2D005	
			1	1489-M2C010	1489-M2D010	
			1.6	1489-M2C016	1489-M2D016	
			2	1489-M2C020	1489-M2D020	
Contraction of the local division of the loc			3	1489-M2C030	1489-M2D030	
			4	1489-M2C040	1489-M2D040	
			5	1489-M2C050	1489-M2D050	
			6	1489-M2C060	1489-M2D060	
Contraction of the second	4001/12771/140		7	1489-M2C070	1489-M2D070	
	480Y/2//V AL,		8	1489-M2C080	1489-M2D080	
	90V DC		10	1489-M2C100	1489-M2D100	
		400V AC	13	1489-M2C130	1489-M2D130	
		400 V AC	15	1489-M2C150	1489-M2D150	
			16	1489-M2C160	1489-M2D160	
			20	1489-M2C200	1489-M2D200	
			25	1489-M2C250	1489-M2D250	
			30	1489-M2C300	1489-M2D300	
		O	O	32	1489-M2C320	1489-M2D320
11 13			35	1489-M2C350	1489-M2D350	
r 12 4	C Curve: 480Y/277V AC, 96V DC D Curve: 240V AC, 96V DC		40	1489-M2C400	1489-M2D400	
2-pole	2401/45		50	1489-M2C500	1489-M2D500	
	240V AC,		60	1489-M2C600	1489-M2D600	
	JUV DC		63	1489-M2C630	1489-M2D630	
	- CP					

Product Selection

3-Pole Circuit Breakers

				Trip Curve C	Trip Curve D	
				Inductive	Highly Inductive	
			Continuous Current	510 I _n	1020 I _n	
Photo/Wiring Diagram	UL/CSA Max. Voltage	IEC/EN Max. Voltage	Rating (I _n) [A]	Cat. No.	Cat. No.	
			0.5	1489-M3C005	1489-M3D005	
			1	1489-M3C010	1489-M3D010	
			1.6	1489-M3C016	1489-M3D016	
			2	1489-M3C020	1489-M3D020	
			3	1489-M3C030	1489-M3D030	
H1 01 01			4	1489-M3C040	1489-M3D040	
0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			5	1489-M3C050	1489-M3D050	
			6	1489-M3C060	1489-M3D060	
			7	1489-M3C070	1489-M3D070	
alala	480Y/277V AC		8	1489-M3C080	1489-M3D080	
			10	1489-M3C100	1489-M3D100	
		400V.AC	13	1489-M3C130	1489-M3D130	
		400V AC	15	1489-M3C150	1489-M3D150	
			16	1489-M3C160	1489-M3D160	
			20	1489-M3C200	1489-M3D200	
			25	1489-M3C250	1489-M3D250	
			30	1489-M3C300	1489-M3D300	
			32	1489-M3C320	1489-M3D320	
11 13 15			35	1489-M3C350	1489-M3D350	
121416	C Curve: 480Y/277V AC D Curve: 240V AC		40	1489-M3C400	1489-M3D400	
3-pole			50	1489-M3C500	1489-M3D500	
	240V AC		60	1489-M3C600	1489-M3D600	
			63	1489-M3C630	1489-M3D630	
KOR KOR						

Specifications

Electrical Ratings						
Poles						1, 2, 3
Tripping characteristics					C, D	
Rated current	t (I _n)					0.563 A
Rated freque	ncy [f]					50/60 Hz
Rated insulat	ion volta	ge U	_i per IEC/EN 6	0664-1		250V AC (phase to ground) 440V AC (phase to phase)
Overvoltage	category					III
Pollution deg	gree					3
			D	ata per UL/	/CSA	
				C Curve	0.540 A	277V AC
			1 nolo		5063 A	240V AC
			I-pole	D.Currue	0.535 A	277V AC
	10			D Curve	4063 A	240V AC
Rated	AC			C Current	0.540 A	480Y/277V AC
voltage			2 2	C Curve	5063 A	240V AC
			2-, 3-pole	D.C.m.s	0.535 A	480Y/277V AC
				D Curve	4063 A	240V AC
	DC		1-pole		48V DC	
	DC			2-pole		96V DC (2-pole in series)
Rated interru	pting cap	pacity	y per UL 489			10 kA
Reference ter	nperatur	e for	tripping chara	acteristics		40°C
					6,000 operations	
Electrical end	lurance					(AC and DC);
						1 cycle (1s - ON, 9s - OFF)
			Data	per IEC/EN	60947-2	
Rated operational 1-pole				230V AC		
voltage (U _e)			2-, 3-pole			400 V AC
			٨		1-pole	253/440V AC
Highest supp	ly or	AL		2.	-, 3-pole	440V AC
(U _{max})	nayc				1-pole	48V DC
· 111dA/				P	2-pole	96V DC
Min. operating voltage					12V AC, 12V DC	
Rated ultimate short-circuit breaking capacity (<i>I</i> _{CU})					15 kA	
Rated service short-circuit breaking capacity (<i>I</i> _{CS})				≤40 A: 11.25 kA >40 A: 7.5 kA		
Rated impulse withstand voltage Uimp. (1.2/50µs)				4 kV (test voltage 6.2kV at sea level, 5kV at 2,000m)		
Dielectric test voltage				2 kV (50/60Hz, 1 min.)		
Reference temperature for tripping characteristics				30 °C		
Electrical endurance 1 cycle (2s - ON, 13s - OFF, $I_{\Pi} \le 32A$), 1 cycle (2s - ON, 28s - OFF, $I_{\Pi} > 32A$)				$I_{\rm II} < 30A$:20,000 ops. (AC) $I_{\rm II} \ge 30A$:10,000 ops. (AC) 1,000 ops. (DC)		

Ν	Achanical Dat	a
Housing		Insulation group II, RAL 7035
ndicator window	red ON/green OFF	
Protection degree per EN 60529		IP20, IP40 in enclosure with cover
Vechanical endurance		20,000 operations
Shock resistance per IEC/EN 60068-2-2	7	25 g - 2 shocks - 13 ms
/ibration resistance per IEC/EN 60068-2	2-6	5g – 20 cycles at 51505 Hz with load 0.8 In
	Environmenta	l
Environmental conditions (damp heat) per IEC/EN 60068-2-30	~	28 cycles with 55°C/90-96% and 25°C/95-100%
Ambient temperature ★		-25+55 ℃
Storage temperature		-40+70 °C
	Installation	
Terminal		Dual terminal
Cross-section of conductors \clubsuit –	mm ²	35/35 mm ²
solid, stranded (front/back terminal slot)	AWG	184/1810 AWG
Cross-section of conductors – flexible	mm ²	25/10 mm ²
Multi-wire rating per LIL CSA	AWG	1 wire, 184 AWG
which which taking per objects in	AWG	2 wires‡, 1810 AWG
Cross-section of bus bars (back erminal slot)	mm ²	10 mm ²
	N•m	2.8 N•m
Fightening torque	in∙lb	AWG 1816: 8.85 in•lb, AWG 1410: 17.7 in•lb, AWG 84:39.8 in•lb
Screwdriver	No. 2 Pozidrive	
Mounting	DIN Rail (EN 60715, 35 mm) with fast clip	
Nounting position	Any	
supply	Optional	
Approximat	e Dimensions	and Weight
Pole dimensions (H x D x W)	111 x 69 x 17.5 mm (4.37 x 2.72 x .69")	
Pole weight	125 g (4.4 oz.)	
Combinatio	n with Auxilia	ry Elements
Auxiliary contact	Yes	
Signal contact	Yes	
Shunt trip	Yes	

♣ 35 mm self-declared, not included in IEC/EN approval.

 \star Refer to the ambient temperature derating tables.

‡ Wires must be of like size and stranding. Only one wire per terminal slot.

 \star Self-declared IEC DC ratings.

Power Loss Due to Current

Rated Current [A]	Power Loss Per Pole [W]	Rated
0.5	1.4	
1	1.4	
1.6	1.8	
2	1.8	
3	1.6	
4	1.8	
5	1.9	
б	2.0	
7	1.1	
8	1.5	
10	2.1	
13	23	

Rated Current [A]	Power Loss Per Pole [W]
15	2.4
16	2.5
20	2.5
25	3.2
30	3.5
32	3.7
35	4.1
40	4.5
50	4.5
60	4.9
63	5.4

Approximate Dimensions

67 mm (2.6") 74 mm (2.9")

69 mm (2.7") 75 mm (3.0")

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

С

0 0

0 0

Zero-stack Derating

The installation of several miniature circuit breaker side by side with rated current on all poles requires a correction factor to the rated current (not required if spacers are used).

2-, 3-Pole

2-Pole

3-Pole

Bulletin 855L Panel Light Bars Product Overview/Selection and Specifications

* Not provided.

Dimensions in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes.

11

Allen-Bradley

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)

Device protection, according to type 3/class III, with network interference suppression filter to prevent highfrequency interference voltages, for 1-phase power supply networks with separate N and PE (3-conductor system: L1, N, PE), with remote indication contact.

Product Description

Device protection with interference filter

Why buy this product

- Can be installed in industrial environments
- Thermal monitoring of the protective circuit
- Combined protective circuit for absorbing transient surge voltages and high-frequency interference voltages
- Disconnection status signaled via floating remote indication contact
- Integrated power display switches off automatically when there is a malfunction due to overload.

Key Commercial Data

Packing unit	1 STK
Weight per Piece (excluding packing)	615.2 g
Custom tariff number	85363010
Country of origin	Germany

Technical data

Dimensions

Height	93 mm	
Width	112 mm	
Depth	79 mm	
Ambient conditions		
Degree of protection	IP20	

Technical data

Ambient conditions

Ambient temperature (operation)	-25 °C 70 °C		
Ambient temperature (storage/transport)	-25 °C 70 °C		
Permissible humidity (operation)	5 % 95 %		
General			
IEC test classification			
	Т3		
EN type	ТЗ		
Number of ports	Тwo		
SPD design	Voltage-limiting type		
Mode of protection	L-N		
	L-PE		
	N-PE		
Mounting type	DIN rail: 35 mm		
Color	black		
	silver		
Housing material	Aluminum		
Degree of pollution	2		
Flammability rating according to UL 94	V-0		
Туре	Rail-mountable module, one-piece		
Number of positions	2		
Surge protection fault message	Optical, remote indicator contact		
For country-specific use in	USA, CN, BR		
Protective circuit			
Nominal voltage U_N	120 V AC (TN)		
	120 V AC (TT - only in use with RCD)		
	120 V AC (IT - only in use with RCD)		
Nominal frequency f _N	50 Hz (60 Hz)		
Maximum continuous voltage U_c	150 V AC		
Rated load current IL	20 A (40°C)		
Residual current I _{PE}	≤ 0.6 mA		
Nominal discharge current Ι _n (8/20) μs	3 kA		
Standby power consumption P _c	\leq 7.5 VA (at U _{REF})		
	\leq 10 VA (at U _c)		
Reference test voltage U _{REF}	132 V AC		
Combination wave U _{oc}	6 kV (3 kA)		
Voltage protection level U _p	≤ 0.5 kV		

08/18/2016 Page 2 / 6

Technical data

Protective circuit

TOV behavior at U _T (L-N)	175 V AC (5 s / withstand mode)
	240 V AC (5 s / safe failure mode)
	208 V AC (120 min / safe failure mode)
TOV behavior at U _T (L-PE)	208 V AC (5 s / withstand mode)
	175 V AC (120 min / withstand mode)
	1332 V AC (200 ms / safe failure mode)
TOV behavior at U _T (N-PE)	1200 V AC (200 ms / safe failure mode)
Response time t _A	≤ 25 ns
Capacity (L-N)	1 μF ±10 %
	10 nF ±10 % (X2-275 V)
Capacity (L-PE)	2.2 nF ±20 % (Y2-250 V)
Capacity (L-PEN)	2.2 nF ±20 % (Y2-250 V)
Max. required back-up fuse	20 A (MCB B/general purpose)
	16 A (IT - MCB B/general purpose)
Input attenuation aE, sym.	20 dB (\geq 100 kHz / 50 Ω)
Input attenuation aE, asym.	30 dB (≥ 1 MHz / 50 Ω)
Short-circuit current rating I _{SCCR}	5 kA AC (TN/TT)
	1 kA AC (IT)
Indicator/remote signaling	
Connection name	Remote fault indicator contact
Switching function	PDT contact
Operating voltage	12 V AC 250 V AC
	250 V DC (250 mA DC)
Operating current	100 mA AC 1 A
	1 A (48 V DC)
Connection method	Pluggable screw connection
Conductor cross section flexible	0.14 mm ² 1.5 mm ²
Conductor cross section solid	0.14 mm ² 1.5 mm ²
Conductor cross section AWG	26 16
Screw thread	M2
Tightening torque	0.25 Nm
Stripping length	7 mm
Connection data	

Connection method	Screw terminal blocks
Conductor cross section flexible	2.5 mm ² 4 mm ²
Conductor cross section solid	2.5 mm ² 6 mm ²

Technical data

Connection data

Conductor cross section AWG	14 10
Screw thread	M3
Tightening torque	0.5 Nm 0.6 Nm
	4.5 lb _r -in 5.5 lb _r -in.
Stripping length	8 mm
UL specifications	
SPD Type	2CA
Maximum continuous operating voltage MCOV (L-N)	150 V AC
Maximum continuous operating voltage MCOV (L-G)	150 V AC
Maximum continuous operating voltage MCOV (N-G)	150 V AC
Mode of protection	L-N
	1-G
	N-G
Power distribution system	
Nominal frequency	50/60 Hz
Voltage protection rating VPR (L-N)	500 V
Voltage protection rating VPR (L-G)	500 V
Voltage protection rating VPR (N-G)	500 V
Nominal discharge current In	3 kA
Short-circuit current rating (SCCR)	5 kA
Protective circuit, filter	
Discharge resistance	820 kΩ
Clamping voltage ringwave (L-N)	100 V (category A 100 kHz 6 kV/200 A)
	195 V (category B 100 kHz 6 kV/500 A)
Clamping voltage ringwave (L-PE)	390 V (category A 100 kHz 6 kV/200 A)
	390 V (category B 100 kHz 6 kV/500 A)

Drawings

08/18/2016 Page 4 / 6

ETIM 2.0	EC000942
ETIM 3.0	EC000942
ETIM 4.0	EC000942
ETIM 5.0	EC000942

Classifications

UNSPSC

UNSPSC 6.01	30212010
UNSPSC 7.0901	39121610
UNSPSC 11	39121610
UNSPSC 12.01	39121610
UNSPSC 13.2	39121620
Approvals	
Approvals	
Approvals	
UL Recognized / cUL Recognized / EAC / cULus Recognized	
Ex Approvals	P G [×]
Approvals submitted	
Approval details	
FAC	

Phoenix Contact 2016 © - all rights reserved http://www.phoenixcontact.com

Bulletin 1492 DIN Rail Receptacle

Advantages

- Quick to snap on 35 mm DIN rail and easy to wire
- Available with ground fault circuit interrupter (GFCI) or standard duplex outlets
- Feature of visual indication of power included with GFCI receptacle

The Bulletin 1492 DIN rail receptacle is a convenient power outlet which is simple to snap onto DIN rail or mount on a panel. The receptacle is available in 15 A or 20 A versions and is an easy way to provide access to power in a panel.

Allen-Bradley • Rockwell Software

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)

Uninterruptible power supply with integrated power supply unit. For lead AGM energy storage with 1.3 Ah to 38 Ah nominal capacity. Input: 1-phase, output: 24 V DC/10 A. Push-in connection technology

Product Description

Supply DC loads reliably and save space with the TRIO uninterruptible power supplies. An input grid is no longer necessary for startup. Connected industrial PCs can be shut down easily via the integrated USB interface.

Your advantages

- Space saving: Combination of UPS module and power supply in the same housing
- Long buffer times, thanks to large selection of VRLA energy storage systems
- ☑ USB interface for connection to higher-level controllers such as industrial PCs
- Startup from energy storage possible, even without mains input
- Universal range of possible applications, thanks to a comprehensive package of approvals and an extended temperature range
- Easy installation, thanks to push-in connection technology

RoHS

Key Commercial Data

Packing unit	1 pc
GTIN	4 055626 166582
GTIN	4055626166582

Technical data

Dimensions

Width	68 mm
Height	130 mm
Depth	160 mm
Width with alternative assembly	160 mm
Height with alternative assembly	130 mm
Depth with alternative assembly	68 mm
Installation distance right/left	0 mm / 0 mm
Installation distance top/bottom	50 mm / 50 mm

Technical data

Ambient conditions

Degree of protection	IP20
Inflammability class in acc. with UL 94 (housing / terminal blocks)	V0
Ambient temperature (operation)	-25 °C 70 °C (> 60 °C Derating: 2.5 %/K)
Ambient temperature (start-up type tested)	-40 °C
Ambient temperature (storage/transport)	-40 °C 85 °C
Max. permissible relative humidity (operation)	≤ 93 % (At +25°C, non-condensing)
Climatic class	3K3 (in acc. with EN 60721)
Degree of pollution	2
Installation height	≤ 4000 m (> 2000 m, observe derating)
Input data	
AC input voltage range	100 V AC 240 V AC -15 % +10 %
Inrush current limiting/I ² t	$< 0.2 \text{ A}^2 \text{s}$
Mains buffering time	≥ 25 ms (120 V AC)
Typical response time	200 ms
Input fuse, integrated	6.3 A (slow-blow, internal)
Output data	
Nominal output voltage	24 V DC
Setting range of the output voltage (U_{Set})	24 V DC 28 V DC (> 24 V constant capacity)
Nominal output current (I_N)	10 A
Dynamic Boost (I _{Dyn.Boost})	15 A
Derating	> 60 °C (2.5%/K of P _{Out} nom.)
Control deviation	< 0.55 % (Static load change 10 % 90 %)
Maximum power dissipation in no-load condition	< 3 W (230 V AC)
Efficiency	typ. 90 % (120 V AC)
	typ. 91 % (230 V AC)
	typ. 96 % (Battery operation)
Residual ripple	< 20 mV
Connection in parallel	yes, with diode module uncoupled
Surge protection against internal surge voltages	< 30 V DC
Feedback voltage resistance	≤ 35 V DC
General	

Net weight	1.34 kg
Insulation voltage input/output	4 kV AC (type test)
	2 kV AC (routine test)
Protection class	1
MTBF (IEC 61709, SN 29500)	> 2007013 h (230 V AC, at 25 °C)
	> 1210518 h (230 V AC, at 40 °C)
	> 575978 h (230 V AC, at 60 °C)
Mounting position	horizontal DIN rail NS 35, EN 60715

09/12/2020 Page 2 / 8

Technical data

Standard - Safety extra-low voltage

General

Assembly instructions	alignable: horizontally 0 mm, vertically 50 mm	
Connection data, input		
Connection method	Push-in connection	
Conductor cross section solid min.	0.2 mm ²	
Conductor cross section solid max.	4 mm ²	
Conductor cross section flexible min.	0.2 mm ²	
Conductor cross section flexible max.	2.5 mm ²	
Conductor cross section AWG min.	24	
Conductor cross section AWG max.	12	
Stripping length	10 mm	
Connection data, output		
Connection method	Push-in connection	
Conductor cross section solid min.	0.2 mm ²	
Conductor cross section solid max.	4 mm ²	
Conductor cross section flexible min.	0.2 mm ²	
Conductor cross section flexible max.	2.5 mm ²	
Conductor cross section AWG min.	24	
Conductor cross section AWG max.	12	
Stripping length	10 mm	
Connection data for signaling		
Connection method	Push-in connection	
Conductor cross section solid min.	0.2 mm ²	
Conductor cross section solid max.	1.5 mm ²	
Conductor cross section flexible min.	0.2 mm ²	
Conductor cross section flexible max.	1.5 mm ²	
Conductor cross section AWG min.	24	
Conductor cross section AWG max.	16	
Stripping length	8 mm	
Charging process		
Charge characteristic curve	IU₀U	
Charge current	0.2 A 3 A (-25 °C 60 °C)	
Standards		
EMC requirements for noise immunity	EN 61000-6-1	
	EN 61000-6-2	
EMC requirements for noise emission	EN 61000-6-3	
	EN 61000-6-4	
Standard - safety for equipment for measurement, control, and laboratory use	IEC 61010-1	

IEC 61010 (SELV) / (PELV)

Technical data

Standards

Standard - Safe isolation	DIN VDE 0100-410	
Standard - power supply devices for low voltage with DC output	EN 61204-3	
Conformance/approvals		
UL approvals	UL Listed UL 61010	
	UL/C-UL Listed ANSI/ISA-12.12.01 Class I, Division 2, Groups A, B, C	
EMC data	N 6	
Electromagnetic compatibility	Conformance with EMC Directive 2014/30/EU	
Low Voltage Directive	Conformance with Low Voltage Directive 2014/35/EC	
Conducted noise emission	EN 61000-6-3 (Class B)	
Noise emission	EN 61000-6-3 (Class B)	
DNV GL conducted interference	Class B	
Additional text	Area power distribution	
DNV GL noise radiation	Class B	
Additional text	Bridge and deck area	
Electrostatic discharge	EN 61000-4-2	
Contact discharge	6 kV (Test Level 4)	
Discharge in air	8 kV (Test Level 4)	
Electromagnetic HF field	EN 61000-4-3	
Frequency range	80 MHz 6 GHz	
Test field strength	10 V/m (Test Level 3)	
Comments	Criterion A	
Fast transients (burst)	EN 61000-4-4	
Input	4 kV (Test Level 4 - asymmetrical)	
Output	2 kV (Test Level 3 - asymmetrical)	
Signal	2 kV (Test Level 4 - asymmetrical)	
Comments	Criterion A	
Surge voltage load (surge)	EN 61000-4-5	
Input	2 kV (Test Level 3 - symmetrical)	
	4 kV (Test Level 4 - asymmetrical)	
Output	1 kV (Test Level 1 - symmetrical)	
	2 kV (Test Level 3 - asymmetrical)	
Signal	1 kV (Test Level 2 - asymmetrical)	
Comments	Criterion A	
Conducted interference	EN 61000-4-6	
I/O/S	asymmetrical	
Frequency range	0.15 MHz 80 MHz	
Voltage	10 V (Test Level 3)	
Comments	Criterion A	
Attenuated sinusoidal oscillations (ring wave)	EN 61000-4-12	
Comments	Criterion A	

Technical data

EMC data

Approvals

DNV GL / BSH / UL Listed / cUL Listed / EAC / IECEE CB Scheme / LR / cULus Listed

Approvals

Ex Approvals			
UL Listed / cUL Listed / cULus I	Listed		C
Approval details			
DNV GL		https://approvalfinder.dnvgl.com/	TAA00002DW
BSH			1025a
UL Listed	UL	http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm	FILE E 123528
cUL Listed		http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm	FILE E 123528
EAC	ERL		RU*DE*08.B.01873/19
IECEE CB Scheme	CB scheme	http://www.iecee.org/	DK-67494-UL
LR	Lloyds Register	http://www.lr.org/en	LR2002877TA
cULus Listed	CULUSTED US		
Accessories			
Accessories			

Assembly adapter

Accessories

Assembly adapters - UWA 130 - 2901664

2-piece universal wall adapter for securely mounting the device in the event of strong vibrations. The profiles that are screwed onto the side of the device are screwed directly onto the mounting surface. The universal wall adapter is attached on the left/right.

Battery unit

Energy storage - UPS-BAT/VRLA/24DC/1.3AH - 2320296

Energy storage device, lead AGM, VRLA technology, 24 V DC, 1.3 Ah, tool-free battery replacement, automatic detection, and communication with QUINT UPS-IQ

Energy storage - UPS-BAT/VRLA/24DC/3.4AH - 2320306

Energy storage device, lead AGM, VRLA technology, 24 V DC, 3.4 Ah, tool-free battery replacement, automatic detection, and communication with QUINT UPS-IQ

Energy storage - UPS-BAT/VRLA/24DC/7.2AH - 2320319

Energy storage device, lead AGM, VRLA technology, 24 V DC, 7.2 Ah, tool-free battery replacement, automatic detection, and communication with QUINT UPS-IQ

Energy storage - UPS-BAT/VRLA/24DC/12AH - 2320322

Energy storage device, lead AGM, VRLA technology, 24 V DC, 12 Ah, tool-free battery replacement, automatic detection, and communication with QUINT UPS-IQ

Accessories

Energy storage - UPS-BAT/VRLA/24DC/38AH - 2320335

Energy storage device, lead AGM, VRLA technology, 24 V DC, 38 Ah, automatic detection, and communication with QUINT UPS-IQ

Data cable preassembled

Data cable - MINI-SCREW-USB-DATACABLE - 2908217

Used for communication between an industrial PC and Phoenix Contact devices with USB-Mini-B connection.

Phoenix Contact 2020 © - all rights reserved http://www.phoenixcontact.com

PHOENIX CONTACT GmbH & Co. KG Flachsmarktstr. 8 32825 Blomberg Germany Tel. +49 5235 300 Fax +49 5235 3 41200 http://www.phoenixcontact.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Phoenix Contact: 2907161

Energy storage - UPS-BAT/PB/24DC/4AH - 1274117

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)

Energy storage, VRLA-AGM, 24 V DC, 4 Ah, automatic detection and communication with QUINT UPS-IQ

Product Description

For continuous monitoring and intelligent management, there is constant communication with the QUINT UPS. Thanks to automatic detection of the energy storage, and tool-free switching during operation, quick installation is possible. The QUINT UPS with IQ technology energy storage leaves the warehouse fully charged.

Key Commercial Data

Packing unit	1 pc
Weight per Piece (excluding packing)	3,300.000 g
Country of origin	China
Note	Made to Order (non-returnable)

Technical data

Dimensions

Width	85 mm
Height	191 mm
Depth	110 mm
Installation distance right/left	0 mm / 0 mm
Installation distance top/bottom	50 mm / 50 mm

Ambient conditions

Degree of protection	IP20	
Ambient temperature (operation)	0 °C 40 °C	
Ambient temperature (storage/transport)	-20 °C 40 °C	
Ambient temperature (charge)	0 °C 40 °C	
Ambient temperature (discharge)	-20 °C 50 °C	
Max. permissible relative humidity (operation)	≤ 95 %	
Degree of pollution	2	
Protection class	Ш	

09/09/2021 Page 1 / 3

Energy storage - UPS-BAT/PB/24DC/4AH - 1274117

Technical data

Degree of protection	IP20
Degree of pollution	2
Weight	3.3 kg
Disposal	Used batteries must not be thrown away with household waste, they should instead be disposed of in accordance with applicable national regulations.
Connection in parallel	yes
	max. 5
Connection in series	No
Battery type	BB Battery HR4.2-12FR
Battery technology	VRLA-AGM
IQ-Technology	yes
Temperature sensor	yes
Latest startup date (battery only)	6 Months (0 °C 20 °C)
Latest startup (battery only) - range	3 Months 6 Months (20 °C 30 °C)
	1 Months 3 Months (30 °C 40 °C)
Accumulator module service life (according to Eurobat)	6 (20 °C)
Storage medium	VRLA-AGM
Size designation	Block
Input data	
Input voltage	24 V DC (SELV)
Nominal capacity	4 Ah
Charge current	1.2 A
End-of-charge voltage	27.6 V DC (20 °C)
	24 V DC
	25 A
	1x 25 A
Buffer time	4.5 min (20.A)
	3 min (25 A)
Drawings	

09/09/2021 Page 2 / 3

Energy storage - UPS-BAT/PB/24DC/4AH - 1274117

1606-XLE120E & 1606-XLE120EC 24V, 5A; Single Phase Input

The 1606-XLE supplies are cost optimized power supplies without compromising quality, reliability and performance. The 1606-XLE120E is part of the XLE power supply family, existing alongside the high featured XLS family.

The 1606-XLE includes all the essential basic functions and the devices have a power reserve of 20%. This extra current may even be used continuously at temperatures up to +45°C. The most important features are the small size, the high efficiency and the wide temperature range. The Auto-select input makes worldwide installation and usage very simple. Defects or system failures caused by wrongly set switches can not occur.

2. Specificati	ON QUICK REFER	ENCE
Output voltage Adjustment range	DC 24V 24 - 28V	
Output current	5 – 4.3A	ambient <60°C
	6 – 5,1A	ambient <45°C
Output power	120W	ambient <60°C
	144W	ambient <45°C
Output ripple	< 50mVpp	20Hz to 20MHz
Input voltage	AC 100-120 / 200- 240V	Auto-select Input
Line frequency	50-60Hz	±6%
AC Input current	typ. 2.05 / 1.23A	at 120 / 230Vac
Power factor	typ. 0.56 / 0.47	at 120 / 230Vac
AC Inrush current	typ. 3A peak	
DC Input	not allowed	
Efficiency	typ. 89.4 / 90.2%	at 120 / 230Vac
Losses	typ. 14.5 / 13.2W	at 120 / 230Vac
Temperature range	-25°C to +70°C	operational
Derating	3W/°C	+60 to +70°C
Hold-up time	typ. 80 / 78ms	at 120 / 230Vac
Dimensions	32x124x117mm	WxHxD

3. AGENCY APPROVALS		
CUL US LISTED IND. CONT. EQ. UL 508	C SNO US UL 60950-1	
CE		
EMC, LVD		

•	Related Pro	DUCTS
	1606-XLB	Wall mount bracket
	1606-XLSRED	Redundancy Module

Buffer unit

1606-XLBUFFER

10000110837 (Version 00)

4

Bulletin 1606 Redundant Power Supplies

	N+1 Redundancy	N+1 Redundancy	N+1 Redundancy
	1606-XL60DR	1606-XL120DR	1606-XL240DR
Output Volts/Watts	24V/60 W	24V/120 W 24V/240 W	
Input Voltage (4763 Hz)	100120V/200240V AC manual select; 160375V DC	100120/200240V AC manual select; 210375V DC	AC 100120/200240V manual select; DC 240375V
Operational Range		85132/176264V AC	85132/176264 V AC
Hold-up Time	>20 ms (AC 196V)	>37 ms (AC 196V)	>25 ms (AC 196V)
Rated Input Current	<1.3 A (115V)/<0.7 A (230V)	<2.6 A (115V)/<1.4 A (230V)	<6 A (115V)/<2.8 A (230V)
Efficiency	typ. 86.5%	typ. 89%	typ. 89%
Output Voltage	24V	24V	24V
Rated Output Current	2.5 A	5 A	10 A
Power Boost	—	6 A	12 A
Ripple/Noise	<30 mV _{PP}	<30 mV _{PP}	<30 mV _{PP}
Operating Temperature Range (T _{amb})	-10+70 °C >60 °C with derating	-10+70 °C >60 °C with derating	0+70 °C >60 °C with derating
Non-Operating Temperature Range	-10 °C+70 °C >60 °C with derating	-40+85 °C -40+85 °C	
MTBF∆	700 000 hours	480.000 hours	390.000 hours
Dimensions (W x H x D)	49 x 124 x 102 mm	64 x 124 x 102 mm	120 x 124 x 102 mm
Weight	470 g	620 g	980 g
Certifications/Standards ★	1, 2, 3, 5, 6	1, 2, 3, 5, 6, 7 1, 2, 3, 5, 6	
Special Features	RDY relay contact; N+1 redundancy; plug connectors; NEC Class 2 power supply	RDY relay contact; N+1 redundancy; plug connectors RDY relay contact N+1 redundancy plug connectors	

★ 1) = CE, 2) = UL 508 (cULus LISTED), 3) = UL 1950 (cURus), 4) = CSA C22.2, No. 60950, 5) Safety standards = IEC/EN 60950, EN 50178, 6) EMC standards = EN 55011 (Class B), EN 55022 (Class B), EN 61000-6-2, 7) EMC standards = EN 61000-3-2 (A14), EN 50081-1
 △ MTBF determined by Siemens norm SN 29500 at full load current and 40 °C

Bulletin 1606 Redundancy Module

	N+1	N+1	N+1			N+1	N+1
	Redundancy	Redundancy	Redundancy	N+1 Red	lundancy	Redundancy	Redundancy
	1606-XLRED20- 30	1606-XLRED40	1606-XLPRED	1606-XLSRED	1606-XLERED	1606-XLSRED40	1606-XLSRED80
Output Volts/Watts	30 A Dual 40 A Single redundancy redundancy module module		8 A Dual redundancy	10 A Dual redundancy		20 A Dual redundancy	40 A Dual redundancy
Input Voltage (4763 Hz)	DC 24V (r	max. 35V)	DC 1060V	DC 10)60V	2428 V DC	2428 V DC
Operational Range	1836	S V DC	1060V DC	106	0V DC	2428 V DC	2428 V DC
Rated Input Current	2030 A (max. 35 A)	040 A (max. 50 A)	Single input: 8 A max. Dual input: 16 A max. total	Single input: 10 A max. Dual input: 20 A max. total		Single input: 20 A max. Dual input: 40 A max. total	Single input: 40 A max. Dual input: 80 A max. total
Output Voltage	Vin -0.5V typ. Vin -0.6V typ.		Vin -0.9V typ.	Vin -0.9V typ.		Vin -2.15V typ.	Vin -2.7V typ.
Rated Output Current	d Output Current 2030 A (max. 040 A (max. 50 A) 010 A 020 A		040 A	080 A			
Operating Temperature Range (T _{amb})	-10 °C+70 °C		-40 °C+70 °C >60 °C with derating	-25 °C+70 °C >60 °C with derating		-25 °C+70 °C >60 °C with derating	-25 °C+70 °C >60 °C with derating
Dimensions (W x H x D)	48 x 124 x 102 mm	48 x 124 x 117 mm	45 x 75 x 91 mm	32 x 124 x 102 mm	32 x 124 x 117 mm	36 x 124 x 127 mm	46 x 124 x 127 mm
Weight	625 g	646 g	136 g	290 g	350 g	340 g	440 g
Certifications/Standards	1, 2, 3, 6		1, 2, 3, 6	1, 2, 3, 6		1, 2, 3, 6	1, 2, 3, 6
Special Features	Dual redundancy module for 2x35 A; N+1 redundancy	Single redundancy module for 2.5- 50 A; N+1 redundancy	Redundancy for DC 1060V applications; ABS/GL/RINA (Marine); Class 1 Div. 2	Redundancy for DC 1060V applications; Class 1 Div. 2	Redundancy for DC 1060V applications; Class 1 Div. 2; DC OK	Redundancy for DC 2428V applications; Class 1 Div. 2	Redundancy for DC 2428V applications; Class 1 Div. 2

★ 1) = CE, 2) = UL 508 (cULus LISTED), 3) = UL 1950 (cURus), 4) = CSA C22.2, No. 60950, 5) Safety standards = IEC/EN 60950, EN 50178, 6) EMC standards = EN 55011 (Class B), EN 55022 (Class B), EN 61000-6-2, 7) EMC standards = EN 61000-3-2 (A14), EN 50081-1
 △ MTBF determined by Siemens norm SN 29500 at full load current and 40 °C

Littelfuse xpertise Applied Answers Delivered

312/318 Series Lead-Free 3AG, Fast-Acting Fuse

Agency Approvals

Agency	Agency File Number	Ampere Range
(UL)	E10480	312 Series: 0.062A - 25A 318 Series: 0.062A - 25A
(Sft)	29862	312 Series: 0.062A - 30A 318 Series: 0.062A - 10A
PS E	NBK040205-E10480B/F NBK040205-E10480D/H	312/318 Series 1A-5A 312/318 Series 6A-10A
c FL [®] us	E10480	318 Series: 12A - 30A
K	SU05001-6008 SU05001-5005 SU05001-5006	312/318 Series: 1-2A 312/318 Series: 3-6A 312/318 Series: 7-10A
Œ	N/A	312 Series: 0.062A - 10A 318 Series: 0.062A - 10A

Description

The 3AG Fast-Acting Fuse solves a broad range of application requirements while offering reliable performance and cost-effective circuit protection.

Features

- In accordance with UL Standard 248-14
- RoHS compliant and Lead-free

RHS 🕫 🕻 c**Al**us 🕸 🖲 🚱 🧲

• Available in cartridge and axial lead format and with various forming dimensions

Applications

Used as supplementary protection in appliance or utilization equipment to provide individual protection for components or internal circuits.

Electrical Characteristics for Series

% of Ampere Rating	Ampere Rating	OpeningTime
100%	0.062A – 35A	4 hours, Minimum
135%	0.062A – 35A	1 hour, Maximum
	0.062A – 10A	5 sec., Maximum
200%	12A – 30A	10 sec., Maximum
	35A	20 sec., Maximum

Additional Information

Datasheet

Samples

Accessories 312 & 318 Series

Samples 318 Series

Axial Lead & Cartridge Fuses

3AG > Fast Acting > 312/318 Series

				Nominal	Neminal	Neminal		Agency A	Approvals		
Amp Code	Ampere Rating (A)	Rating (V)	Interrupting Rating	Cold Resistance (Ohms)	Melting I ² t (A ² sec)	(UL)	c FL °us	K	PS L	SP.	Œ
.062	0.062	250		24.7000	0.000249	x				x	×
.100	0.1	250		11.2800	0.00171	x				×	x
.125	0.125	250		7.1450	0.00289	x				x	х
.150	0.15	250		5.1300	0.00550	x				X	х
.175	0.175	250		3.8750	0.00960	x				х	х
.187	0.187	250		3.4200	0.0128	x				x	х
.200	0.2	250	35A@250Vac	3.0200	0.0165	x				x	х
.250	0.25	250	10KA@125Vac	2.0100	0.0355	x				x	x
.300	0.3	250		1.4050	0.0689	x				x	х
.375	0.375	250		0.8250	0.185	x				х	х
.500	0.5	250		0.4980	0.483	x				х	х
.600	.6	250		0.3620	0.880	x				x	x
.750	0.75	250		0.2445	1.84	x				х	х
001.	1	250		0.1900	0.760	x		x	x	x	X
1.25	1.25	250		0.1385	1.45	x		x	x	х	х
01.5	1.5	250		0.1036	2.35	x			x	x	X
01.6	1.6	250		0.0934	2.80	x		x	x	x	x
1.75	1.75	250		0.0856	3.60	x			x	x	X
01.8	1.8	250	100A@250Vac	0.0825	3.85	x			x	x	х
002.	2	250	IUKA@125Vac	0.0704	5.20	x		x	x	x	x
2.25	2.25	250		0.0594	7.20	x			x	x	х
02.5	2.5	250		0.0513	9.54	x			x	x	X
003.	3	250		0.0427	14.0	x		x	x	х	X
004.	4	250		0.0293	28.5	x		x	x	x	X
005.	5	250		0.0224	50.0	x		x	x	x	х
006.	6	250	2000@250\/ac	0.0178	118.0	x		x	x	х	×
007.	7	250	10KA@125Vac	0.0146	81.0	x		x	x	х	X
008.	8	250		0.0122	166.0	x		x	x	x	x
010.	10	250		0.0093	298.0	x		x	x	x	х
012.*	12	32		0.0072	234.6	x	X**			x	
015.*	15	32		0.0052	490.5	x	X**			x	
020.*	20	32	2000@22.1/22	0.0035	1414	×	X**			x	
025 *	25	32	JEV ZCWAUUC	0.0024	2041	×	x**			×	
030 *	30	32		0.0019	3717	x	x**			x	
555.				0.0010	7501		~			~	

NOTES:

** For 318 Series 12A to 30A, the agency approval is only cURus.

Temperature Re-rating Curve

Note:

Rerating depicted in this curve is in addition to the industry practice derating of 25% for continuous operation.

Please contact Littelfuse for more details on those T-C Curves of other ampere ratings which are not published.

Soldering Parameters - Wave Soldering

Recommended Process Parameters:

Wave Parameter	Lead-Free Recommendation
Preheat: (Depends on Flux Activation Temperature)	(Typical Industry Recommendation)
Temperature Minimum:	100°C
Temperature Maximum:	150°C
Preheat Time:	60-180 seconds
Solder Pot Temperature:	260°C Maximum
Solder Dwell Time:	2-5 seconds

Recommended Hand-Solder Parameters:

Solder Iron Temperature: 350°C +/- 5°C Heating Time: 5 seconds max.

Note: These devices are not recommended for IR or Convection Reflow process.

Axial Lead & Cartridge Fuses

3AG > Fast Acting > 312/318 Series

Product Characteristics

Materials	Body: Glass Cap: Nickel-plated brass Leads: Tin-plated Copper	
Terminal Strength	MIL-STD-202, Method 211, Test Condition A	
Solderability	MIL-STD-202 method 208	
Product Marking	Cap1: Cap2:	Brand logo, current and voltage ratings Series and agency approval marks

Operating Temperature	−55°C to +125°C
Thermal Shock	MIL-STD-202, Method 107, Test Condition B: (5 cycles -65°C to +125°C)
Vibration	MILSTD-202, Method 201
Humidity	MIL-STD-202, Method 103, Test Condition A: High RH (95%), and Elevated temperature (40°C) for 240 hours
Salt Spray	MIL-STD-202, Method 101, Test Condition B

Part Numbering System

Packaging

Dimensions

			Quantity &	—
Packaging Option	Packaging Specification	Quantity	Packaging Code	laping Width
312 Series				
Bulk	N/A	1000	MX	N/A
Bulk	N/A	100	HX	N/A
318 Series				
Bulk	N/A	1000	MX	N/A
Bulk	N/A	100	HX	N/A
Bulk	N/A	1000	MXB	N/A

Axial Lead & Cartridge Fuses 3AG > Fast Acting > 312/318 Series

Recommended Accessories

Accessory Type	Series	Description		Max Application Amperage
	<u>155100</u>	Twist-Lock In-Line Fuseholder	32	20
Holdor	<u>342</u>	Traditional Panel Mount Fuseholder		20
Holder	<u>346</u>	Panel Mount Flip-Top Shock-Safe Fuseholder		15
	<u>345</u>	Shock-Safe Fuseholder with PC Mount, Solder Mount and Panel Mount options		20
Disali	<u>354</u>	Low Profile OMNI-BLOK [®] Fuse Block	000	30
DIOCK	<u>359</u>	High Current Screw Terminal Fuse Block	600	30
<u>Olia</u>	<u>122</u>	High Current Traditional PC Board Fuse Clip	1000	30
Clip	<u>101</u>	Rivet/Eyelet Type Fuse Clip	1000	15

Notes: 1. Do not use in applications above rating. 2. Please refer to fuseholder data sheet for specific re-rating information. 3. Please contact factory for applications greater than the max voltage and amperage shown.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <u>www.littelfuse.com/disclaimer-electronics</u>.

		1492-H4			1492-H	5		1492-He	5
Dimensions are not intended to be used for manufacturing purposes. Note: Height dimension is measured from top of rail to top of terminal block.	(mm 28). 3.200	(81.3 mm)	0.36" (9.1 mm)	(44 mm) (1922) (42 mm) (1922) (1923)	(81.3 mm)	0.36" (9.1 mm)	(uuu /4)	* (81.3 mm)	0.36" (9.1 mm)
Specifications	Single-circui neon	t fusible termir blown fuse inc	nal block with licator.	Single-circui LED I	t fusible termi blown fuse inc	nal block with dicator.	Single-circ without	cuit fusible teri a blown fuse i	minal block indicator.
Approvals	<i>L</i> R.	CSA	IEC	LR.	CSA	IEC	LR.	CSA	IEC
Voltage Rating	300V AC/DC	300V AC/DC	500V AC/DC	300V AC/DC	300V AC/DC	500V AC/DC	300V AC/DC	300V AC/DC	500V AC/DC
Maximum Current	12 A	12 A	12 A	12 A	12 A	12 A	12 A	12 A	12 A
Wire Range (Rated Cross Section)	#30 #12 AWG	#30 #12 AWG	0.05 4 mm ²	#30 #12 AWG	#30… #12 AWG	0.05 4 mm ²	#30 #12 AWG	#30 #12 AWG	0.05 4 mm ²
Indicator Type		Neon			LED			Non-Indicating	g
Leakage Current		2 mA @ 300V	/		2 mA @ 24V			_	
Working Voltage		100300V AC	2	1	057V AC/D	C	F	er Fuse Ratir	ng
Fuse Size (Not Supplied)		1/4" x 1-1/4"			1/4" x 1-1/4"		•	1/4" x 1-1/4"	
Wire Strip Length	(0.38" (9.7 mm)		0.38" (9.7 mm	1)	(0.38" (9.7 mm	1)
Recommended Tightening Torque	37	lb-in. (0.30.	, 8 Nm)	37	lb-in. (0.30.	8 Nm)	37	lb-in. (0.30.	8 Nm)
Density	33	3 pcs./ft (109/r	n)	3:	3 pcs./ft (109/	m)	33	3 pcs./ft (109/i	m)
Insulation Temperature Range	-40+	221°F (–40	, +105°C)	-40+	 221°F (–40	, +105°C)	-40+	221°F (–40	, +105°C)
Terminal Blocks	Cat.	No.	Pcs./ Pkg.	Cat	No.	Pcs./ Pkg.	Cat.	No.	Pcs./ Pkg.
Terminal Block	1492	2-H4	25	149	2-H5	25	1492	2-H6	25
Accessories (page 185)	Cat.	No.	Pcs./ Pkg.	Cat	No.	Pcs./ Pkg.	Cat.	No.	Pcs./ Pkg.
Mounting Rails: 1 m Symmetrical DIN (Steel)	199-	DR1	10	199-	DR1	10	199-	DR1	10
1 m Symmetrical DIN (Aluminum)	1492	-DR5	10	1492	-DR5	10	1492	-DR5	10
1 m Hi-Rise Sym. DIN (Aluminum)	1492	-DR6	2	1492	-DR6	2	1492	-DR6	2
1 m Angled Hi-Rise Sym. DIN (Steel)	1492	-DR7	2	1492	-DR7	2	1492	-DR7	2
End Barrier	1492	2-N37	50	<mark>1492</mark>	-N37	50	1492	2-N37	50
End Anchors: DIN Rail — Normal Duty	1492-	EA35	50	1492	EA35	50	1492·	-EA35	50
DIN Rail — Heavy Duty	1492-1	EAH35	10	1492-1	EAH35	10	1492-1	EAH35	10
Jumpers: Side Jumper — 10-pole Uninsulated	1492	2-N49	10	1492	2-N49	10	1492	2-N49	10
Side Jumper — Insulating Sleeve	1492	-SJS	10	1492	-SJS	10	1492	-SJS	10
Other Accessories: Group Marking Carrier	1492-	GM35	10	1492-	GM35	10	1492-	GM35	10
Marking Systems: Snap-in Marker Card	1492-S	M8X12	5	1492-5	M8X12	5	1492-5	M8X12	5
			I						

Accessories — Page 185

Bulletin 700-HF

Miniature Square Base Ice-Cube Relay

Features

These small relays—used in industrial applications—are available from Rockwell Automation in two- and four-pole versions. Two styles of sockets are available, as well.

Clear cover

Allows visual inspection of terminals.

Plug-in terminals

Secure connections, yet easy to install or remove relays.

What's New

Color coding

Tabs and coil covers indicate coil voltage type: orange for AC and blue for DC.

Push-to-test with manual override

Manual override feature enables changing contact state, even when coils are not energized. This upgrade changes all catalog numbers that had the (-1) option to the new (-3) option.

Increased contact ratings

Relays are now rated for 12 amps.

Visual

- Wiring diagram on top faceplate
- Mechanical indicator

Sockets

Available in two styles for each contact configuration, one that is compatible with Allen-Bradley general purpose relay accessories such as surge suppressors and timing units and the second with traditional open style terminals.

Product Selection

Description	Wiring Diagrams		CailValtara	Cat. No.
Description	U.S./Canada	International		÷9
DPDT	11 21	12 22	6V AC	700-HF32A06
2-pole 2 Form C	3	14 24	12V AC	700-HF32A12
AgCdO Contacts	(I)(I)	AT	24V AC	700-HF32A24
	_ Input	U.	120V AC	700-HF32A1
			240V AC	700-HF32A2
			6V DC	700-HF32Z06
			12V DC	700-HF32Z12
			24V DC	700-HF32Z24
			48V DC	700-HF32Z48
Socket	700-HN116 700-HN262	700-HN116 700-HN262	110V DC	700-HF32Z1
4PDT	$(\overline{\mathbf{x}}) = (\overline{\mathbf{x}}) - (\overline{\mathbf{x}}) = (\overline{\mathbf{x}}) - (\overline{\mathbf{x}})$	-(17) -(22) - (22) - (43)	6V AC	700-HF34A06
4-pole 4 Form C	5 6 7 5 5 m H H	ਸ ਲ ਲ ਸ ਜੇ ਲੇ ਜੇ ਜ	12V AC	700-HF34A12
AgCdO Contact	(j)	Α	24V AC	700-HF34A24
	Input .	u +	120V AC	700-HF34A1
			240V AC	700-HF34A2
			6V DC	700-HF34Z06
			12V DC	700-HF34Z12
			24V DC	700-HF34Z24
			48V DC	700-HF34Z48
Socket	700-HN139 700-HN264	700-HN139 700-HN264	110V DC	700-HF34Z1

Note: Three pole-option is no longer available.

LED Option: Add suffix (-4) to the selected bulletin 700-HF relay Cat. No. except for the 240V AC units, add (-4L).

Push-to-Test Manual Override and LED Option: Add suffix (-3-4) to the selected bulletin 700-HF Cat. No. except for the 240V AC units, add (-3-4L).

 ∂ Push-to-Test and Manual Override Option: Add suffix (-3) to the selected bulletin 700-HF relay.

Product Specifications

Electrical Ratings			700-HF 2 Pole	700-HF 4 Pole
	Inductive V AC	230V AC	AC 15 @ 700 VA / AC-1 @	@ 3000 VA / 1 Hp @ 240V AC
	Inductive v Ac	120V AC	1/2 Hp	@ 120V AC
Contacts	VDC	DC-1	12 A @ 30V DC / 0.5 A @	110V DC / 0.25 A @ 220V DC
	Posistivo	AC	12 A @ 250	V AC (per pole)
	Resistive	DC	12 A @ 30	V DC (per pole)
Operating Pange		AC	80110% N	lominal Voltage
		DC	80110% Nominal Voltage	85110% Nominal Voltage
Pated Power		AC (50 Hz)	1.5 VA	2 VA
Rated Fower		DC	1 W	1.3 W
Holding Voltage		AC	80% Nor	ninal Voltage
		DC	60% Nor	ninal Voltage
Must Drop Out Volta		AC	20% Nor	ninal Voltage
	ge	DC	10% Nor	ninal Voltage
Insulation Voltage			25	50V AC
Design Specification	/Test Requirements			
Dielectric Withstand	Voltage	Pole-to-Pole	25	00V AC
Dielectric Withstand	voltage	Contact to Pole	25	00V AC
Mechanical				
Degree of Protection	۱		Open Ty	pe (Sockets)
Mechanical Life Ope	rations		20	0 x 10 ⁶
Switching Frequency	y Operations		36	500/hr
Operating Time at		Pickup	8 ms	10 ms
Nominal Voltage at 2	20 °C	Dropout	3 ms	4 ms
Maximum Operating	g Rate		4	Ops/s
Vibration & Shock				15 G
Environmental				
Temperature		Operating	-40+70 °C	C (-40+268 °F)
		Storage	–50+80 °C	C (-89+176 °F)
Construction				
Insulating Material			Molded High-Dielectric	Material
Enclosure			Transparent Dust Co	over
Contact Material			Silver Cad. Oxide	2
Terminal Markings o	n Socket		In accordance with EN	500005
Sockets			8-Blade Socket (DPDT) Cat. No. 700- 14-Blade Socket (4PDT) Cat. No. 700-	HN116 & 700-HN262 HN139 & 700-HN264
Certifications		CSA Certified UL Listed when u	l (File No. 229473), UL Recognized (File No. E used with sockets shown above, (File No. E3 Certified, IMQ Certi	E3125, Guide NLDX2/NLDX8), CE Marked, 125, Guide NLDX/NLDX 7), LR Certified, RINA fied
Standards			UL 508, CSA 22.2 No. 14, EN-61810-1, EN	N 60998-1, EN 60998-2-1

Allen-Bradley, LISTEN. THINK. SOLVE. and Rockwell Software are trademarks of Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Bulletin 700-HL Interposing/Isolation Relays Product Selection

 Standard built-in Features: LED Reverse Polarity Protection for DC Inputs Surge Protection 	Cat. No. 700-HLT1Z24			Cat. No. 700-HLS1Z24	1		
Specifications	$ \begin{array}{c c} A2 \\ $			$ \begin{array}{c c} A2 \\ $		S	
Output Type	SPDT (1 C/O); <i>I</i> _{th} = 6A			1 N.O. solid-state; Ith =	2 A		
Recommended Tightening Torque	0.5 Nm max. (4.4 lb.–in.)			0.5 Nm max (4.4 lb	in.)		
Wire Range	0.14 mm ² 2.5 mm ² (#26#14	AWG))	0.14 mm ² 2.5 mm ² (#26;	#14 AW	G)	
Approvals	cULus, cURus, ABS, CE			cULus, cURus, ABS,	CE		
Assembled Devices	Cat. No.	Pkg Qty.	Factory- stocked Item	Cat. No.	Pkg Qty.	Factory- stocked Item	
Input Voltages:							
12V DC	700-HLT1Z12 🛛	10	~		-		
24V DC	700-HLT1Z24 🛛	10	~	700-HLS1Z24 2	10	~	
48V DC	700-HLT12Z48 Ø	10		700-HLS1Z48 @	10		
12V AC/DC	700-HLT1U12	10		_	—		
24V AC/DC	700-HLT1U24	10	~	—	10		
48V AC/DC	700-HLT1U48	10		—	10		
110/125V AC/DC	700-HLT1U1	10	~	700-HLS1U1 @	10	~	
220-240V AC/DC	700-HLT1U2	10	~	700-HLS1U2 🥹	10		
Built-in LCSC (leakage current suppression circuit) 120V AC and 125V DC	700-HLT1L1 ❷ (Available in November 2001)	10		700-HLS1L1 ⊘ (Available in November 2001)	10		
Built-in LCSC (leakage current suppression circuit) 240V AC	700-HLT1L2 ❷ (Available in November 2001)	10		700-HLS1L2 ❷ (Available in November 2001)	10		

Reverse polarity on the output terminals of the solid-state relay will result in the output being "ON" regardless of the state of the input voltage.
Electromechanical relay to solid-state relay interchangeability possible.

Electromechanical relay to solid-state relay interchangeability possible.

Bulletin 700-HL Interposing/Isolation Relays Specifications **0**

	Cat. No. 700-HLT… (Relay Outp	ut)
	Electrical Ratings	
Rated Thermal Current (Ith)	1-Pole — 6 A	
Rated Insulation Voltage (Ui)	250V IEC, 300V I	UL/CSA
	Inductive	e 1-Pole
	24V AC, 1-phase	30 A ►][◀ 5 A ◀][►
	120V AC, 1-phase	30 A 3 A
Contacts	240V AC, 1-phase	15 A 1.5 A
	Make Break &	24V DC 1.0 A
	Continuous V DC	120V DC 0.2 A
		240V DC 0.1 A
Min. Permissible Contact Ratings	05 4400	12V, 6 mA (72 mW)
Permissible Coil Voltage Variation	85110%	6 of Nominal Voltage at 50 Hz
	80110	% of Nominal Voltage at DC
Power Consumption	AC	0.3 VA
±10%	DC	0.2 W
	Design Specification/Test Requirer	ments
Dielectric Withstand Voltage	Pole to Pole (VRMS)	1500 VA
	Contact to Coil (VRMS)	4000 VA
	Mechanical	
Degree of Protection		IP20
Mechanical Life Operations		1 x 10 ⁷
Switching Frequency Operations (no-load)		10 cycles/sec
Coil Voltages	S	See Product Selection
Operating Time at Nominal Voltage at 20°C (ms)	Picku	p 7 ms
	Dropou	tt 3 ms
Maximum Operating Rate (Juli Joad – 6 A)	Environmental	6 cycles/min.
Temperature	Operating	-40 +55°C
Tomporataro	Storage	-40100°C
Altitude		2000 m (6560 ft)
	Construction	
Insulating Material	Molde	ed High Dielectric Material
Enclosure		Relay IP67
Contact Material	Si	lver Cad. Ox., AgSnO
Terminal Markings on Socket	In acc	cordance with EN50 0005
Certifications	cU	ILus, cURus, ABS, CE

• Performance Data – See page Important-2, publication A113.

Model PSC

Car, Building Purpose High Performance Pressure Transducer

Description

PSC is compact size to vehicles and heavy machinery. It is also suitable for low pressure measurement and precise measurement. It builds an amplifier to interface with various kinds of controllers.

Features

- ► CE Certified
- ▶ VDC, mA output
- ▶ Measuring range 0~70MPa
- ▶ 0.25%FS accuracy
- ► IP55 protection(Cable type)
- Gauge and absolute measurement
- Piezoresistive silicon cell
- Stainless steel media-wetted materials

Applications

- Off road equipment
- ► Hydraulics & Pneumatic
- Compressor control
- Industrial engines
- Pump pressure control

Specifications

Sensys

Range	
	0 ~ 5kPa 70MPa(Gauge)
	-100kPa ~ 0 70MPa (Gauge)
	0 ~ 35kPa 70MPa (Absolute)
Performance	
Accuracy	±0.25%FS(RSS)
Thermal Effect on Zero	±0.05%FS/℃
Thermal Effect on Span	±0.05%FS/℃
Compensated Temperature Range	-10 ~ 70°C
Operating Temperature Range	-20 ~ 100℃ (Optional -30~120℃)
Electrical	
Excitation	11 ~ 28VDC
Output	0~5VDC, 1~5VDC, 0~10VDC, 4~20mA(2Wire)
Electrical Connection	Connector, Cable, AMP Connector(1~5VDC 3Wire Only), Head, Din Connecto
Physical	
Proof Pressure	X3 or 140MPa, Whichever is less.
Burst Pressure	X4 or 210MPa, Whichever is less.
Vibration	49.1m/s2{5G}, 10~500Hz
Shock	490m/s2{50G}
Pressure port	R(PT)1/8", G(PF)1/8", R(PT)1/4", G(PF)1/4", R(PT)3/8", G(PF)3/8"
Media-Wetted Materials	Stainless Steel 304, 316L, VITON
Weight	Approx. 130a (AMP Connector Type)

Dimension

► AMP Connector Type

► Cable Type

Cable Gland Type

► Connector Type

► Head Type

6	- White	
	Green	
	-Red	

Wire Color	Connections
Red	Unput 🕀
White	Common ⊖
Green	Output 🕀

Wire	Connections					
Color	4Wire	3Wire	2Wire			
Red	Input	Input 🕀	Input 🕀			
White	Output Θ	Commone	*			
Black.	Input O	- ×	Output			
Green	Output ①	Output	18			
Shield	Earth	Earth	Earth			

Wire	Connections					
Color	4Wire	3Wire	2Wire			
Red	Inpüt 🕀	Input 🕀	Input ⊕			
White	Output 🖯	Common⊖	×			
Black	Input 🖯	×	Output			
Green	Output 🕀	Output	8			
Shield	Earth	Earth	Earth			

Pin	Wire	Connections					
No.	Color	4Wire	3Wire	2Wire			
1	Red	Input 🕀	Input 🕀	Input 🕀			
2	White	Output 🖯	Common⊖	8			
3	Black	Input O	8	Output			
4	Green	Output 🕀	Output	×			
5	Shield	Earth	Earth	Earth			

Ma	Connections
NO_	2Wire
+	Input 🕀
	Earth
-	Output

Sensys Sensor System technology CO., LTD.

 ADD: RM5010, Ansan Digital Park, 1123 Singil-Dong, Danwon-Gu, Ansan-Si, Geyonggi-Do, Korea
 TEL: 82-31-310-8910~9
 FAX: 82-31-310-8920
 http://www.sensys.co.kr
 e-mail: master@sensys.co.kr · Specifications are subject to change without notice.

Copyright © 2013 SENSOR SYSTEM TECHNOLOGY CO., LTD. (20131203)

RTD and Thermocouple Sensors Specification

 RTD(Resistance Ter 	mperature Detector) P/N: DS 4680 120L		
Appearance		Note	
Туре	PT100, α=0.00385, 3-Wire		
Sheath Outer Dia.	Φ3.2 mm		
Wire Insulation	Teflon]
Accuracy	Class B (0±0.3 ℃, 100±0.8 ℃)		
Upper Temperature Limit	260 °C		

Detailed Specifications & Technical Data

ENGLISH MEASUREMENT VERSION

8761 Multi-Conductor - Single-Pair Cable

For more Information please call

1-800-Belden1

General Description:

22 AWG stranded (7x30) TC conductors, polyethylene insulation, twisted pair, overall Beldfoil® shield (100% coverage), 22 AWG stranded TC drain wire, PVC jacket.

Physical Characteristics (Overall)	
Conductor	
# Pairs AWG Stranding Conductor Material	
1 22 7x30 TC - Tinned Copper	
Total Number of Conductors: 2	
Insulation Material:	
Insulation Material Wall Thickness (in.)	
PE - Polyethylene 0.017	
Outer Shield Meterial	
Outer Shield Trade Name Type Outer Shield Material	Coverage (%)
Beldfoil® Tape Aluminum Foil-Polyester Tape w/short	ing fold 100.000
Outer Shield Drain Wire AWG:	
AWG Stranding Drain Wire Conductor Material	
22 Stranded TC - Tinned Copper	
Outer Jacket	
Outer Jacket Material:	
PVC - Polyvinyl Chloride 025	
Overall Cable	
Overall Cable Overall Cabling Lay Length & Direction:	
Length (in.) Direction Twists (twist/ft)	
2.000 Left Hand 6.000	
Overall Nominal Diameter: 0	.175 in.
Pair	
Pair Color Code Chart:	
1 Black & Clear	
Mechanical Characteristics (Overall)	
Operating Temperature Range: -2	20°C To +60°C
UL Temperature Rating: 6	0°C (UL AWM Style 2092)
Bulk Cable Weight: 1	6 lbs/1000 ft.
Max. Recommended Pulling Tension: 2	7 lbs.
Min. Bend Radius/Minor Axis: 1	.750 in.
Applicable Specifications and Agency Compliance (Over	roll)
Applicable Standards & Environmental Programs	
NEC/(UL) Specification:	SM .
NEC Articles: 8	00
CEC/C(UL) Specification:	EM
AWM Specification:	JL Style 2092 (300 V 60°C)
EU Directive 2011/65/EU (ROHS II): Y	/es
EU CE Mark: Y	/es

Detailed Specifications & Technical Data

ENGLISH MEASUREMENT VERSION

8761 Multi-Conductor - Single-Pair Cable

EU Directive 2000/53/EC (ELV):	Yes		
EU Directive 2002/95/EC (RoHS):	Yes		
EU RoHS Compliance Date (mm/dd/yyyy):	01/01/2004		
EU Directive 2002/96/EC (WEEE):	Yes		
EU Directive 2003/11/EC (BFR):	Yes		
CA Prop 65 (CJ for Wire & Cable):	Yes		
MII Order #39 (China RoHS):	Yes		
Flame Test			
UL Flame Test:	UL1685 UL Loading		
CSA Flame Test:	FT1		
Suitability			
Suitability - Indoor:	Yes		
Plenum/Non-Plenum			
Plenum (Y/N):	No		
Plenum Number:	88761, 87761, 82761		
Inductance (µH/ft) 0.2 Nom. Capacitance Conductor to Conductor: Capacitance (pF/ft) 24 Nom. Capacitance Cond. to Other Conductor & Shield: Capacitance (pF/ft) 47 Nom. Conductor DC Resistance:			
DCR @ 20°C (Ohm/1000 ft) 16 Max. Operating Voltage - UL:			
300 V RMS (UL AWM Style 2092)			
Max. Recommended Current:			
Description Current 10C temperature rise 2.9 Amps per conductor @ 25°C ambiented	ent		
Put Ups and Colors:			
Norma History		Mater Here	

	tem #	Putup	Ship Weight	Color	Notes	Item Desc
٤	761 060U1000	1,000 FT	17.000 LB	CHROME		2 #22 PE FS PVC
8	761 060U500	500 FT	9.000 LB			2 #22 PE FS PVC
8	761 0601000	1,000 FT	18.000 LB	CHROME	С	2 #22 PE FS PVC
8	761 06010000	10,000 FT	170.000 LB	CHROME	СҮ	2 #22 PE FS PVC
8	761 06010001	10,000 FT	170.000 LB	CHROME	CZ	2 #22 PE FS PVC
8	761 06015000	15,000 FT	270.000 LB	CHROME	СҮ	2 #22 PE FS PVC
٤	761 0602000	2,000 FT	36.000 LB	CHROME		2 #22 PE FS PVC
8	761 060500	500 FT	9.000 LB	CHROME		2 #22 PE FS PVC
8	761 0605000	5,000 FT	90.000 LB	CHROME	С	2 #22 PE FS PVC

Notes: C = CRATE REEL PUT-UP. Y = FINAL PUT-UP LENGTH MAY VARY -10% TO +20% FROM LENGTH SHOWN.MAY CONTAIN 2 PIECES. MINIMUM LENGTH OF ANY ONE PIECE IS 1500'. Z = FINAL PUT-UP LENGTH MAY VARY (+ OR -) 10% FOR SPOOLS OR REELS AND(+ OR -) 5% FOR UNREEL CARTONS FROM LENGTH SHOWN.

SANITARY ACCESSORIES

RTD and Thermistor Extension Wire

EXTT-4CUI-26S shown smaller than actual size.

AWG		#_of_	Wire	Conductor						Nominal	Wt. kg/300.m	Color	Outer Jacket		
No.	Model Number	Con.	Туре	Material	Conductor	Overall	Braid	°C*	°F*	Size: mm (in)	(lb/1000')†	Code	Color		
20	EXGG-2CU-20	2	Solid	NPC			None	482	900	1.5 x 2.4	4 (9)	1 Red	White		
			7 04	NDO	-					400	000	(0.060 x 0.095)		1 Black	
26	EXGG-2CU-26S	2	/ X 34	NPC			None	482	900	1.5 x 1.3 (0.060 x 0.052)	2 (5)	1 Red 1 Black	White		
26	EXGG-3CU-26S	3	7 x 34	NPC			None	482	900	1.5 x 1.6	3 (7)	1 Red	White		
26	EXGG-4CU-26S	4	7 x 34	NPC	Glass	Glass	None	482	900	(0.060 x 0.064) 1.5 x 1.7	4 (9)	2 Black 2 Red	White		
			704	NDO	braid	braid	Name	400	000	(0.060 x 0.066)	0.0 (5)	2 Black	\A/l= :+ -		
26	EXGG-2CUI-265	2	/ X 34	NPC			None	482	900	(0.083 dia.)	2.2 (5)	1 White	vvnite		
26	EXGG-3CUI-26S	3	7 x 34	NPC			None	482	900	2.2 Ø	3.2 (7)	2 Red	White		
26	EXGG-4CUI-26S	4	7 x 34	NPC	-		None	482	900	(0.087 dia.) 2.4 Ø	4.2 (9.3)	2 Red	White		
Close with	Outor Braid Inculation									(0.095 dia.)		2 White			
26	EXGG-2CUI-26S-SB	2	7 x 34	NPC			SST	482	900	2.8 Ø	5.2 (11.5)	1 Red	SST braid		
26	EXCC-3CUIL26S-SB	2	7 x 24	NPC	Glass	Glass	CCT	192	000	(0.110 dia.)	6 2 (12 7)	1 White	SST braid		
20	EX66-3001-203-3B	5	1 X 34	NF C	braid	braid	551	402	900	(0.114 dia.)	0.2 (13.7)	1 White	SST braid		
26	EXGG-4CUI-26S-SB	4	7 x 34	NPC			SST	482	900	3.1 Ø	7.2 (15.9)	2 Red	SST braid		
Neoflon [®] F	FA Insulation									(0.122 ula.)		2 Writte			
26	EXTT-2CU-26S	2	7 x 34	NPC			None	260	500	1.1 x 1.7	2 (5)	1 Red	White		
26	EXTT-3CU-26S	3	7 x 34	NPC	-		None	260	500	11.8 Ø	4 (9)	1 Red	White		
26	EXTT-ACIL-26S	4	7 x 3/	NPC			None	260	500	(0.072 dia.)	5 (11 5)	2 Black	White		
20	EXT1-400-203	4	1 X 34	NEC	PFA PF	PFA	None	200	500	(0.082 dia.)	5 (11.5)	2 Black	WINC		
26	EXTT-2CUI-26S	2	7 x 34	NPC			117	None	260	500	2.1 Ø	2.2 (5)	1 Red	White	
26	EXTT-3CUI-26S	3	7 x 34	NPC			None	260	500	2.2 Ø	4.2 (9.3)	2 Red	White		
26	EXTT-4CUII-26S	.4	7 x 34	NPC	-		None	260	500	(0.087 dia.)	5 2 (11 5)	1 White	White		
20	EXT1-4001-200	T	1 × 54			_	None	200	500	(0.095 dia.)	5.2 (11.5)	2 White	WINC		
PFA with S	Shield Insulation	2	7 x 34	NPC		1	T22	260	500	280	5 2 (11 5)	1 Red	SST braid		
20	EXT1-2001-200-30	2	1 ^ 04				001	200	500	(0.110 dia.)	5.2 (11.5)	1 White			
26	EXTT-3CUI-26S-SB	3	7 x 34	NPC	PFA	PFA	SST	260	500	2.9 Ø (0.114 dia.)	7.2 (15.9)	2 Red	SST braid		
26	EXTT-4CUI-26S-SB	4	7 x 34	NPC			SST	260	500	3.1 Ø	8.2 (18.1)	2 Red	SST braid		
Polyvinyl	(PVC) Insulation									(0.122 dia.)		2 White			
24	EXPP-2CU-24S	2	7 x 32	NPC			None	105	221	2.1 x 3.4	5 (10)	1 Red	White		
24	EXPP-3CU-24S	3	7 x 32	NPC	-		None	105	221	(0.082 x 0.134) 4.22 Ø	6 (14)	1 Black	White		
										(0.166 dia.)	- ()	2 Black			
24	EXPP-4CU-24S	4	7 x 32	NPC			None	105	221	4.3 Ø (0.169 dia.)	7 (15.5)	2 Red 2 Black	White		
24	EXPP-2CUI-24S	2	7 x 32	NPC	Polyvinyl	Polyvinyl	None	105	221	2.1 x 3.4	5 (10)	1 Red	White		
24	EXPP-3CUI-24S	3	7 x 32	NPC	-		None	105	221	(0.082 x 0.134) 4.22 Ø	6 (14)	1 White 2 Red	White		
										(0.166 dia.)		1 White			
24	EXPP-4CUI-24S	4	7 x 32	NPC			None	105	221	4.3 Ø (0.169 dia.)	7 (15.5)	2 Red 2 White	White		
Polyvinyl	(PVC) with Shield Insulation				1	1	1 1						144		
24	EXPP-2CUI-24S-TCB-P	2	7 x 32	NPC			Tinned copper	105	221	2.8 x 4.0 (0.110 x .157)	8 (17.7)	1 Red 1 White	White		
24	EXPP-3CUI-24S-TCB-P	3	7 x 32	NPC	Polyvinyl	Polvvinvl	Tinned	105	221	4.9 Ø	9 (19.9)	2 Red	White		
24	EXPP-4CUI-24S-TCB-P	4	7 x 32	NPC		. ,,	copper Tinned	105	221	(0.193 dia.) 5.0 Ø	10 (22)	2 Red	White		
		.					copper		:	(0.197 dia.)	(/	2 White			

* Maximum temperature is for wire or insulation, whichever is lower. † Weight of spool and wire rounded to the next highest kilogram (lb); does not include packing material. Conductors can be welded (spliced) within spool.

Ordering Example: EXTT-3CU-26S-1000, 1000' of #26 AWG PFA insulated wire with 3 conductors.

4

CompactLogix 5370 Controllers

CompactLogix 5370 controllers provide scalable controller solutions to address a wide variety of applications. All CompactLogix 5370 controllers provide the following functionality:

- Two EtherNet[™]/IP ports
- One USB port
- Support for local expansion modules
- Control of local and distributed I/O modules
- Use of 1784-SD1 or 1784-SD2 Secure Digital (SD) card for nonvolatile memory
- A battery is no longer necessary because of the internal energy-storage solution

Some CompactLogix 5370 controllers provide the following functionality:

- Built-in power supply
- Some combination of embedded digital, analog, and high-speed counter modules
- Support for Integrated Motion over an EtherNet/IP network
- Access to DeviceNet[™] networks

The Compact GuardLogix controller is a 1769-L3 CompactLogix controller that provides safety control to achieve SIL CL3 according to EN62061 / EN 61511-1 / IEC 61508 and PLe according to EN ISO 13849-1. A major benefit of this system is that it is still one project, safety and standard together.

Application	Description
SIL 1, 2, 3	The Compact GuardLogix controller system is type-approved and certified for use in safety applications up to and including SIL 3 according to IEC 61508, and applications up to and including PLe/Cat.4 according to ISO 13849-1. For more information, see the following: • GuardLogix 5570 and Compact GuardLogix 5370 Controllers Systems Safety Reference Manual, publication <u>1756-RM099</u> • Compact GuardLogix 5370 Controllers User Manual, publication <u>1769-UM002</u> • GuardLogix Safety Application Instruction Set Reference Manual, publication <u>1756-RM095</u>

During development, safety and standard have the same rules. The following are allowed:

- Multiple programmers
- Online editing
- Forcing

Once the project is tested and ready for final validation, you apply the safety application signature and safety-lock the application. This process sets the safety task to a SIL 3 integrity level. The Compact GuardLogix enforces the SIL 3 integrity level. When safety memory is locked and protected, the safety logic cannot be modified and all safety functions operate with SIL 3 integrity. On the standard side of the Compact GuardLogix controller, all functions operate like a regular Logix controller. Thus online editing, forcing, and other activities are all allowed.

Standard logic and external devices, like HMIs or other controllers, can read safety memory with this level of integration. This level of integration removes the need to condition safety memory for use elsewhere. The result is easy system-wide

integration and the ability to display safety status on displays or marquees. Use Guard I/O[™] modules for field device connectivity. For safety interlocking between Compact GuardLogix controllers, use Ethernet or ControlNet[™] networks. Multiple Compact GuardLogix controllers can share safety data for zone to zone interlocking, or one Compact GuardLogix controller can use remote distributed safety I/O between different cells/areas.

Feature	1769-L16ER-BB1B, 1769-L18ER-BB1B, 1769-L18ERM-BB1B, 1769-L19ER-BB1B	1769-L24ER-QB1B, 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B	1769-L30ER, 1769-L30ER-NSE, 1769-L30ERM, <mark>1769-L33ER,</mark> 1769-L33ERM, 1769-L36ERM	1769-L30ERMS, 1769-L33ERMS, 1769-L36ERMS
Controller tasks: • Continuous • Periodic	 32 tasks 100 programs/task 		0	
Built-in communication ports	 Two EtherNet/IP ports - CompactLogix as part of the embedded switch of the One USB port (only for temporary compared to the tempor	5370 controllers have two EtherNet/IP por controller. However, the controller uses or nection)	ts to connect to an EtherNet/IP network. T IV one IP address.	he ports carry the same network traffic
Communication options	EtherNet/IP	EtherNet/IP DeviceNet via 1769-SDN scanner		
EtherNet/IP node, max	 1769-L16ER-BB1B: Up to four nodes 1769-L18ER-BB1B, 1769-L18ERM-BB1B, 1769-L19ER-BB1B: Up to 8 nodes 	 1769-L24ER-QB1B, 1769-L24ER-QBFC1B: Up to 8 nodes 1769-L27ERM-QBFC1B: Up to 16 nodes 	 1769-L30ER, 1769-L30ER-NSE, 1769-L 1769-L33ER, 1769-L33ERM, 1769-L33 1769-L36ERM, 1769-L36ERMS: Up to 	30ERM, 1769-L30ERMS: Up to 16 nodes ERMS: Up to 32 nodes 18 nodes
Controller connections	256	\mathcal{O}		
Embedded I/O modules	 16 DC digital inputs 16 DC digital outputs 	All controllers: • 16 DC digital inputs • 16 DC digital outputs Only 1769-L24ER-QBFC1B and 1769-L27ERM-QBFC1B: • 4 high-speed counters • 4 high-speed counter outputs • 4 universal analog inputs • 2 analog output points	_	
Sockets, max	32			
Integrated Motion over an EtherNet/IP network	1769-L18ERM-BB1B - 1 or 2 axes	1769-L27ERM-QBFC1B - As many as 4 axes	 1769-L30ERM, 1769-L30ERMS - As ma 1769-L33ERM, 1769-L33ERMS - As ma 1769-L36ERM, 1769-L36ERMS - As ma 	iny as 4 axes iny as 8 axes iny as 16 axes
Programming languages	Relay ladder ⁽¹⁾ Structured Text Function block SFC			
Integrated safety	-			Yes

reatures - CompactLogix 53/0 Controllers and Compact GuardLogix 53/0 Controllers
--

(1) The Compact GuardLogix 5370 controllers support only the relay ladder programming language in the safety task. The Compact GuardLogix 5370 controllers support all listed programming languages in the standard task.

Attribute	1769-L16ER-BB1B, 1769-L18ER-BB1B, 1769-L18ERM-BB1B, 1769-L19ER-BB1B	1769-L24ER-QB1B, 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B	1769-L30ER, 1769-L30ER-NSE, 1769-L30ERM, <mark>1769-L33ER,</mark> 1769-L33ERM, 1769-L36ERM	1769-L30ERMS, 1769-L33ERMS, 1769-L36ERMS
User memory	 1769-L16ER: 384 KB 1769-L18ER, 1769-L18ERM: 512 KB 1769-L19ER-BB1B: 1 MB 	 1769-L24ER-QB1B, 1769-L24ER-QBFC1B: 750 KB 1769-L27ERM-QBFC1B: 1 MB 	 1769-L30ER, 1769-L30ER-NSE, 1769-L30ERM: 1 MB 1769-L33ER, 1769-L33ERM: 2 MB 1769-L36ERM: 3 MB 	 1769-L30ERMS: 1 MB standard + 0.5 MB safety 1769-L33ERMS: 2 MB standard + 1 MB safety 1769-L36ERMS: 3 MB standard + 1.5 MB safety
Optional nonvolatile memory	1784-SD1 card with 1 Gb of available me 1784-SD2 card with 2 Gb of available me	emory (shipped with controller) emory (available for separate ordering)		
Number of local expansion modules, max ⁽¹⁾	 1769-L16ER-BB1B: Six 1734 POINT I/O™ modules 1769-L18ER-BB1B, 1769-L18ERM-BB1B, 1769-L19ER-BB1B: Eight 1734 POINT I/O modules 	Four 1769 Compact I/O™ modules	 1769-L30ER, 1769-L30ER-NSE, 1769-L Eight 1769 Compact I/O modules 1769-L33ER, 1769-L33ERM, 1769-L33 modules 1769-L36ERM, 1769-L36ERMS: Thirty 	30ERM, 1769-L30ERMS: ERMS: Sixteen 1769 Compact I/O 1769 Compact I/O modules
Number of I/O module banks, max	-	1	3	
Current draw @ 5V DC, controller power	1 A	 1769-L24ER-QB1B: 1.54 A Value rated at the following ambient temperatures: 40 °C (104 °F), 55 °C (131 °F), 60 °C (140 °F). 1769-L24ER-QBFC1B and 1769-L27ERM-QBFC1B: 1 A Value rated at the following ambient temperatures: 40 °C (104 °F), 55 °C (131 °F), 60 °C (140 °F). 	500 mA	850 mA
Current draw @ 24V DC, controller power	-	 1769-L24ER-QB1B: 0.95A Value rated at the following ambient temperatures: 40 °C (104 °F), 55 °C (131 °F), 60 °C (140 °F). 1769-L24ER-QBFC1B and 1769-L27ERM-QBFC1B: 0.8 A Value rated at the following ambient temperatures: 40 °C (104 °F), 55 °C (131 °F), 60 °C (140 °F). 	225 mA	700 mA
Current draw @ 24V DC, field power, max	3 A - Combined total for all devices that draw current from field power connections Input: 5 mA Output: 500 mA	-		
Power dissipation, max	11.5W	 1769-L24ER-QB1B: 12 W 1769-L24ER-QBFC1B, L27ERM-QBFC1B: 21 W 	4.5 W	6.5 W
Isolation voltage	50V (continuous), Basic Insulation Type Tested at 500V AC for 60 s, System to Field	30V (continuous), Basic Insulation Type, Ethernet to Ethernet Type tested at 500V AC for 60 s	USB to system, Ethernet to system and	50V, Basic Insulation Type Tested at 500V AC for 60 s, System to Communication ports.
Short circuit protection, field power	Internal fuse, Non-replaceable	-		
Recommended external short circuit protection, field power	User-provided 45 A @ 3.155.5 A ² t fuse	-		
Weight, approx	0.66 kg (1.5 lb)	 1769-L24ER-QB1B = 0.63 kg (1.39 lb) 1769-L24ER-QBFC1B and 1769-L27ERM-QBFC1B = 0.9 kg (1.9 lb) 	0.31 kg (0.68 lb)	0.54 kg (1.18 lb)

Attribute	1769-L16ER-BB1B, 1769-L18ER-BB1B, 1769-L18ERM-BB1B, 1769-L19ER-BB1B	1769-L24ER-QB1B, 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B	1769-L30ER, 1769-L30ER-NSE, 1769-L30ERM, <mark>1769-L33ER</mark> , 1769-L33ERM, 1769-L36ERM	1769-L30ERMS, 1769-L33ERMS, 1769-L36ERMS
Module width	100.00 mm (3.94 in.)	1769-L24ER-0B1B = 115.00 mm (4.53 in.) 1769-L24ER-QBFC1B and 1769-L27ERM-QBFC1B = 140 mm (5.51 in.)	55.00 mm (2.17 in.)	89.00 mm (3.50 in.)
Module location	DIN rail mount	DIN rail or panel mount		
Panel-mounting screw torque	N/A	1.11.8 N∙m (1016 lb∙in) - use M4	4 or #8 screws	
Embedded power supply	24V DC input, isolated	24V DC Input, isolated	1769-PA2, 1769-PB2, 1769-PA4, 1769-P	B4
Power supply distance rating	-		 Controller and 1769-SDN: 4 1769 Compact I/O modules: 48, depending on module 	4 (3 I/O modules between controller and power supply)
Wire category ⁽²⁾	1 - signal ports 1 - power ports 2 - communication ports		2 - communication ports	
Wire type, Ethernet	RJ45 connector according to IEC 60603-7	7, 2 or 4 pair Category 5e minimum cable a	ccording to TIA 568-B.1 or Category 5 cable	e according to ISO/IEC 24702
Wire type, power terminals and embedded I/O connections	Copper		$\overline{\mathbf{O}}$	
Wire size, power terminals ⁽³⁾	0.0513.31 mm ² (3012 AWG) solid or stranded copper wire rated at 75 °C (167 °F), or greater, 1.2 mm (3/64 in.) insulation, max Each terminal accepts 1 or 2 wires	0.252.50 mm ² (2214 AWG) solid copper wire rated at 75 °C (167 °F), or greater 1.2 mm (3/64 in.) insulation, max Each terminal accepts only 1 wire	R	
Wire stripping length, power terminals ⁽³⁾	10 mm (0.39 in)	8 mm (0.31 in)	\mathbf{O}	
Screw torque, power terminals	0.50.6 N•m (4.45.3 lb•in) 1.01.2 N•m (8.910.6 lb•in)		-	
Wire size, embedded I/O connections	0.2051.31 mm ² (2416 AWG) solid or stranded copper wire rated at 75 °C (167 °F), or greater 1.2 mm (3/64 in.) insulation, max or 90 °C (194 °F) Each terminal accepts only 1 wire		-	
Wire stripping length, embedded I/O connections	10 mm (0.39 in)		-	
North American temperature code	T4A	ТЗС	T5	
IEC temperature code	T4		15	
Enclosure type rating	None (open-style)			

Technical Specifications - CompactLogix 5370 Controllers and Compact GuardLogix 5370 Controllers (continued)

You can use up to the maximum number of local expansion modules with the CompactLogix 5370 L1 controllers that are listed. This condition applies if only the total current drawn by the embedded I/O and local expansion modules does not exceed both the available POINTBus we backplane current of 1 A and the field power current of 3 A. For more information on POINTBus backplane current and field-power current considerations when installing (1) local expansion modules, see page 12. Use this Conductor Category information for planning conductor routing. See the Industrial Automation Wiring and Grounding Guidelines, publication <u>1770-4.1</u> and the appropriate system-level installation manual.

(2)

In regard to the CompactLogix 5370 L1 controllers, this specification applies to connecting wires to the power connector that is inserted in the controller. In regard to the CompactLogix 5370 L2 controllers, this specification applies to connecting wires to the power connector that is inserted in the controller. In regard to the CompactLogix 5370 L2 controllers, this specification applies to connecting wires to the power connecting wires to power terminals built into the controller. (3)

1769 Compact I/O Power Supplies

Each 1769-L3x controller and additional bank of I/O modules requires a 1769 power supply. Place 1769 I/O modules to the left or right of the 1769 power supply. As many as eight I/O modules can be placed on each side of the power supply.

Each 1769 module also has a power supply distance rating (the number of modules from the power supply). Each module must be located within its distance rating. See the specifications for the module to determine its distance rating.

Attribute	1769-PA2	1769-PB2	1769-PA4	1769-PB4
Input voltage range	85265V AC	19.231.2V DC	85265V AC or 170265V AC, switch selectable	19.231.2V DC
Input voltage, nom	120V/220V AC	24V DC	120V/220V AC	24V DC
Power consumption	100 VA @ 120V AC	50 VA @ 24V DC	200 VA @ 120V AC	100 VA @ 24V DC
	130 VA @ 240V AC		240 VA @ 240V AC	
Power dissipation	8 W @ 60° C (140° F)	7.5 W @ 60° C (140° F)	18 W @ 60° C (140° F)	14.5 W @ 60° C (140° F)
Current capacity @ 5V	2.0 A	2.0 A	4.0 A	4.0 A
Current capacity @ 24V	0.8 A	0.8 A	2.0 A	2.0 A
Inrush current, max	25 A @ 132V AC	30 A @ 31.2V DC	25 A @ 132V AC	30 A @ 31.2V DC
Isolation voltage	265V (continuous), reinforced insulation type (IEC Class 1 grounding required) Routine tested @ 2596V DC for 1 s, AC power input to system and AC power input to 24V DC user power	75V (continuous), reinforced insulation type (IEC Class 1 grounding required) Routine tested at 1697V DC for 1 s, DC power input to system	265V (continuous), reinforced insulation type (IEC Class 1 grounding required) Routine tested at 2596V DC for 1 s, AC power input to system	75V (continuous), reinforced insulation type (IEC Class 1 grounding required) Routine tested at 1697V DC for 1 s, DC power input to system
Fuse type	Wickmann 19195-3.15A	Wickmann 19193-6.3A	Wickmann 19195-3.15A Littelfuse 02183 15MXP	Wickmann 19193-6.3A Littelfuse 021706 3MXP
Weight, approx.	525 g (1.16 lb)		630 g (1.39 lb)	
Dimensions (HxWxD), approx.	118 x 70 x 87 mm (4.65 x 2.7	118 x 70 x 87 mm (4 65 x 2 76 x 3 43 in)		
Module location	DIN rail or panel mount			
Mounting screw torque	1.16 Nom (10 lboin) - use M4 or #8 screws			
Power supply distance rating	8			
	8 I/O modules can be conne	cted on either side of the pow	ver supply for a maximum of 16	6 modules
Wire category ⁽¹⁾	1 - on power ports	2 - on power ports	1 - on power ports	2 - on power ports
Wire size	14 AWG (2.5 mm²) solid copper wire rated at 90 °C (194 °F) or greater, 1.2 mm (3/64 in.) insulation max			
North American temperature code	ТЗС			
IEC temperature code	—	T4	_	T4
Enclosure type rating	None (open-style)	1	1	1

Technical Specifications - 1769 Compact I/O Power Supplies

⁽¹⁾ Use this conductor category information for planning conductor routing as described in the system level installation manual. See the Industrial Automation Wiring and Grounding Guidelines, publication <u>1770-4.1</u>.

Certifications ·	1769	Compact	Power	Supplies
-------------------------	------	---------	-------	----------

Certification ⁽¹⁾	1769-PA2, 1769-PA4	1769	-PB2, 1769-PB4		-
c-UL-us	UL Listed for Class 1, Division 2 Group A,B,C, E10314	,D Hazardous Loca	tions, certified for	U.S. and Canada. See UL File	
CE	European Union 2004/108/EC EMC Directive, • EN 61000-6-2; Industrial Immunity • EN 61000-6-4; Industrial Emissions	e, compliant with:			
C-Tick	Australian Radiocommunications Act, compli AS/NZS CISPR 11; Industrial Emissions	iant with:	~	S	
	_	Euro with	bean Union 94/9/E N 60079-15; Pote Protection "n" (Zor N 60079-0: Gener	C ATEX Directive, compliant ntially Explosive Atmospheres, le 2)	_

(1) When marked. See the Product Certification link at <u>http://www.ab.com</u> for Declarations of Conformity, Certificates, and other certification details.

Publication 1769-TD008A-EN-P - January 2010

Power Requirements and Transformer Sizing - 1769 CompactLogix Power Supplies

Publication 1769-TD008A-EN-P - January 2010

Mounting Dimensions - 1769 CompactLogix Power Supplies

1769-IQ32

Compact 24V DC sink/source input module

Technical Specifications - 1769-IQ32

Attribute	1769-1Q32
Inputs	32 (8 points/group)
Voltage category	24V DC sink/source
Operating voltage range	1030V DC @ 30 °C (86 °F) 1026.4V DC @ 60 °C (140 °F)
Input delay, on	8 ms
Input delay, off	8 ms
Current draw @ 5.1V	170 mA
Heat dissipation, max	4.6 W
Off-state voltage, max	5V DC
Off-state current, max	1.5 mA
On-state voltage, min	10V DC
On-state current, min	2 mA
Inrush current, max	250 mA
Input impedance, nominal	5.2 kΩ @ 24V DC 6.1 kΩ @ 30V DC
Isolation voltage	Verified by one of these dielectric tests: 1200V AC for 1 s or 1697V DC for 1 s, input point to bus and group to group 75V DC working voltage (IEC Class II reinforced insulation)
Weight, approx	440 g (0.97 lb)

Technical Specifications - 1769-IQ32

Attribute	1769-IQ32
Dimensions (HxWxD), approx	118 x 52.5 x 87 mm (4.65 x 2.07 x 3.43 in.) Height with mounting tabs 138 mm (5.43 in.)
Slot width	1.5
Module location	DIN rail or panel mount
Power supply	1769-PA2, 1769-PB2, 1769-PA4, 1769-PB4
Power supply distance rating	8 modules
Terminal screw torque	0.68 N•m (6 lb•in)
Retaining screw torque	0.46 N•m (4.1 lb•in)
Wire size	(2214 AWG) solid (2216 AWG) stranded
Wire type	Cu-90 °C (194 °F)
IEC input compatibility	Type 1+
Replacement terminal block	1769-RTBN18 (1 per kit)
Replacement door	Not available
Vendor ID code	1
Product type code	7
Product code	68
Enclosure type rating	None (open-style)

See <u>Environmental Specifications - 1769 Compact I/O Modules</u> on page 3.

Certifications - 1769-IQ32

Certification ⁽¹⁾	1769-1032
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E10314. UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E10314.
CE CE	European Union 2014/30/EU EMC Directive, compliant with: • EN 61000-6-2; Industrial Immunity • EN 61000-6-4; Industrial Emissions
RCM	Australian Radiocommunications Act, compliant with: • AS/NZS CISPR 11; Industrial Enclosure
EAC	Russian Customs Union TR CU 020/2011 EMC Technical Regulation

(1) When marked. See the Product Certification link at http://www.rockwellautomation.com/global/certification/overview.page for Declarations of Conformity, Certificates, and other certification details.

1769-0B32

Compact solid-state 24V DC source output module

Technical Specifications - 1769-0B32

Attribute	1769-0B32
Outputs	32 (16 points/group)
Voltage category	24V DC source
Operating voltage range	20.426.4V DC
Output delay, on	0.1 ms
Output delay, off	1.0 ms
Current draw @ 5.1V	300 mA
Heat dissipation, max	4.5 W
Off-state leakage current, max ⁽¹⁾	1.0 mA @ 26.4V DC
On-state current, min	1.0 mA
On-state voltage drop, max	1.0V DC @ 1 A
Current per point, max	0.5 A @ 60 ℃ (140 °F) 1.0 A @ 30 ℃ (86 °F)
Current per module, max	4.0 A @ 60 °C (140 °F) 8.0 A @ 30 °C (86 °F)
Surge current ⁽²⁾	2.0 A for 10 ms, repeatable every 2 s
Isolation voltage	Verified by one of these dielectric tests: 1200V AC for 1 s or 1697V DC for 1 s, output point to bus 75V DC working voltage (IEC Class II reinforced insulation)
Weight, approx	450 g (0.992 lb)
Dimensions (HxWxD), approx	118 x 52.5 x 87 mm (4.65 x 2.07 x 3.43 in.) Height with mounting tabs 138 mm (5.43 in.)

Technical Specifications - 1769-0B32

Attribute	1769-0B32	
Slot width	1.5	
Module location	DIN rail or panel mount	
Power supply	1769-PA2, 1769-PB2, 1769-PA4, 1769-PB4	
Power supply distance rating	6 modules	
Terminal screw torque	0.68 N•m (6 lb•in)	
Retaining screw torque	0.46 Nom (4.1 lboin)	
Wire size	(2214 AWG) solid (2216 AWG) stranded	
Wire type	Cu-90 °C (194 °F)	
Replacement terminal block	1769-RTBN18 (1 per kit)	
Replacement door	Not available	
Vendor ID code	1	
Product type code	7	
Product code	73	
Enclosure type rating	None (open style)	

(1) To limit the effects of leakage current through solid-state outputs, a loading resistor can be connected in parallel with your load. Use a 5.6 k Ω , 1/2 W resistor for transistor outputs, 24V DC operation.

(2) Use a 1N4004 diode reverse-wired across the load for transistor outputs switching 24V DC inductive loads.

See <u>Environmental Specifications - 1769 Compact I/O Modules</u> on page <u>3</u>.

Temperature Derating - 1769-0B32

1769-0B32 Maximum Amperes per Point Versus Temperature

Certifications - 1769-0B32

5.00 4.50 4.00

30°C (86°F)

40°C (104°F)

Ambient Temperature

50°C (122°F)

Certification ⁽¹⁾	1769-0B32
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E10314. UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E10314.
Œ	European Union 2014/30/EU EMC Directive, compliant with: • EN 61000-6-2; Industrial Immunity • EN 61000-6-4; Industrial Emissions
RCM	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Enclosure
EAC	Russian Customs Union TR CU 020/2011 EMC Technical Regulation

60°C (140°F)

(1) When marked. See the Product Certification link at http://www.rockwellautomation.com/global/certification/overview.page for Declarations of Conformity, Certificates, and other certification details.

1769-IF16C

Compact current analog input module

Simplified Input Circuit Diagram

inputrunge	420 mA
Full scale range ⁽¹⁾	021 mA 3.221 mA
Current draw @ 5.1V	190 mA
Current draw @ 24V	70 mA
Heat dissipation, max	4.0 W
Converter type	Sigma Delta
Resolution ⁽²⁾	16 bits (unipolar) 15 bits plus sign (bipolar)
Rated working voltage ⁽³⁾	30V AC/30V DC

Technical Specifications - 1769-IF16C

Attribute	1769-IF16C
Common mode voltage range ⁽⁴⁾	±10V DC max per channel
Common mode rejection	> 60 dB @ 50 and 60 Hz with the 16 Hz filter selected
Input impedance	249 Ω
Accuracy ⁽⁵⁾	±0.5% full scale @ 25 °C (77 °F)
Accuracy drift with temperature	±0.0045% per °C
Nonlinearity	±0.03%
Repeatability ⁽⁶⁾	±0.03%
Module error	1.25%
Overload at input terminals, max ⁽⁷⁾	±28 mA continuous, ±7.6V DC
Isolation voltage	500V AC or 710V DC for 1 minute (qualification test), group to bus 30V AC/30V DC working voltage (IEC Class II reinforced insulation)
Weight, approx	281 g (0.62 lb)
Dimensions (HxWxD), approx	118 x 35 x 87 mm (4.65 x 1.38 x 3.43 in.) Height with mounting tabs 138 mm (5.43 in.)
Slot width	1
Module location	DIN rail or panel mount
Power supply	1769-PA2, 1769-PB2, 1769-PA4, 1769-PB4
Power supply distance rating	8 modules
Terminal screw torque	0.68 N•m (6 lb•in)
Retaining screw torque	0.46 N•m (4.1 lb•in)
Wire size	(2214 AWG) solid (2216 AWG) stranded
Wire type	Cu-90 °C (194 °F)
Replacement terminal block	1769-RTBN18 (1 per kit)
Replacement door label	1769-RL2 series B (2 per kit)
Replacement door	1769-RD (2 per kit)
Vendor ID code	1
Product type code	10
Product code	47
Input words	22
Output words	2
Configuration words	98
Enclosure type rating	None (open-style)

(1) The over- or under-range flag comes on when the normal operating range (over/under) is exceeded. The module continues to convert the analog input up to the maximum full scale range. The flag automatically resets when within the normal operating range.

(2) Resolution is dependent upon your filter selection. The maximum resolution is achieved with either the 50 or 60 Hz filter selected.

(3) Rated working voltage is the maximum continuous voltage that can be applied at the input terminal, including the input signal and the value that floats above ground potential. For example, a 10V DC input signal and 20V DC potential above ground at the input terminal.

(4) For proper operation, both the plus and minus input terminals must be within $\pm 10V$ DC of analog common.

(5) Includes offset, gain, nonlinearity, and repeatability error terms.

(6) Repeatability is the ability of the input module to register the same reading in successive measurements for the same input signal.

(7) Damage can occur to the input circuit if this value is exceeded.

See Environmental Specifications - 1769 Compact I/O Modules on page 3.
Response Speed - 1769-IF16C

Filter Frequency	Step Response	Update per Input Point	Update per Module
16 Hz	1550 ms	200 ms	1600 ms
50 Hz	500 ms	70 ms	560 ms
60 Hz	420 ms	60 ms	480 ms
315 Hz	90 ms	15 ms	120 ms
1365 Hz	35 ms	5 ms	40 ms

Certifications - 1769-IF16C

Certification ⁽¹⁾	1769-IF16C
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E10314. UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E10314.
CE	European Union 2014/30/EU EMC Directive, compliant with: • EN 61000-6-2; Industrial Immunity • EN 61000-6-4; Industrial Emissions
RCM	Australian Radiocommunications Act, compliant with: • AS/NZS CISPR 11; Industrial Enclosure
EAC	Russian Customs Union TR CU 020/2011 EMC Technical Regulation

(1) When marked. See the Product Certification link at http://www.rockwellautomation.com/global/certification/overview.page for Declarations of Conformity, Certificates, and other certification details.

1769-IR6

Compact RTD/resistance input module

Two Wire RTD Configuration

Two Wire Potentiometer Configuration

RTD Input Type	Engineering Units x1		Engineering Units	Engineering Units x10		Drementional Countr
	0.1 °C	0.1 °F	1.0 °C	1.0 °F	Scaled-for-PID	Proportional Counts
100Ω Platinum 385	<mark>-2000+8500</mark>	-3280+15620	<mark>-200+850</mark>	-328+1562	016383	-32768+32767
200 Ω Platinum 385	-2000+8500	-3280+15620	-200+850	-328+1562	016383	-32768+32767
500 Ω Platinum 385	-2000+8500	-3280+15620	-200+850	-328+1562	016383	-32768+32767
1000 Ω Platinum 385	-2000+8500	-3280+15620	-200+850	-328+1562	016383	-32768+32767
100 Ω Platinum 3916	-2000+6300	-3280+11660	-200+630	-328+1166	016383	-32768+32767
200 Ω Platinum 3916	-2000+6300	-3280+11660	-200+630	328+1166	016383	-32768+32767
500 Ω Platinum 3916	-2000+6300	-3280+11660	-200+630	328+1166	016383	-32768+32767
1000 Ω Platinum 3916	-2000+6300	-3280+11660	-200+630	328+1166	016383	-32768,+32767
10 Ω Copper 426	-1000+2600	-1480+5000	+100+260	-148+500	016383	-32768+32767
120 Ω Nickel 618	-1000+2600	-1480+5000	-100+260	-148+500	016383	-32768+32767
120 Ω Nickel 672	-800+2600	-1120+5000	-80+260	-112+500	016383	-32768+32767
604 Ω Nickel Iron 518	-1000+2600	-3280+1560	-100+200	-328+156	016383	-32768+32767
Temperature Range - '	1769-IR6	·		~		

Data Formats for RTD Temperature Ranges for 0.5 mA and 1.0 mA Excitation Current

Temperature Range - 1769-IR6

(1)			
RTD Type ⁽¹⁾		Temperature Range Using 0.5 mA Excitation	Temperature Range Using 1.0 mA Excitation
	<mark>100</mark> Ω	(<mark>-200850 °C (-3281562 °F)</mark>	-200850 ℃ (-3281562 °F)
(Platinum 385)	200 Ω	-200850 °C (-3281562 °F)	-200850 °C (-3281562 °F)
	500 Ω	-200850 °C (-3281562 °F)	-200850 °C (-3281562 °F)
	1000 Ω	-200850 °C (-3281562 °F)	N/A
	100 Ω	-200C630 °C (-3281166 °F)	-200630 °C (-3281166 °F)
Platinum 3016	200 Ω	-200C630 °C (-3281166 °F)	-200630 °C (-3281166 °F)
riatiliuiii 3910	500 Ω	-200C630 °C (-3281166 °F)	-200630 °C (-3281166 °F)
	1000 Ω	-200C630 °C (-3281166 °F)	N/A
Copper 426	10 Ω	N/A	-100260 °C (-148500 °F)
Nickel 618 ⁽²⁾	120 Ω	-100260 °C (-148500 °F)	-100260 °C (-148500 °F)
Nickel 672	120 Ω	-80260 °C (-112500 °F)	-80260 °C (-112500 °F)
Nickel-Iron 518	604 Ω	-200180 °C (-328338 °F)	-100+200 °C (-148392 °F)

(1) Digits following the RTD type represent the temperature coefficient of resistance (α), which is defined as the resistance change per Ω per °C. For instance, Platinum 385 refers to a Platinum RTD with $\alpha = 0.00385 \Omega/\Omega - ^{\circ}C$, or simply 0.00385/°C.

(2) Actual value at 0 °C is 100 Ω per DIN standard.

Resistance Device Compatibility - 1769-IR6

Resistance Device Type	Resistance Range (0.5 mA Excitation)	Resistance Range (1.0 mA Excitation)
150 Ω	0150 Ω	0150 Ω
500 Ω	0500 Ω	0500 Ω
1000 Ω	01000 Ω	01000 Ω
3000 Ω	03000 Ω	N/A

Technical Specifications - 1769-IR6

Attribute	1769-IR6
Inputs	6 RTD inputs
Input range	0150 Ω 0500 Ω 01000 Ω 03000 Ω
Resolution	Input filter and configuration dependent
Sensors supported	100, 200, 500, 1000 Ω Platinum 385 100, 200, 500, 1000 Ω Platinum 3916 120 Ω Nickel 672 120 Ω Nickel 618 10 Ω Nickel-iron 518
Current draw @ 5.1V	100 mA
Current draw @ 24V	35 mA
Heat dissipation, max	1.5W
Converter type	Sigma Delta
Common mode voltage range	±10V DC max
Common mode rejection	110 dB @ 50 Hz with the 10 or 50 Hz filter selected 110 dB @ 60 Hz with the 10 or 60 Hz filter selected
Normal mode rejection ratio	70 dB @ 50 Hz with the 10 or 50 Hz filter selected 70 dB @ 60 Hz with the 10 or 60 Hz filter selected
Cable impedance, max	25 Ω
Input impedance	> 10 MΩ
Accuracy @ 25 °C (77 °F) ⁽¹⁾ (50/60 Hz filter)	$\begin{array}{l} (\pm 0.5 \ ^{\circ}C (0.9 \ ^{\circ}F) \ for \ Pt \ 385 \\ \pm 0.4 \ ^{\circ}C (0.72 \ ^{\circ}F) \ for \ Pt \ 3916 \\ \pm 0.3 \ ^{\circ}C (0.54 \ ^{\circ}F) \ for \ Ni \\ \pm 0.3 \ ^{\circ}C (0.54 \ ^{\circ}F) \ for \ Ni \\ \pm 0.5 \ ^{\circ}C \ for \ 150 \ \Omega \ range \\ \pm 0.15 \ \Omega \ for \ 150 \ \Omega \ range \\ \pm 1.5 \ \Omega \ for \ 3000 \ \Omega \ range \\ \pm 1.5 \ \Omega \ for \ 3000 \ \Omega \ range \end{array}$
Accuracy @ 060 °C (32140 °F) ⁽¹⁾ (50/60 Hz filter)	$\begin{array}{c} \pm 0.9 \ \ ^{\circ} C (1.62 \ ^{\circ} F) \text{ for Pt 385} \\ \pm 0.8 \ ^{\circ} C (1.44 \ ^{\circ} F) \text{ for Pt 3916} \\ \pm 0.5 \ ^{\circ} C (0.9 \ ^{\circ} F) \text{ for Ni} \\ \pm 0.5 \ ^{\circ} C (0.9 \ ^{\circ} F) \text{ for Ni} \\ \pm 1.1 \ ^{\circ} C (1.98 \ ^{\circ} F) \text{ for Ni} \\ \pm 1.1 \ ^{\circ} C (1.98 \ ^{\circ} F) \text{ for Cu} \\ \pm 0.25 \ ^{\circ} C for 150 \ \Omega \text{ range} \\ \pm 1.5 \ \Omega \text{ for 1000 } \Omega \text{ range} \\ \pm 1.5 \ \Omega \text{ for 3000 } \Omega \text{ range} \end{array}$
Accuracy drift @ 060 °C (32140 °F) ⁽¹⁾	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \pm 0.026 \ ^{\circ}C/^{\circ}C \left(0.026 \ ^{\circ}F/^{\circ}F \right) \ for \ Pt \ 385 \right) \\ \pm 0.023 \ ^{\circ}C/^{\circ}C \left(0.023 \ ^{\circ}F/^{\circ}F \right) \ for \ Pt \ 3916 \\ \pm 0.012 \ ^{\circ}C/^{\circ}C \left(0.012 \ ^{\circ}F/^{\circ}F \right) \ for \ Ni \\ \pm 0.015 \ ^{\circ}C/^{\circ}C \left(0.015 \ ^{\circ}F/^{\circ}F \right) \ for \ Ni \\ \pm 0.032 \ ^{\circ}C/^{\circ}C \left(0.013 \ ^{\circ}F/^{\circ}F \right) \ for \ 150 \ \Omega \\ \pm 0.007 \ \Omega/^{\circ}C \left(\pm 0.013 \Omega/^{\circ}F \right) \ for \ 500 \ \Omega \\ \pm 0.043 \ \Omega/^{\circ}C \left(\pm 0.077 \Omega/^{\circ}F \right) \ for \ 1000 \ \Omega \\ \pm 0.072 \ \Omega/^{\circ}C \left(\pm 0.130 \Omega/^{\circ}F \right) \ for \ 3000 \ \Omega \end{array}$
Nonlinearity	±0.05%
Repeatability ⁽²⁾ (50/60 Hz filter)	± 0.01 °C (0.018 °F) for Ni and NiFe ± 0.2 °C (0.36 °F) for other RTD inputs $\pm 0.04 \Omega$ for 150 Ω resistances $\pm 0.2 \Omega$ for other resistances
Open circuit detection time ⁽³⁾	6 ms303 s
Isolation voltage	720V DC for 1 minute, optical and magnetic (qualification), channel to bus 30V AC/30V DC working voltage (IEC Class II reinforced insulation)
Weight, approx	276 g (0.61 lb)

Technical Specifications - 1769-IR6

Attribute	1769-IR6
Dimensions (HxWxD), approx	118 x 35 x 87 mm (4.65 x 1.38 x 3.43 in.) Height with mounting tabs 138 mm (5.43 in.)
Slot width	1
Module location	DIN rail or panel mount
Power supply	1769-PA2, 1769-PB2, 1769-PA4, 1769-PB4
Power supply distance rating	8 modules
Terminal screw torque	0.68 N•m (6 lb•in)
Retaining screw torque	0.46 N•m (4.1 lb•in)
Recommended cable	2-wire configuration: Belden 9501 or equivalent 3-wire configuration: Belden 9533 or equivalent 4-wire configuration: Belden 83503 or equivalent
Wire size	(2214 AWG) solid (2216 AWG) stranded
Wire type	Cu-90 °C (194 °F)
IEC input compatibility	Type 1+
Replacement terminal block	1769-RTBN18 (1 per kit)
Replacement door label	1769-RL2 series B (2 per kit)
Replacement door	1769-RD (2 per kit)
Vendor ID code	1
Product type code	10
Product code	37
Enclosure type rating	None (open-style)

(1) Accuracy is dependent upon the Analog/Digital converter output rate selection, excitation current selection, data format, and input noise.

(2) Repeatability is the ability of the input module to register the same reading in successive measurements for the same input signal.

(3) Open-circuit detection time is equal to channel update time.

See Environmental Specifications - 1769 Compact I/O Modules on page 3.

RTD Accuracy and Temperature Drift - 1769-IR6

RTD Type		Scaled Accuracy Max 25 °C (77 °F) with Calibration	Scaled Accuracy Max 060 °C (32140 °F) with Calibration)	Temperature Drift Max from 25 °C (77 °F) without Calibration
Copper 426	10 Ω	±0.6 °C (1.08 °F)	±1.1 °C (1.98 °F)	±0.032 °C/°C (0.032 °F/°F)
Nickel 618	120 Ω	±0.2 °C (±0.36 °F)	±0.4 °C (±0.72 °F)	±0.012 °C/°C (±0.012 °F/°F)
Nickel 672	120 Ω	±0.2 °C (±0.36 °F)	±0.4 °C (±0.72 °F)	±0.012 °C/°C (±0.012 °F/°F)
Nickel-Iron 518	604Ω	±0.3 °C (±0.54 °F)	±0.5 °C (±0.9 °F)	±0.015 °C/°C (±0.015 °F/°F)
	<mark>100</mark> Ω	±0.5 °C (±0.9 °F)	(±0.9 ℃ (±1.62 °F)	(±0.026 °C/°C (±0.026 °F/°F)
Platinum 385	200 Ω	±0.5 °C (±0.9 °F)	±0.9 °C (±1.62 °F)	±0.026 °C/°C (±0.026 °F/°F)
	500 Ω	±0.5 °C (±0.9 °F)	±0.9 °C (±1.62 °F)	±0.026 °C/°C (±0.026 °F/°F)
	1000 Ω	±0.5 °C (±0.9 °F)	±0.9 °C (±1.62 °F)	±0.026 °C/°C (±0.026 °F/°F)
	100 Ω	±0.4 °C (±0.7 2°F)	±0.8 °C (±1.44 °F)	±0.023 °C/°C (±0.023 °F/°F)
Platinum 3916	200 Ω	±0.4 °C (±0.72 °F)	±0.8 °C (±1.44 °F)	±0.023 °C/°C (±0.023 °F/°F)
	500 Ω	±0.4 °C (±0.72 °F)	±0.8 °C (±1.44 °F)	±0.023 °C/°C (±0.023 °F/°F)
	1000 Ω	±0.4 °C (±0.72 °F)	±0.8 °C (±1.44 °F)	±0.023 °C/°C (±0.023 °F/°F)

RTD Standards - 1769-IR6

RTD Type	α ⁽³⁾	IEC-751 1983, Amend. 2 1995	DIN 43760 1987	SAMA ⁽⁴⁾ Standard RC21-4-1966	Japanese Industrial Standard JIS C1604-1989	Japanese Industrial Standard JIS C1604-1997	Minco ⁽⁵⁾
100 Ω Pt	0.00385	X	X			X	
200 Ω Pt	0.00385	Х	Х			Х	
500 Ω Pt	0.00385	X	Х			Х	
1000 Ω Pt	0.00385	Х	Х			X	
100 Ω Pt	0.03916				Х		
200 Ω Pt	0.03916				Х		
500 Ω Pt	0.03916				Х		
1000 Ω Pt	0.03916				Х		
10 Ω Cu $^{(1)}$	0.00426			Х			
120 Ω Ni $^{(2)}$	0.00618		Х				
120 Ω Ni	0.00372						Х
604 Ω NiFe	0.00518						Х

(1) Actual value at 0 °C (32 °F) is 9.04 2 Ω per SAMA standard RC21-4-1966.

(2) Actual value at 0 °C (32 °F) is100 Ω per SAMA standard RC21-4-1966.

(3) α is the temperature coefficient of resistance, which is defined as the resistance change per ohm per °C.

(4) Scientific Apparatus Makers Association

(5) Minco Type "NA" (Nickel) and Minco Type "FA" (Nickel-Iron)

Certifications - 1769-IR6

Certification ⁽¹⁾	1769-IR6
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E194810.
CE	European Union 2014/30/EU EMC Directive, compliant with: • EN 61000-6-2; Industrial Immunity • EN 61000-6-4; Industrial Emissions
RCM	Australian Radiocommunications Act, compliant with: • AS/NZS CISPR 11; Industrial Enclosure
EAC	Russian Customs Union TR CU 020/2011 EMC Technical Regulation

(1) When marked. See the Product Certification link at http://www.rockwellautomation.com/global/certification/overview.page for Declarations of Conformity, Certificates, and other certification details.

1769-0F4CI

Compact current output, individually isolated analog module

Technical Specifications - 1769-0F4CI

Attribute	1769-0F4CI
Outputs	4 differential, individually isolated
Output range	020 mA 420 mA
Full scale range ⁽¹⁾	021 mA 3.221 mA
Resolution	16 bits (unipolar) 020 mA: 15.91 bits, 0.323 μA/bit 420 mA: 15.59 bits, 0.323 μA/bit
Bus current draw	5V DC, 145 mA 24V DC, 120 mA
Heat dissipation, max	2.68 W
Conversion rate (all channels), max	110 ms
Limited voltage/current ⁽²⁾	< 2.9 ms
Resistive load on current output	0500 Ω (includes wire resistance)
Inductive load (current outputs), max	0.1 mH
Field calibration	None required
Accuracy ⁽³⁾	±0.35% full scale @ 25 °C (77 °F)
Accuracy drift with temperature	±0.0058% FS per °C
Output ripple ⁽⁴⁾	±0.05% @ 050 kHz
Nonlinearity	±0.05%
Repeatability ⁽⁵⁾	±0.05%
Module error	±0.55%
Output impedance	>1 MΩ
Open and short-circuit protection	Yes

Technical Specifications - 1769-0F4CI

Attribute	1769-0F4CI	
Short-circuit protection, max	21 mA	
Output overvoltage protection	Yes	
Output response at system powerup and power down	No current glitch	
Rated working voltage ⁽⁶⁾	30V AC/30V DC	
Isolation voltage	500V AC or 710V DC for 1 min (qualification test), output group to bus 30V AC/30V DC working voltage (IEC Class II reinforced insulation)	
Weight, approx	270 g (0.60 lb)	
Dimensions (HxWxD), approx	118 x 35 x 87 mm (4.65 x 1.38 x 3.43 in.) Height with mounting tabs 138 mm (5.43 in.)	
Slot width	1	
Module location	DIN rail or panel mount	
Power supply	1769-PA2, 1769-PB2, 1769-PA4, 1769-PB4	
Power supply distance rating	8 modules	
Terminal screw torque	0.68 N•m (6 lb•in)	
Retaining screw torque	0.46 Nom (4.1 lboin)	
Wire size	(2214 AWG) solid (2216 AWG) stranded	
Wire type	Cu-90 °C (194 °F)	
Recommended cable	Belden 8761 (shielded)	
Replacement terminal block	1769-RTBN18 (1 per kit)	
Replacement door label	1769-RL2 (2 per kit)	
Replacement door	1769-RD (2 per kit)	
Vendor ID code	1	
Product type code	10	
Product code	45	
Input words	6	
Output words	5	
Configuration words	32	
Enclosure type rating	None (open style)	

(1) The over- or under-range flag comes on when the normal operating range (over/under) is exceeded. The module continues to convert the analog input up to the maximum full scale range. The flag automatically resets when within the normal operating range.

(2) Step response is the time between when the D/A converter was instructed to go from minimum to full range until the device is at 63% of full range.

(3) Includes offset, gain, nonlinearity, and repeatability error terms.

7

(4) Output ripple is the amount that a fixed output varies with time, which assumes a constant load and temperature.

(5) Repeatability is the ability of the input module to register the same reading in successive measurements for the same input signal.

(6) Rated working voltage is the maximum continuous voltage that can be applied at the input terminal, including the input signal and the value that floats above ground potential. For example, a 10V DC input signal and 20V DC potential above ground at the input terminal.

Certifications - 1769-0F4Cl

Certification ⁽¹⁾	1769-0F4CI	
c-UL	UL Listed Industrial Control Equipment, certified for US and Canada. UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E194810.	
CE	European Union 2014/30/EU EMC Directive, compliant with: • EN 61000-6-2; Industrial Immunity • EN 61000-6-4; Industrial Emissions	
RCM	Australian Radiocommunications Act, compliant with: • AS/NZS CISPR 11; Industrial Enclosure	5
EAC	Russian Customs Union TR CU 020/2011 EMC Technical Regulation	

 When marked. See the Product Certification link at <u>http://www.rockwellautomation.com/global/certification/overview.page</u> for Declarations of Conformity, Certificates, and other certification details.

Compact I/O Accessories

Category	Cat. No.	Description	
End cap	1769-ECL	Left-end cap for Compact I/O system	
	(1769-ECR)	(Right-end cap for Compact I/O system)	
	1769-CLL1	Left bank-to-left bank expansion 305 mm (1 ft)	
	1769-CLL3	Left bank-to-left bank expansion 1 m (3.28 ft)	
Evenneion cable	1769-CRR1	Right bank-to-right bank expansion 305 mm (1 ft)	
	1769-CRR3	Right bank-to-right bank expansion 1 m (3.28 ft)	
	1769-CRL1	Right bank-to-left bank expansion 305 mm (1 ft)	
	1769-CRL3	Right bank-to-left bank expansion 1 m (3.28 ft)	
Poplacement terminal block	1769-RTBN10	10-pin NEMA terminal block	
	1769-RTBN18	18-pin NEMA terminal block	
Poplacement door labels	1769-RL1	Replacement door labels for digital I/O, 2 per kit	
Replacement door labels	1769-RL2	Replacement door labels for analog and specialty I/O, 2 per kit	
Replacement doors	1769-RD	Door replacement kit, 2 per kit	
Replacement connector kit	1746-N3	Connector kit to terminate a cable, which connects field I/O devices to 32-point I/O modules, 1 connector and 40 terminals	

End Caps

The final I/O bank in Compact system needs an end cap on the end without the expansion cable. The 1769-L23x controller comes with a right-end cap, so you do not need to order one separately.

Technical Specifications - 1769-ECL, 1769-ECR

Attribute	1769-ECL	1769-ECR	
Current draw @ 5.1V	5 mA		
Current draw @ 24V	0 mA		
Weight, approx	130 g (0.286 lb)		
Location	Left end	Right end	
North American temperature code	T3C		
IEC temperature code	N/A	T4	
Enclosure type rating	None (open-style)	None (open-style)	

Mounting Dimensions - 1769-ECL

Certifications - 1769-ECL, 1769-ECR

Certification ⁽¹⁾	1769-ECL	1769-ECR		
c-UL-us	UL Listed for Class I, Division 2 Group A, B, C, D Hazardous Locations, certified for U.S. and Canada. See UL File E10314			
Œ	European Union 2014/30/EU EMC Directive, compliant with: • EN 61000-6-2; Industrial Immunity • EN 61000-6-4; Industrial Emissions	CE		
RCM	Australian Radiocommunications Act, compliant with: • AS/NZS CISPR 11; Industrial Enclosure	_		
ATEX	_	European Union 2014/34/EU ATEX Directive, compliant with: EN 60079-0; General Requirements EN 60079-15; Potentially Explosive Atmospheres, Protection "n" • II 3 G Ex nA IIC T4 Gc		

(1) When marked. See the Product Certification link at http://www.rockwellautomation.com/global/certification/overview.page for Declarations of Conformity, Certificates, and other certification details.

DATASHEET

Modbus TCP/IP Client Communication Module MVI69-MNETC

The MVI69-MNETC Modbus TCP/IP Client Communication Module allows Rockwell Automation[®] CompactLogix / MicroLogix[®] processors to interface easily with Modbus TCP/IP server devices.

Compatible devices include Modicon PACs, as well as a wide variety of instruments and devices. The module acts as an input/output module between the Modbus network and the Rockwell Automation backplane.

The data transfer from the processor is asynchronous from the actions on the Modbus Client-controlled network. A 5000-word register space in the module exchanges data between the processor and the Modbus network.

Features

- Single-slot 1769 backplane compatible
- The module is recognized as an Input/Output module and has access to processor memory for data transfer between processor and module
- Ladder Logic is used for data transfer between module memory and processor controller tags. A sample ladder file with AOI is included
- Configuration data obtained from configuration text file downloaded to module. A sample configuration file is included.
- Supports CompactLogix and MicroLogix 1500 LRP Controllers except 1769-QBFC1B, 1769-L16x, and 1769-L18x

Functional Specifications

- Support for the storage and transfer of up to 5000 registers to/from the processor's controller tags
- User-definable module memory usage
- 10/100 Base-T Ethernet compatible interface

Client Specifications

The MVI69-MNETC will operate on a local or remote rack. This module was created to improve performance when controlling multiple servers on a Modbus TCP/IP network.

- Offers 30 Client connections with up to 16 commands per Client to talk to multiple servers
- Easily enable or disable the commands from the ladder logic
- A Client configured as a virtual Modbus master device on the MVI69-MNETC module will actively issue Modbus TCP/IP commands to other nodes on the Modbus TCP/IP network
- Actively reads data from and writes data to Modbus TCP/IP devices, using MBAP or Encapsulated Modbus message formats
- Transmits Modbus Function Codes 1, 2, 3, 4, 5, 6, 7, 15, and 16
- .CompactLogix / MicroLogix processor can be programmed to use special functions to control the activity on the Client by actively selecting commands to execute from the command list (Command Control) or issuing commands directly from the ladder logic (Event Commands)
- Configurable parameters for the Client include:
 - Minimum Command Delay
 - User-defined commands (read/write)

Where Automation Connects™

Global Distribution

We think like you do

ProSoft Technology[®] products are distributed and supported worldwide through a network of over 500 distributors in over 50 countries. Our knowledgeable distributors are familiar with your application needs. For a complete list of distributors, go to our web site at:

www.prosoft-technology.com

Global Support

We are there for you

All ProSoft Technology products are backed with free, unlimited technical support. Contact our worldwide Technical Support team directly by phone or email.

Global Offices

We are where you are

ProSoft Technology has regional offices worldwide available to help you with all your industrial application needs. If you need help choosing a ProSoft Technology solution for your particular application check out our contact information under distributor sales on the web site at:

www.prosoft-technology.com

Whether your application is large or small, our technical professionals are there to help you choose the right communication solution.

Hardware Specifications

Specification	Description
Dimensions	Standard 1769 single-slot module
Current Load	800 mA max @ 5 VDC Power supply distance rating of 2 (L43 and L45 installations on first 2 slots of 1769 bus)
Operating Temp.	0°C to 60°C (32°F to 140°F)
Storage Temp.	-40°C to 85°C (-40°F to 185°F)
Relative Humidity	5% to 95% (with no condensation)
LED Indicators	Power and Module Status Application Status CFG Port Activity Ethernet Port Activity Error Status
CFG Port (CFG)	RJ45 (DB-9M with supplied cable) RS-232 only No hardware handshaking
App Port (Ethernet modules)	10/100 Base-T Ethernet compatible interface Electrical Isolation 1500 Vrms at 50 Hz to 60 Hz for 60 s, applied as specified in section 5.3.2 of IEC 60950: 1991
	Ethernet Broadcast Storm Resiliency = less than or equal to 5000 [ARP] frames-per-second and less than or equal to 5 minutes duration
Shipped with Unit	RJ45 to DB-9M cables for each port 6-foot RS-232 configuration cable

Agency Approvals and Certifications

Agency	A 10
ATEX	
DNV	
CE	
CB Safety	
GOST-R	
CSA	
cULus	
	COLUS

Additional Products

ProSoft Technology[®] offers a full complement of hardware and software solutions for a wide variety of industrial communication platforms. For a complete list of products, visit our web site at:

www.prosoft-technology.com

Ordering Information

To order this product, please use the following:

Modbus TCP/IP Client Communication Module

MVI69-MNETC

To place an order, please contact your local ProSoft Technology distributor. For a list of ProSoft Technology distributors near you, go to:

www.prosoft technology.com

and select *Where to Buy* from the menu.

Copyright © 2014 ProSoft Technology, Inc. All rights reserved. 10/2/2014

pecifications subject to ch

PanelView Plus 7 Performance 10-in and 12-in Terminals

Attribute	10.4-in. Touch <mark>2711P-T10C22D9P,</mark> 2711P-T10C22D9P-B ⁽¹⁾ 2711P-T10C22A9P, 2711P-T10C22A9P-B 2711P-T10C22D9PK ⁽²⁾	10.4-in. Touch 10.4-in. Touch with Keypad 2711P-T10C22D9P, 2711P-T10C22D9P-B ⁽¹⁾ 2711P-B10C22D9P, 2711P-B10C22D9P-B ⁽¹⁾ 2711P-T10C22D9PK ⁽²⁾ 2711P-B10C22A9P, 2711P-B10C22A9P-B		12.1-in. Touch 2711P-T12W22D9P, 2711P-T12W22D9P-B ⁽¹⁾ 2711P-T12W22A9P, 2711P-T12W22A9P-B 2711P-T12W22D9PK ⁽²⁾				
Operator input	Touch	Touch with keypad		Touch				
Conformal-coated	Yes			Yes				
Display type	TFT Color				C			
Display size, diagonal	10.4-in. 12.1-in. wide screen							
Viewing area (W x H)	211 x 158 mm (8.3 x 6.2 in.)			261 x 163 mm (10.3 x 6.4 in				
Display resolution	800 x 600 SVGA, 18-bit color graphics			1280 x 800 WXGA, 18-bit co	lor graphics			
Aspect ratio	4:3			16:10				
Brightness, typical	300 cd/m ² (Nits)							
Backlight life	White light-emitting diode, solid state Life: 50,000 h min at 40 °C (104 °F) to half-brightness, bac	klight is not replaceable						
Touch screen	Analog resistive Actuation rating: 1 million presses Operating force: 100 grams							
Battery (real-time clock backup)	Accuracy: ±2 minutes per month. Battery life: 4 years min at 25 °C (77 °F) Replacement: CR2032 lithium coin cell							
Memory: • System • User	512 MB RAM and 512 MB storage 80 MB, approx, nonvolatile storage for applications							
Secure Digital (SD) card slot	One SD card slot for external storage; supports cat. no. 178	34-SDx cards						
USB ports: • Host • Device	 Two USB high-speed 2.0 host ports (type A) support removable flash drives for external storage One high-speed 2.0 device port (type B) that will be functional in a future release 							
Operating system	Windows CE with Extended Features and MS Office Viewer	rs (includes FTP, VNC client serv	ver, ActiveX controls, PDF read	er, third-party device support))			
Ethernet ports	Two 10/100Base-T, Auto MDI/MDI-X Ethernet ports that su	pport Device Level Ring (DLR)	, linear, or star network topol	ogies				
Software	FactoryTalk View Studio for Machine Edition, FactoryTalk V	iewPoint, version 2.6 or later						
Electrical								
Input voltage	24V DC nom (1830V DC) 100240V AC	24V DC nom (1830V DC)	100240V AC	24V DC nom (1830V DC)	100240V AC			
Power consumption	50 W max (2.1 A at 24V DC) 105VA	50 W max (2.1 A at 24V DC)	105VA	50 W max (2.1 A at 24V DC)	105VA			
Power supply	Supports (SELV) and (PELV) 24V DC supplies ⁽³⁾	Supports (SELV) and (PELV) 24V DC supplies ⁽³⁾	_	Supports (SELV) and (PELV) 24V DC supplies ⁽³⁾	_			
Mechanical								
Weight, approx	2.28 kg (5.03 lb)	2.58 kg (5.69 lb)		2.54 kg (5.60 lb)				
Dimensions, approx (H x W x D)	252 x 297 x 69.6 mm 252 x 385 x 69.6 mm 240 x 340 x 69.6 mm 9.92 x 11.69 x 2.74 in. 9.92 x 15.16 x 2.74 in. 9.69 x 13.39 x 2.74 in.							
Cutout dimensions, approx (H x W)	224 x 269 mm 224 x 335 mm 218 x 312 mm 8.82 x 10.59 in. 8.82 x 13.19 in. 8.58 x 12.28 in.							

Catalog numbers with a - B extension denote terminals that exclude the Allen-Bradley brand marking. Customers can put their own brand labels on these terminals.
 Catalog numbers that end with a K denote terminals that are conformal coated.
 DC-powered terminals support safety extra low voltage (SELV) and protective extra low voltage (PELV) 24V DC power supplies such as cat. nos. 1606-XLP95E, 1606-XLP10E, 2711P-RSACDIN.

Typical Configuration

Traditional DLR, linear, and star network topologies are supported. See these topics for examples:

- Device Level Ring Network Topology on page 45
- Linear Network Topology on page 46
- <u>Star Network Topology on page 47</u>

P/N: 2711P-T10C22D9P

Catalog Number Explanation

This section provides an explanation of the catalog numbers.

Bulletin	Input Type	Display Size	Display Type	Network	Power	Operating System	Model ⁽¹⁾	-	Option	
						1		ΤT		_
2711P-	T = Touch	7 = 6.5-in.	C = Color	22 = Ethernet DLR ports	$\mathbf{A} = AC$	9 = Windows CE	P =Performance	- B=	No brand identity	
	B = Key and Touch	9 = 9-in.	$\mathbf{W} =$ Wide aspect ratio color		D = DC	2		BSH ident hygio coate	K ⁽²⁾ = No brand hity, stainless steel enic, conformal ed	l,
		10 = 10.4-in.						K =	Conformal coated	
		12 = 12.1-in.					S.	BMO Armo term	01– BM016 ⁽³⁾ = prView Plus 7 inal	:
		15 = 15-in.								
		19 = 19-in.								

(1) Performance model s support Windows CE 6.0 operating system with extended features: web browser, remote desktop connection, media player, Microsoft office file viewers, Word Pad text editor.

- (2) The -BSHK terminals are available in 9-in. and 12.1-in. touch screen terminals, with DC power, and without the Allen-Bradley logo.
- (3) The ArmorView Plus 7 product includes a 12.1-in. PanelView Plus 7 Performance terminal and a 1732E ArmorBlock® EtherNet/IP I/O module. Both products are enclosed in a cast aluminum assembly that can be mounted on a machine, an arm mount system, a VESA-compatible bracket (with the optional VESA kit), or a pedestal. To order an ArmorView Plus 7 terminal, add BM001...BM016 to the 12.1-in. PanelView Plus 7 Performance touch terminal, 2711P-T12W22D9P. For explanations of the ArmorView Plus 7 catalog numbers, see the ArmorView Plus 7 Installation Instructions, publication <u>2711P-IN013</u>.

Rockwell Automation Publication 2711P-UM008G-EN-P - August 2019

Product Dimensions

This section provides product dimensions. The PanelView Plus 7 Performance 10.4-inch touch and combination keypad with touch devices are shown for illustrative purposes. Stainless steel terminals use different mounting clips, but the dimensions are the same. All other terminal sizes look similar.

PanelView Plus 7 Performance Terminal Dimensions - 10.4-in. Model

PanelView Plus 7 Performance Terminal Dimensions

Terminal Size	Input Type	Height (a) mm (in.)	Width (b) mm (in.)	Overall Depth (c) mm (in.)	Mounted Depth (d) mm (in.)
6 5-in	Key/touch	179 (7.05)	285 (11.22)		
0.5-111.	Touch	170 (6.69)	212 (8.35)		
9-in.	Touch	190 (7.48)	280 (11.02)		
10.4 in	Key/touch	252 (9.92)	385 (15.16)	•	
10.4-111.	Touch	<mark>252 (9.92)</mark>	297 (11.69)	<mark>69.6 (2.74)</mark>	63.6 (2.50)
12.1-in.	Touch	246 (9.69)	340 (13.39)		
15 in	Key/touch	329 (12.95)	484 (19.06)		
15-111.	Touch	318 (12.52)	381 (15.00)		
19-in.	Touch	411 (16.18)	485 (19.09)		

When mounted in a panel, the front of the bezel extends less than 6.36 mm (0.25 in.) from the front of the panel.

TIP

Verbatim Metal Executive USB flash drive 16 GB USB Type-A 2.0 Silver

Brand : Verbatim

Product code: 98748

Product name : Metal Executive - USB Drive 16 GB - Silver

Metal Executive USB 2.0 Drive 16GB

Verbatim Metal Executive USB flash drive 16 GB USB Type-A 2.0 Silver:

- Ultra small metal housing
- Tough, waterproof & dustproof design
- Includes a convenient metal key ring
- Capacities avaliable: 16GB, 32GB & 64GB
- Stylish Silver colour

The Metal Executive USB 2.0 Drive has a small, sleek metal casing which makes it incredibly tough and able to withstand the demands of everyday life. Verbatim Metal Executive. Capacity: 16 GB, Device interface: USB Type-A, USB version: 2.0. Form factor: Capless, Product colour: Silver

Performance		Performance		
Capacity *	16 GB	Linux operating systems supported	1	
Device interface *	USB Type-A 2.0 Windows 10 Education,Windows 10 Education x64,Windows 10 Enterprise,Windows 10 Enterprise x64,Windows 10 Home,Windows 10 Home x64,Windows 10 Pro,Windows 10 Pro x64,Windows 7 Enterprise,Windows 7 Enterprise x64,Windows 7 Home Basic x64,Windows 7 Home Premium x64,Windows 7 Home Premium x64,Windows 7 Starter,Windows 7 Professional,Windows 7 Professional x64,Windows 7 Starter,Windows 7 Ultimate,Windows 7 Ultimate x64,Windows 7 Starter,Windows 7 Ultimate,Windows Vista Business x64,Windows Vista Business,Windows Vista Business x64,Windows Vista Home Basic,Windows Vista Home Basic,Windows Vista Home Premium,Windows Vista Home Professional,Windows XP Professional,Windows XP Professional,Windows XP Professional,Windows XP	Design		
USB version *		2.0 Windows 10 Education, Windows 10 Education x64, Windows 10 Enterprise, Windows 10 Enterprise x64, Windows 10 Home, Windows 10 Home x64, Windows 10 Pro, Windows 10 Pro x64, Windows 7 Enterprise Windows 7 Enterprise	Form factor * Product colour * Housing material Protection features Key ring	Capless Silver Metal Water resistant
		Quantity per pack	1 pc(s)	
Windows operating systems supported				
Ó				
	Mac OS X 10.1 Puma, Mac OS X 10.10 Yosemite, Mac OS X 10.11 El Capitan, Mac OS X 10.2 Jaguar, Mac OS X 10.3 Panther, Mac OS X 10.4			

Mac operating systems supported

Capitan, Mac OS X 10.2 Jaguar, Mac OS X 10.3 Panther, Mac OS X 10.4 Tiger, Mac OS X 10.5 Leopard, Mac OS X 10.6 Snow Leopard, Mac OS X 10.7 Lion, Mac OS X 10.8 Mountain Lion, Mac OS X 10.9 Mavericks

Patch cable - FL CAT6 PATCH 5,0 - 2891783

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)

Patch cable, CAT6, pre-assembled	, 5.0 m
	on str
Ethernet	
	1000
GTIN	4 046356 167574
Weight per Piece (excluding packing)	199.906 g
Weight per piece (including packing)	212.98 g
Custom tariff number	85444210
Country of origin	Poland
Technical data Ambient conditions	
Ambient temperature (operation)	-10 °C 60 °C
External sheath	
Outer sheath, material	LSFROH
External diameter	5.5 mm
External diameter max.	6.2 mm
Single wire	
Individual wires per module	8
Single wire, material	Cu litz wire
Single wire, cross section	0.14 mm ²
Mechanical properties	
Smallest bending radius, fixed installation	30 mm
General	·
Conductor length	5 m
Nominal voltage U _N	150 V _{ms}

Patch cable - FL CAT6 PATCH 5,0 - 2891783

Technical data

General

Transmission characteristics (category)	CAT6
Behavior in fire	1
Flame resistance	According to IEC 60332-3C
Concentration of fumes	in accordance with IEC 61034
Halogen-free	According to IEC 60754-1
Standards and Regulations	
Concentration of fumes	in accordance with IEC 61034
Halogen-free	According to IEC 60754-1
Flame resistance	According to IEC 60332-3C

Classifications

eCl@ss

eCl@ss 4.0	27250591
eCl@ss 4.1	27240409
eCl@ss 5.0	27259207
eCl@ss 5.1	27061801
eCl@ss 6.0	27259207
eCl@ss 7.0	27259207
eCl@ss 8.0	27060308
eCl@ss 9.0	27060308
ETIM	
ETIM 2.0	EC001262
	FC004262

ETIM 3.0	EC001262
ETIM 4.0	EC001262
ETIM 5.0	EC002599
UNSPSC	

UNSPSC

UNSPSC 6.01	26121609
UNSPSC 7.0901	26121609
UNSPSC 11	26121609
UNSPSC 12.01	26121609
UNSPSC 13.2	26121609

Approvals

Approvals

Patch cable - FL CAT6 PATCH 5,0 - 2891783

Approvals

EAC

	1
Ex Approvals	5
Approvals submitted	S
Approval details	
EAC	
Phoenix Contact 2016 © - all rights reserved http://www.phoenixcontact.com	
FORDING	
FOR OR BIN	

Patch cable - FL CAT6 PATCH 0,5 - 2891288

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)

Patch cable, CAT6, pre-assembled, 0	0.5 m
RoHS	
Key Commercial Data	
Packing unit	1 STK
GTIN	4 046356 167529
GTIN	4046356167529
Weight per Piece (excluding packing)	36.820 g
Custom tariff number	85444210
Country of origin	Poland
Technical data Ambient conditions	
Ambient temperature (operation)	-10 °C 60 °C
External sheath	
Outer sheath, material	LSFROH
External diameter	5.5 mm
External diameter max.	6.2 mm
Single wire	
Individual wires per module	8
Single wire, material	Cu litz wire
Single wire, cross section	0.14 mm²

Mechanical properties

Patch cable - FL CAT6 PATCH 0,5 - 2891288

Technical data

Mechanical properties

Smallest bending radius, fixed installation	30 mm
General	
Conductor length	0.5 m
Nominal voltage U_N	150 V _{rms}
Transmission characteristics (category)	CAT6
Behavior in fire	
Flame resistance	according to IEC 60332-3C
Concentration of fumes	in accordance with IEC 61034
Halogen-free	According to IEC 60754-1
Standards and Regulations	
Concentration of fumes	in accordance with IEC 61034
Halogen-free	According to IEC 60754-1
Flame resistance	according to IEC 60332-3C
Environmental Product Compliance	
China RoHS	Environmentally Friendly Use Period = 50
	For details about hazardous substances go to tab "Downloads", Category "Manufacturer's declaration"
Classifications	
eCl@ss	
eCl@ss 4.0	27250591
eCl@ss 4.1	27240409
eCl@ss 5.0	27259207
eCl@ss 5.1	27061801
eCl@ss 6.0	27259207
eCl@ss 7.0	27259207
eCl@ss 8.0	27060308
eCl@ss 9.0	27060308
ETIM	
ETIM 2.0	EC001262
ETIM 3.0	EC001262

ETIM 3.0	EC001262
ETIM 4.0	EC001262
ETIM 5.0	EC002599

Patch cable - FL CAT6 PATCH 0,5 - 2891288

Classifications

UNSPSC

UNSPSC 6.01	26121609
UNSPSC 7.0901	26121609
UNSPSC 11	26121609
UNSPSC 12.01	26121609
UNSPSC 13.2	26121604
Approvals	
Approvals	
Approvals	
EAC	
Ex Approvals	NP GY
Approval details	
	EAC-Zulassung
Phoenix Contact 2017 © - all rights reserved http://www.phoenixcontact.com	

08/23/2017 Page 3 / 3

Patch cable - FL CAT6 PATCH 1,0 - 2891385

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)

Patch cable, CAT6, pre-assembled, 1.0 m			
	AN SES		
RoHS Ethernet	C S S S S S S S S S S S S S S S S S S S		
Packing unit			
GTIN	4 046356 167536		
GTIN	4046356167536		
Weight per Piece (excluding packing)	50.900 g		
Custom tariff number	85444210		
Country of origin	Poland		
Technical data Ambient conditions			
Ambient temperature (operation)	-10 °C 60 °C		
External sheath			
Outer sheath, material	LSFROH		
External diameter	5.5 mm		
External diameter max.	6.2 mm		
Single wire			
Individual wires per module	8		
Single wire, material	Cu litz wire		
Single wire, cross section	0.14 mm ²		
Mechanical properties			
Smallest bending radius, fixed installation	30 mm		

General

Patch cable - FL CAT6 PATCH 1,0 - 2891385

Technical data

General

ctor length al voltage U _N hission characteristics (category) ior in fire resistance tration of fumes n-free ards and Regulations tration of fumes	1 m 150 V _{rms} CAT6 according to IEC 60332-3C in accordance with IEC 61034 According to IEC 60754-1			
al voltage U _N hission characteristics (category) hior in fire resistance htration of fumes n-free htration of fumes htration of fumes htration of fumes	150 V _{ms} CAT6 according to IEC 60332-3C in accordance with IEC 61034 According to IEC 60754-1			
hission characteristics (category) ior in fire resistance itration of fumes n-free ards and Regulations itration of fumes	CAT6 according to IEC 60332-3C in accordance with IEC 61034 According to IEC 60754-1			
ior in fire resistance ntration of fumes n-free ards and Regulations Itration of fumes	according to IEC 60332-3C in accordance with IEC 61034 According to IEC 60754-1			
resistance htration of fumes n-free ards and Regulations itration of fumes	according to IEC 60332-3C in accordance with IEC 61034 According to IEC 60754-1			
ntration of fumes n-free ards and Regulations itration of fumes	in accordance with IEC 61034 According to IEC 60754-1			
n-free ards and Regulations itration of fumes	According to IEC 60754-1			
ards and Regulations				
itration of fumes				
	in accordance with IEC 61034			
n-free	According to IEC 60754-1			
resistance	according to IEC 60332-3C			
nmental Product Compliance				
RoHS	Environmentally Friendly Use Period = 50			
	For details about hazardous substances go to tab "Downloads", Category "Manufacturer's declaration"			
ifications	20			
54.0	27250501			
e 4 1	27240409			
\$50	27259207			
s 5.1	27061801			
s 6.0	27259207			
s 7.0	27259207			
s 7.0 s 8.0	27259207 27060308			
\$ 7.0 \$ 8.0 \$ 9.0	27259207 27060308 27060308			
\$ 7.0 \$ 8.0 \$ 9.0	27259207 27060308 27060308			
s 7.0 s 8.0 s 9.0	27259207 27060308 27060308 EC001262			
s 7.0 s 8.0 s 9.0 .0 .0	27259207 27060308 27060308 EC001262 EC001262			
s 7.0 s 8.0 s 9.0 .0 .0 .0	27259207 27060308 27060308 EC001262 EC001262 EC001262			
s 7.0 s 8.0 s 9.0 .0 .0 .0 .0	27259207 27060308 27060308 EC001262 EC001262 EC001262 EC001262 EC001262			
s 7.0 s 8.0 s 9.0 .0 .0 .0 .0 .0 .0 .0 .0	27259207 27060308 27060308 EC001262 EC001262 EC001262 EC001262 EC002599			
s 7.0 s 8.0 s 9.0 .0 .0 .0 .0 .0 .0 .0 .0 SC	27259207 27060308 27060308 EC001262 EC001262 EC001262 EC001262 EC002599 26121609			
s 7.0 s 8.0 s 9.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	27259207 27060308 27060308 EC001262 EC001262 EC001262 EC001262 EC002599 26121609 26121609			
s 7.0 s 8.0 s 9.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	27259207 27060308 27060308 EC001262 EC001262 EC001262 EC001262 EC002599 26121609 26121609 26121609			
s 7.0 s 8.0 s 9.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	27259207 27060308 27060308 EC001262 EC001262 EC001262 EC002599 26121609 26121609 26121609 26121609			
\$ 6.0	27259207			

Patch cable - FL CAT6 PATCH 1,0 - 2891385

Approvals

Approvals

Approvals			1	
EAC			-	15
Ex Approvals			AV.	S
Approval details				5
EAC	EAC		R	EAC-Zulassung
Phoenix Contact 2017 © - all righ http://www.phoenixcontact.com	nts reserved	2 NIA		

Patch cable - FL CAT6 PATCH 3,0 - 2891686

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)

Patch cable, CAT6, pre-assembled, 3	9.0 m			
RoHS				
Key Commercial Data				
Packing unit	1 STK			
GTIN	4 046356 167567			
GTIN	4046356167567			
Weight per Piece (excluding packing)	130.200 g			
Custom tariff number	85444210			
Country of origin	Poland			
Technical data Ambient conditions				
Ambient temperature (operation)	-10 °C 60 °C			
External sheath				
Outer sheath, material	LSFROH			
External diameter	5.5 mm			
External diameter max.	6.2 mm			
Single wire				
Individual wires per module	8			
Single wire, material	Cu litz wire			
Single wire, cross section	0.14 mm ²			

Mechanical properties

Patch cable - FL CAT6 PATCH 3,0 - 2891686

Technical data

ETIM 4.0

ETIM 5.0

Mechanical properties

Smallest bending radius, fixed installation	30 mm
General	
Conductor length	3 m
Nominal voltage U_N	150 V _{rms}
Transmission characteristics (category)	CAT6
Behavior in fire	
Flame resistance	according to IEC 60332-3C
Concentration of fumes	in accordance with IEC 61034
Halogen-free	According to IEC 60754-1
Standards and Regulations	
Concentration of fumes	in accordance with IEC 61034
Halogen-free	According to IEC 60754-1
Flame resistance	according to IEC 60332-3C
Environmental Product Compliance	.()
China RoHS	Environmentally Friendly Use Period = 50
	For details about hazardous substances go to tab "Downloads", Category "Manufacturer's declaration"
Classifications	
eCl@ss	
eCl@ss 4.0	27250591
eCl@ss 4.1	27240409
eCl@ss 5.0	27259207
eCl@ss 5.1	27061801
eCl@ss 6.0	27259207
eCl@ss 7.0	27259207
eCl@ss 8.0	27060308
eCl@ss 9.0	27060308
ETIM	
ETIM 2.0	EC001262
ETIM 3.0	EC001262

EC001262

EC002599

Patch cable - FL CAT6 PATCH 3,0 - 2891686

Classifications

UNSPSC

UNSPSC 6.01	26121609
UNSPSC 7.0901	26121609
UNSPSC 11	26121609
UNSPSC 12.01	26121609
UNSPSC 13.2	26121604
Approvals	
Approvals	
Approvals	
EAC	
Ex Approvals	NP GY
Approval details	
	EAC-Zulassung
Phoenix Contact 2017 © - all rights reserved http://www.phoenixcontact.com	

08/23/2017 Page 3 / 3

ICR-3201, ICR-3201W

INDUSTRIAL INT LAN ROUTER & GATEWAY

- + LAN VPN Gateway for Industrial IoT applications
- + Powerful CPU with 1.3 GB storage to host customer SW applications
- + 2× Ethernet 10/100, 1x RS232, 1x RS485 and I/0
- + Optional Wi-Fi 802.11ac using MU-MIMO technology, Bluetooth v5.1 (class 1)
- + Robust metal cover with DIN and Wall mount options
- + Operational temperature range from -40 °C to +75 °C
- + Backup real time clock
- + Sleep mode & Power ignition

The ICR-3201 gateway is the perfect way to connect IP or serial devices to a LAN network via WAN interface. Industrial M2M and IoT applications include kiosks, industrial PCs, HMIs, traffic controllers, meters, UPS systems, and much more.

With upload speeds of up to 100 Mbit/s and download speeds of up to 100 Mbps, the ICR-3201 provides ample bandwidth high data demand applications such as CCTV or public Wi-Fi hotspots.

In addition to its two independent or switched Ethernet ports, serial ports RS232 and RS485, ICR-3201 has built-in digital I/O connectivity, backup real-time clock and sleep mode support. Optional built-in Wi-Fi and Bluetooth v5.1 (class 1) modules are available (ICR-3201W). WiFi with 802.11a,b,g,n,ac modes, and MO-MIMO support is appropriate for Wi-Fi applications.

The router supports VPN tunnel creation using various protocols to ensure safe communications. The router provides diagnostic functions which include automatic monitoring of the wireless and wired connections, automatic restart in case of connection losses, and a hardware watchdog that monitors the router status.

The ICR-3201 places intelligence at the network edge with an extremely powerful Cortex A8 CPU at 1GHz, 512 MB RAM and 4 GB EMMC FLASH memory in pSLC mode for a long-lifetime and critical industrial applications. 1.3 GB of memory space is allocated for customer SW applications and data. With open Linux platform and wide posibilities of programming customer SW applications in Python, C/C++ or browser-based flow editor Node-RED the ICR-3201 offers a real open development platform for Industrial IoT applications.

The Advantech existing app library (User modules) with apps already developed to enhance specific router functionality including industrial protocol conversions and support of IoT platforms such as MS Azure, Cumulocity, ThingWorx and others are supported on the router.

ICR-3201 is easy to install using WebAccess/DMP, a full featured configuration and monitoring tool for mass deployment. The router also supports additional traffic and health monitoring software R-SeeNet.

ORDERING INFORMATION - Antennas & Power Supplies Sold Separately

MODEL NO ORDER	CODES	REGION	2× Ethernet	RS232 RS485	I/O	WI-FI 802ac	2x Mimo	Bluetooth v5.1 (class1)
	ICR-3201	Global	\checkmark	\checkmark	\checkmark			
	ICR-3201W	Global	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

* Check availability of another models for various world regions at our corporate website or with your local distributor.

ICR-3201, ICR-3201W INDUSTRIAL IOT LAN ROUTER & GATEWAY

ACCESSORIES - INCLUDED

ACCESSORIES	-	SOLD	SEPARATELY
-------------	---	------	------------

DESCRIPTION				
Wall mount kit	WALL-ICR32			
DIN clip	BB-DIN-ICR32			
Serial / IO connector	BB-CON-ICR32-10			
PWR connector	BB-CON-WR2			
Quick Start Guide				

ORDER CODE	DESCRIPTION	
BB-AW-A2458G-FSRPK	Antenna Wi-Fi 2.4 & 5.8 GHz	
BB-RPS-v2-WR2-AUS	Wall mount Power Supply 12V/1A, AUS plug	
BB-RPS-v2-WR2-EU	Wall mount Power Supply 12V/1A, EU plug	
BB-RPS-v2-WR2-UK	Wall mount Power Supply 12V/1A, UK plug	
BB-RPS-v2-WR2-US	Wall mount Power Supply 12V/1A, US plug	

SPECIFICATIONS

NETWORKING	
Network and Routing	DHCP Server, NAT/PAT, VRRP, Dynamic DNS client, DNS proxy, VLAN, QoS, DMVPN, NTP Client/ Server, IGMP, BGP, OSPF, RIP, SMTP, SMTPS, SNMP v1/ v2c/ v3, Backup Routers, PPP, PPPoE, SSL, Port Forwarding, Host Port Routing, Ethernet Bridging, Load Balancing, IPv6 Dual Stack
Security	HTTPS, SSH, VPN tunnels, SFTP, DMZ, Firewall (IP Filtering, MAC address filtering, Inbound and outbound Port filtering)
VPN Tunnelling	Open VPN client and server and P2P, L2TP, PPTP, GRE, EasyVPN, IPSec with IKEv1 and IKEv2
Configuration	Web server, SSH, Four configuration switchable profiles, Automatic configuration update from server, Backup configuration, Restore configuration
Firmware Management	Automatic firmware updates from the server, locally via LAN or remotely via WAN (HTTP, HTTPS)
Diagnostic	One CLICK report - current configuration / factory identification / system log / kernel log / reboot log / routing table, Remote diagnostics possible via SSH
Status	Network Status, DHCP Status, IPSec Status, Statistics history for last 60days
Log	System Log, Reboot Log, Kernel Log
Controlling and Diagnostic	SMS, SNMP v1/v2c/v3, Statuses
Event Engine	StartUp script & Up/Down script (Bash, Python), Digital Input, Network Parameters, Data Usage, Timer, Power, Device Temperature. Report Types: SMS, email, SNMP Trap
Industrial Protocols	Modbus RTU/TCP gateway, IEC 60870-5-101 to 104 gateway, DF1, DNP3
Applications Development	Open Linux, Python, BASH, C/C++, Node-RED

PORTS, LED, ANTENNAS				
2× Ethernet	RJ45, 10/100 Mbps			
LED indicators	PWR, USR			
$2 \times$ MIMO WiFi antenna - *optional	R-SMA connector			
1× RS232, 1× RS485	(10-Way Terminal block)			
I/O	1x Digital Input (On Voltage: 2.7V to 36VDC) 1x Binary Output (10-Way Terminal block)			

. .

10

CPU, MEMORY	
CPU	Cortex-A8, 1000 MHz
RAM	512 MB
Flash memory	eMMC - 4096 MB (838 MB for Router Apps, 512 MB for customer data)

	MECHANICAL		
	Metal case, Metal DIN rail, Wall mount kit	Metal	
	Enclosure Dimensions	$31.2\times94\times129\text{ mm}$	
	Weight - ICR-3201	457 g	
	Weight - ICR-3201W	477 g	

ICR-3201, ICR-3201W INDUSTRIAL IOT LAN ROUTER & GATEWAY

SPECIFICATIONS · CONTINUED

AD\ANTECH

POWER, CONSUMPTION, ENVIRONMENTAL, IP COVER			
Power Supply	9–36VDC (2-Way Terminal block)		
Power Consumption with WiFi - Idle / Average / Peak / Sleep Mode	2.5 / 4 W / 11 W / 10 mW		
Temperature Range – Operating / Storage	-40 to +75 °C / -40 to +85 °C		
Humidity – Operating / Storage (noncondensing)	0 to 95 % / 0 to 95 %		
Cold Start	-40 °C		
Operating Altitude	2000 m / 70 kPa		
Enclosure Rating	IP30		
Grounding screw			

WI-FI *	
Antenna Connector	2× R-SMA – 50 Ohms (MU-MIMO)
Supported WiFi Band	2.4 GHz to 2.495, 5.15 GHz to 5.825 GHz
Standards	IEEE 802.11ac Wave 2, 802.11d, 802.11e, 802.11h, 802.11i
Security - Standards	WEP, WPA, WPA2
Security - Encryption	n WEP, TKIP, AES
Security - EAP Types	EAP-FAST, EAP-TLS, EAP-TTLS, PEAP-GTC, PEAP-MSCHAPv2, PEAP-TLS, LEAP
WiFi Standards	802.11a, 802.11b, 802.11g, 802.11n, 802.11ac Wave 2 WPA Enterprise, WPA2 Enterprise
Type of Device	Access point, Station
Bluetooth specifi	cations *
Version	Bluetooth 5.1, class 1

Support data rate 1 Mbps (GFSK), 2 Mbps (π/4-DQPSK), 3 Mbps (8-DPSK) Bluetooth®SIG Qualification

* Available only in "W" variant of the cellular router.

STANDARDS /	AND REGULATIONS
Radio	EN 301 893, EN 300 328
EMC	EN 301 489-1, EN 301 489-17, AS/NZS CISPR 32, FCC Part 15 Subpart B, ICES-003 Issue 6, EN 61000-6-2
Safety	UL/EN/AS/NZS 62368-1
Climatic	EN 60068-2-1, EN 60068-2-2, EN 60068-2-14, EN 60068-2-30, MIL-STD-810G, SAE J1455
Mechanical	EN 60068-2-27, EN 60068-2-31, EN 60529, MIL-STD-810G, SAE J1455
Transportation	E-Mark E8 homologation number: 10R – 05 10350
National	CE, FCC, IC, RCM compliant
Environmental	REACH, RoHS3 and WEEE compliant

INDUSTRIAL IOT LTE ROUTER & GATEWAY

MECHANICAL DRAWING

AD\ANTECH

Industrial Ethernet Switch - FL SWITCH SFN 8TX - 2891929

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)

Ethernet switch, 8 TP RJ45 ports, automatic detection of data transmission speed of 10/100 Mbps (RJ45), autocrossing function

Why buy this product

- Auto negotiation and autocrossing detection simplifies installation and setup
- Local diagnostic indicators with LEDs
- ☑ The switch also offers cable locking and port blocking
- ☑ QoS-prioritized (Quality of Service) messages
- RJ45 ports support a transmission speed of 10/100 Mbps; fiber optic ports support 100 Mbps

RoHS

Ethernet

Key Commercial Data

Packing unit	1 STK
GTIN	4 046356 100823
GTIN	4046356100823
Weight per Piece (excluding packing)	444.440 g
Custom tariff number	85176200
Country of origin	Taiwan

Technical data

Note

Utilization restriction	EMC: class A product, see manufacturer's declaration in the download area
Dimensions	

Width	50 mm
Height	120 mm
Depth	70 mm

Ambient conditions

Degree of protection	IP20
----------------------	------

Industrial Ethernet Switch - FL SWITCH SFN 8TX - 2891929

Technical data

Ambient conditions

Ambient temperature (operation)	0 °C 60 °C
Ambient temperature (storage/transport)	-20 °C 70 °C
Permissible humidity (operation)	5 % 95 % (non-condensing)
Permissible humidity (storage/transport)	5 % 95 % (non-condensing)
Air pressure (operation)	86 kPa 108 kPa (up to 1500 m above mean sea level)
Air pressure (storage/transport)	66 kPa 108 kPa (up to 3500 m above mean sea level)
Interfaces	
Interface 1	Ethernet (RJ45)
No. of ports	8 (RJ45 ports)
Connection method	RJ45
Note on connection method	Auto negotiation and autocrossing
Transmission physics	Ethernet in RJ45 twisted pair
Transmission speed	10/100 MBit/s
Function	
Basic functions	Unmanaged switch / auto negotiation, complies with IEEE 802.3, store and forward switching mode
Status and diagnostic indicators	LEDs: U _{S1} , link and activity per port
Network expansion parameters	
Cascading depth	Network, linear, and star structure: any
Maximum conductor length (twisted pair)	100 m
Supply voltage	\sim
Supply voltage	24 V DC
Residual ripple	3.6 V _{PP} (within the permitted voltage range)
Supply voltage range	9 V DC 32 V DC
Typical current consumption	typ. 140 mA (at U _s = 24 V DC)
General	
Mounting type	DIN rail
Туре АХ	Block design
Net weight	512 g
Housing material	Aluminum
Standards and Regulations	
Electromagnetic compatibility	Conformance with EMC Directive 2004/108/EC
Noise emission	EN 61000-6-4

Noise immunity	EN 61000-6-2:2005
Vibration (storage/transport)	5g, 150 Hz, in acc. with IEC 60068-2-6
Vibration (operation)	In acc. with IEC 60068-2-6: 5g, 150 Hz

Industrial Ethernet Switch - FL SWITCH SFN 8TX - 2891929

Classifications

eCl@ss

eCl@ss 4.0	27250501
eCl@ss 4.1	27250501
eCl@ss 5.0	27250501
eCl@ss 5.1	27250501
eCl@ss 6.0	19170106
eCl@ss 7.0	19170106
eCl@ss 8.0	19170106
eCl@ss 9.0	19170106
ETIM	
ETIM 2.0	EC000734
ETIM 3.0	EC000734
ETIM 4.0	EC000734
ETIM 5.0	EC000734
UNSPSC	
UNSPSC 6.01	43172015
UNSPSC 7.0901	43201404
UNSPSC 11	43172015
UNSPSC 12.01	43201410
UNSPSC 13.2	43201410
Approvals	
Approvals	
Approvals	
UL Listed / cUL Listed / EAC / EAC / KC / cULu	s Listed

Ex Approvals

UL Listed / cUL Listed / cULus Listed

Approval details

UL Listed thttp://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm FILE E 140324

cUL Listed Whttp://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm FILE E 140324

09/30/2016 Page 3 / 4

Industrial Ethernet Switch - FL SWITCH SFN 8TX - 2891929

Approvals

EAC EAC-Zulassung
EAC RU *-DE.A*30.B.01735
KC http://rra.go.kr/eng2/index.jsp KCC-REI-PCK- FL28919
cULus Listed
Phoenix Contact 2016 © - all rights reserved
http://www.phoenixcontact.com

Contact Block(s) and/or Power Modules

Mounting Ring (Included with Operator)

Overview, Continued

- 3-Across x 2-Deep Back-of-Panel (6 Circuits Max.)
- Rugged snap-fit design for plastic or metal latch
- Stackable contact blocks
- Rotating collar for easy one-hand latch removal
- · Color-coded contact block plungers for contact identification

Plastic Latch with Contact Block

Metal Latch with Contact Block

Specifications*

Front-of-Panel (Operators)

Mechanical Ratings							
Descripti	on	Plastic (Bulletin 800FP) Metal (Bulletin 800FM)					
Vibration (assembled to pan	el)	Tested at 102000 Hz, 1.52 mm displacement (peak-to-peak) max./10 G max. for 3 hr duration, no dar					
Shock		Tested at 1/2 cycle sine wave for 11 ms; no damage at 100 G					
Degree of protection*		IP65/66 (Type 3/3R/4/4X/12/13) IP65/66 (Type 3/3R/4/12/13)			IP65/66 (Type 3/3R/4/12/13)		
	10 000 000 Cycles		Momentary push buttons, momentary mushroom				
Mechanical durability per	1 000 000 Cycles	Multi-	function, selector switch, key	selector swit	ch, selector jog, SensEject™ key selector switch		
EN 60947-5-1 (Annex C)	500 000 Cycles		Non	-illuminated	push-pull E-stop‡		
	300 000 Cycles	Twist-to-release E-stop, illuminated push-pull E-stop‡, alternate action push buttons					
	100 000 Cycles	Potentiometer, toggle switch					
Operating forces (typical wit	h one contact block)		Flush	extended = Mushroo	5 N, E-stop = 36 N om = 9 N		
Operating torque (typical application with one	contact block)		Select	or switch = (0.25 N∙m (2.2 Ib∙in)		
Mounting torque	Plastic	1.7 N∙m (15 lb∙in)					
wounting torque	Metal		4.4 N∙m (40 lb•in)				
Environmental							
Temperature range (operatin	g)		-25+70 °C (-13+158 °F)§				
Temperature range (short ter	rm storage)	-40+85 °C (-40+185 °F)					
Humidity		50, 95% BH from 25, 60 °C (77, 140 °F)					

Assembly Overview

Legend Plate (Optional)

* Performance Data — see page Important-3 of the Industrial Controls catalog.

Momentary mushroom operators are IP65. Plastic keyed operators are IP66, Type 4/13; not Type 4X.

‡ Limit of four contact blocks max. for these devices.

§ Operating temperatures below 0 °C (32 °F) are based on the absence of freezing moisture and liquids, UL Recognized to 55 °C (131 °F) - Incandescent module max. 40 °C (104 °F).

Product Certifications

Certifications	UR/UL, CSA, CCC, CE
Standards Compliance — CE Marked	NEMA ICS-5; UL 508, EN ISO 13850, EN 60947-1, EN 60947-5-1, EN 60947-5-5
Terminal Identification	EN/IEC 60947-1
Shipping Approvals	ABS
RoHS	\checkmark

Bulletin 800F 22.5 mm Push Buttons Specifications

Back-of-Panel Components*

Electrical Ratings							
		A600, Q600					
Standard contact block ratings		AC 15 DC 10 +-	600V AC	17V 5 mA min			
			AU 15, DU 13 to IEC/EN 60947-5-1 and UL 508, 17V, 5 mA min.				
Low voltage contact block ratings®		C300, R150,	C300, R150, AC 15, DC 13 to EN 60947-5-1 and UL 508				
	Nominal Voltage	Range	Current Draw	Frequency			
	24120V AC/DC	20132V AC/DC	15 mA (AC), 12 mA (DC)	50/60 Hz, DC			
LED Modulo Batings	24V AC	1029V AC	31 mA	50/60 Hz			
LED Module Ratings	120V AC	102132V AC	6 mA	50/60 Hz			
	240V AC	204264V AC	6 mA	50/60 Hz			
Thermal current		10 A max. enc	losed (40 °C ambient) to UL508	, EN 60947-5-1			
Insulation voltage (U _i)		Screw	terminal = 690V, spring-clamp	= 300V			
Wire capacity (screw terminal)‡		Δ	#1812 AWG (0.752.5 mm ²)	G			
Wire capacity (spring-clamp termi	nal)	#18 14 AW/G (0 75 1 5 n	m^2) One per spring clamp two	spring clamps per terminal			
Performended tightening torque	an scrow torminals	#10147WG (0.701.01	0.7 0.0 Nem (6 . 8 Ibein)				
Dielootrie strength (minimum)			2500\/ for one minute				
Dielectric strength (minimum)		10.4 to 1	2500V for one minute	200.0.1			
External short circuit protection	Standard blocks	gN (Clas	s J to UL 248-8 or Class C to L	209-2-1 or JL 248-4)			
-	Low voltage contact blocks	6 A type	gL/gG cartridge fuse to EN 602	U 248-4)			
Electrical shock protection		gratolas	Finder-safe conforming to IP2X				
		Mechanical Patings	ringer suit conforming to IF2A				
Vibration (apparentiate second			52 mm displacement (neals to	poold may /10 C may 6 hr			
Chook			aino waya for 11 ma and r				
Contract durchility new EN 000.17.5	1 (Appay C)	Tested at 172 cycle		naye at 100 G Max.			
Contact durability per EN 60947-5							
	N.O.		Slow double make and break				
	•	Slow double make and break — nositive opening					
	N.C. & S.M.C.B.		positive opening				
	N.O.E.M.	Dou	ble break / double make, early r	nake			
Contact operation		Double break / double make, late break —					
	N.C.L.B.	positive opening					
		Θ					
		Double break / double make, early break —					
	NCEB	positive opening					
	H.O.L.D.	\ominus					
	\rightarrow		1 5	(0.060 in)			
Push button travel to change elect	trical state		0.5 mm	(0.000 III.)			
	Single size it cantest blast		2.5 mm	I (U. I III.)			
Operating forces (typical)			3.4 N				
	Dual circuit contact block		56.5 N				
		Illumination					
	Green		525 nm				
LED Dominant Wavelength	Yellow		o∠9 nm 590 nm				
bonnan marengin	Blue		470 nm				
	White						
	Green		780 mcd				
	Red		780 mcd				
LED Luminous Intensity	Yellow		600 mcd				
	White		360 mcd				
Incandescent maximum wattage			2.6 W				
		Materials					
Springs		Stain	less steel and zinc coated musi	c wire			
	Standard	J	Silver-nickal	o			
Electrical contacts							
		Gold-plated over silver					
Terminals	Screw	Brass					
	Spring-clamp		Silver-plated brass				
Deufermannen Deter ander de	and a stand of the standard of a	Angle setelses					

 \star Performance Data — see page Important-3 of the Industrial Controls catalog.

 \circledast Low voltage contacts are recommended for applications below 17V, 5 mA.

 \ddagger Wires less than #18 AWG (0.75 mm²) may not hold in terminal securely.

Material Listing

Component	For Use with	Material Used
Panel gasket	All operators	Nitrile, TPE
Diaphragm seal	Illuminated push button, non-illuminated push button	Automotive industry acceptable silicone
K-seal	Selector switch, key selector switch, push/twist-to-release E-stop, key E-stop, push/pull mushroom	Nitrile
Diaphragm retainer, return spring I	Illuminated push button, non-illuminated push button, momentary mushroom	Stainless steel
Return spring II	Reset, selector switch, key selector switch, alternate action, push/twist-to-release E-stop, key E-stop, push/pull mushroom	Zinc-coated music wire
Button cap/mushroom head	Non-illuminated push button, momentary mushroom, reset, push/twist-to-release E-stop, key E-stop, push/pull mushroom, multi-function	PBT/polycarbonate blend
2-color molded button cap	Non-illuminated push button	PBT/polycarbonate blend
Lens	Multi-function	Acetal
Lens, knob	Illuminated push button, illuminated momentary mushroom, illuminated selector switch-	Polyamide
Knob	Non-illuminated selector switch	Glass-filled polyamide
Plastic bezel/bushing I	Non-illuminated push button, illuminated push button, momentary mushroom, selector switch, key selector switch, push/twist-to-release E-stop, key E-stop, push/pull mushroom, multi-function, reset	Glass-filled polyamide
Plastic bezel/bushing II, jam nut	Pilot light, reset jam nut, reset pushers	Glass-filled PBT
Metal bezel/bushing	All metal operators	Zinc
Diffuser	Illuminated push button, pilot light	Polycarbonate
Legend frames	-	Glass-filled polyamide
Plastic mounting ring	All plastic operators	Glass-filled polyamide
Metal mounting ring	All metal operators	Chromated zinc
Plastic latch	-	Glass-filled polyamide
Metal latch	-	Chromated zinc + stainless steel
Plastic enclosure	-	PBT/polycarbonate blend
Metal enclosure	-	Aluminum
Terminal screws	LED module, incandescent module, contact blocks	Zinc-plated steel with chromate
Terminals	LED module, incandescent module, contact blocks	Brass with silver-nickel contacts
Spring clamps	LED module, incandescent module, contact blocks	Stainless steel
Lamp socket	Incandescent module	Brass
Housing	Incandescent module, LED module	Glass-filled polyamide
Low-voltage terminals	Contact blocks	Gold-plated silver-nickel contacts
Low-voltage spanner	Contact blocks	Gold-plated silver-nickel contacts
Spanner	Contact blocks	Brass with silver-nickel contacts
Boot	Toggle Switch, illuminated push button, non-illuminated push button, multi-function illuminated and non-illuminated	Automotive industry acceptable silicone

Momentary Push Button Operators, Illuminated - Flush, Extended, Guarded

		Ĭ	· .	Dide 🗸
	Operator Type	7	,	Clear
Code	Description	9)	No cap
LF	Flush			
LE	Extended			
LG	Guarded			
			. .	

* For custom laser-engraved operator, order operator with applicable lens cap color plus custom laser-engraved diffuser; see page 10-115.

* When using LED for illumination, a white LED is recommended.

‡ Only available with no color cap (9 from Table c).

Push-to-Test Push Button Device Schematic

Illuminated push buttons may be wired as a push-to-test device by using the following schematic and Cat. No. 800F-XD7 Diode module from page 10-111.

10

Allen-Bradley

Back of Panel Components, Continued

Other

			Pkg.		
	Description	Volts	Quantity	Cat. No.	
		No bulb		800F-D0C	
	Incandescent Module	6V AC/DC		800F-D1C	
L. 10-	For use with pilot lights, push buttons, and	12V AC/DC		800F-D2C	
	momentary mushroom operators.	24V AC/DC	10	800F-D3C	
	of) 10 to receive one package of 10 pieces. Latch not included.	48V AC/DC		800F-D4C	
Cat. No. 800F-D3C		120V AC/DC		800F-D5C	
	_	24120V AC/DC		* 800F-NUx	
N.		24V AC/DC		* 800F-N3x	
3	Integrated LED Module	120V AC		* 800F-N5x	
	For use with all illuminated devices. For best	240V AC		* 800F-N7x	
and the second se	amber operators, use yellow LED.	24V AC/DC spring-clamp	10	* 800F-Q3x	
	Note: Sold in multiples of 10. Order (quantity of) 10 to receive one package of 10 pieces. Latch not included.	120V AC spring-clamp	0	* 800F-Q5x	
		240V AC spring-clamp		* 800F-Q7x	
Cat. No. 800F-N3G		24V AC/DC ring lug		*‡ 800F-R3x	
	Description	Contact Material	Pkg. Quantity	Cat. No.	
		N.O.		800F-BX10	
		N.C.	10	800F-BX01	
	Base Mounted Contact Block Base mounted contact blocks can be used in	N.O. low voltage — QuadConnect™		800F-BX10V	
×	plastic or metal enclosures. Note: Sold only in multiples of 10. Order	N.C. low voltage — QuadConnect™		800F-BX01V	
0	(quantity of) 10 to receive one package of 10	N.O.E.M.		800F-BX10E	
		N.C.L.B.		800F-BX01L	
		N.O. spring-clamp		800F-BQ10	
Cat. No. 800F-BX01		N.C. spring-clamp		800F-BQ01	
	Description	Volte	Pkg.	Cat No	
	Description	24V AC/DC	Quantity	* 800F-BN3y	
	Base Mounted Integrated LED Module Base mounted modules can be used in plastic or metal enclosures. For best illumination results, LED should match lens color. Note: Sold in multiples of 10. Order (quantity of) 10 to receive one package of 10 pieces. Latch not included.	120V AC	10	* 800F-BN5x	
Cat. No. 800F-BN3R		240V AC		* 800F-BN7x	

* To complete the cat. no., replace the x with one of the following letters for the desired color: Y = Amber, R = Red, G = Green, B = Blue, W = White.
* Cannot be used in a composite catalog number.
‡ Replacement screws are available (Cat. No. 800F-ARS1)

Allen-Bradley

Back-of-Panel Components, Continued Other

	Descripti	on	Pkg. Quantity	Cat. No.	
	Metal Mounting Latch These are zinc-plated, metal die cast mour Note: Sold only in multiples of 10. Order (c package of 10 pieces.	10	800F-ALM		
Cat. No. 800F-ALM	Note: Sold only in multiples of 100. Order package of 100 pieces.	Note: Sold only in multiples of 100. Order (quantity of) 100 to receive one package of 100 pieces.			
	Plastic Mounting Latch Note: Sold only in multiples of 10. Order (or package of 10 pieces.	quantity of) 10 to receive one	10	800F-ALP	
Cat. No. 800F-ALP	Note: Sold only in multiples of 100. Order package of 100 pieces.	(quantity of) 100 to receive one	100	800F-ALP-BP	
	Description	Contact Type	Pkg. Quantity	Cat. No.	
		N.O.		800F-X10	
		N.C.		800F-X01	
	N.O. low voltage — QuadCONNECT™ N.C. low voltage — QuadCONNECT™ N.O.L.M. N.O.E.M. N.O.E.E.M. N.C.L.B. N.C.E.B.	N.O. low voltage — QuadCONNECT™		800F-X10V	
		N.C. low voltage — QuadCONNECT™		800F-X01V	
		N.O.L.M.		* 800F-X10N	
		N.O.E.M.		800F-X10E	
		N.O.E.E.M.		> 800F-X10M	
		N.C.L.B.]	800F-X01L	
		N.C.E.B.	1	* 800F-X01B	
		Self-Monitoring	-	800F-X01S	
		Dual circuit of 2 N.O.		* 800F-X20D	
	Note: Sold only in multiples of 10. Order	Dual circuit of 2 N.C.		800F-X02D	
till .	(quantity of) 10 to receive one package of	Dual circuit of 1 N.O1 N.C.	10	800F-X11D	
	10 pieces. Latch not included.	N.O. with stab terminals	-	800F-X10T	-
		N.C. with stab terminals		800F-X01T	-
		N.O. spring-clamp		800F-Q10	
		N.C. spring-clamp		800F-Q01	
		N.O. spring-clamp low-voltage — QuadConnect™		800F-Q10V	-
Q.		N.C. spring-clamp low-voltage — QuadConnect™		800F-Q01V	
		N.O.E.M. spring-clamp	1	800F-Q10E	
		N.C.L.B. spring clamp	1	800F-Q01L	
		N.C.E.B. spring-clamp	-	* 800F-Q01B	
		Ring lug N.O.		‡§ 800F-R10	
		Ring lug N.C.		‡§ 800F-R01	1
	Note: Sold only in multiples of 100. Order	N.O.		800F-X10-BP	
Cat. No. 800F-X10	(quantity of) 100 to receive one package	N.C.	100	800F-X01-BP	

* For use with Cat. No. 800FP-CB_ and Cat. No. 800FP-CC_ operators.

> For use with Cat. No. 800FP-CC_ operators.

* Only for use with 4-position selector switch, 4-position toggle switch, or 3-position push-pull operator.

Cannot stack.

‡ Cannot be used in a composite catalog number.

§ Replacement screws are available (Cat. No. 800F-ARS1)

Emergency Stop Operators*

Non-Illuminated Twist-to-Release, Push-Pull

* All emergency stop operators are EN ISO 13850 compliant with standard NC, NCLB, or self-monitoring contact blocks.

‡ LED module required for illumination, can not use incandescent module.

For key options, see page 10-88.

2-Position Push-Pull Operators, Non-Illuminated — Twist-to-Release (Trigger Action), Push-Pull (Trigger Action)*#

40 mm Trigger Action

Twist-to-Release Mushroom

40 mm Trigger Action

Push-Pull Mushroom

90 mm Half-Dome Cat. No. 800FP-MP94

B Allen-Bradley

Cat. No. 800FP-MT44		Cat.	No. 800FP-MP44		
		40 mm Mushroom (Trigger Action) Twist-to-Release		40 mm Mushroom (Tri	gger Action) Push-Pull
		Plastic Metal		Plastic	Metal
Color	Pkg. Quantity	Cat. No.	Cat. No.	Cat. No.	Cat. No.
Red	1	800FP-MT44	800FM-MT44	800FP-MP44	800FM-MP44

* All emergency stop operators are EN ISO 13850 compliant with standard NC, NCLB, or self-monitoring contact blocks.
 * E-Stop operators, latch, and contact block combinations have been third-party tested for B10d values. B10d values can be found in publication SAFETY-SR001_-EN-E.
 > Only available with red color cap,
 ‡ For EMO guards, see page 10-109.
 § Only available on red, 40 mm push, twist-to-release operator type (MT44).
 * Half-dome operators only available with black, red, and yellow color caps.
 + Limit of four contact blocks max. for these devices.

Allen-Bradley

Bulletin 800F 22.5 mm Push Buttons Accessories

Two-Color Molded Legend Caps - Non-Illuminated Push Buttons

$$\frac{800F - AF}{a} \frac{3}{b} \frac{01}{c}$$

а Button Cap Type

Description

Flush

Extended

Cat. No. 800F-15YSE112

MERGENC

STOP

L112 H112

	C	
	Legend Text*	
	English	
Code	Description	
01	START	Þ
02	STOP	
05	0	
06		
08	\rightarrow	
09	FORWARD*	
10	REVERSE*	
11	R	

22.5 mm mounting hole

b (cont'd) Text

Description NØDSTOPP, EMERGENCY STOP#

NØDSTOP EMERGENCY STOP, ARRÊT

D'URGENCE, PARADA DE EMERGENCIA #

NOODSTOP#

NOT HALT, ARRESTO EMERGENZA, ARRÊT D'URGENCE+

EMERGENCY STOP, ARRÊT D'URGENCE, NOT HALT * NEYÐARSTOPP, NEYÐARSTOPP#

NÖD-STOP, HÄTÄ-SEIS, NÖD-STOP₩

Available in flush only.

Code

AF

AE

White and yellow caps have black text. All other color caps have white text.

‡ Valid color cap text codes include:

	Text	
Color	Flush Caps	Extended Caps
White	FORWARD, REVERSE, START, I, \rightarrow , R	→, R
Black	FORWARD, REVERSE, \rightarrow , R	STOP, O, →, R
Green	FORWARD, REVERSE, START, I, \rightarrow	\rightarrow
Red	FORWARD, REVERSE, STOP, O, \rightarrow	STOP, O, →
Yellow	FORWARD, REVERSE, \rightarrow	\rightarrow
Blue	FORWARD, REVERSE, \rightarrow , R	→, R

Code

1

2

3

4

5

6

b

Color Cap

Description

White

Black

Green

Red

Yellow

Blue

-				
Emer	gency Stop Legend Plates§			
		800	F – <u>15YS</u>	
	a		a b b	
	Size/Color (Yellow)		Text	٦
Code	Description	Code	Description	1
15V	60 mm round	Blank	No text	
101	(30.5 mm mounting hole)	E112	EMERGENCY STOP	
15YS	60 mm round	F112	ARRET D'URGENCE#	7
		S112	PARADA DE EMERGENCIA	1
16Y	(22.5 mm mounting hole)>	G112	NOT HALT	1
		T112	ARRESTO EMERGENZA	1
		N112	NÖDSTOPP, EMERGENCY STOP#	1
				_

§ Sold only multiples of 10. Order (quantity of) 10 to receive one package of 10 pieces.
Not for use with base mounted contact blocks.
Stot available on 15YS version.
+ Text printed on the 15Y version only.
* Text printed on the 15YS & 16Y versions only.

har-port RJ45 coupler

Technical characteristics Advantages · Compact and well-shaped service interface Number of ports 2x RJ45 in a timeless attractive design Transmission performance Category 6 / class E_A acc. to ISO/IEC 11 801:2002, EN 50 173-1 · Easy mounting Transmission rate 10/100 Mbit/s and 1/10 Gbit/s • Transmission category 6, performance Fully shielded, 360° shielding contact Shielding class E_A, suitable for 1/10 Gigabit Ethernet Mounting Screwable in cover plates · Compact and robust design Degree of protection IP 20 · Practical accessories min. 750 Mating cycles -25 °C ... +70 °C Temperature range Housing material Polyamide Identi cation Part No. Drawing Dimensions in mm har-port RJ45 Cat. 6 1,5 to 5,0 panel thickness 3,24.2 RO,8 max coupler 09 45 452 1560 24,1-0.4 c/w protection cover: 527.9 09 45 502 0005 d22. har-port RJ45 Cat. 6 47 1,5 to 5,0 panel thicknes coupler with cable Overmoulded body black Cabie Tie _ Y Length: 0.2 m 09 45 452 1501 ALA 0.5 m 09 45 452 1504 1.0 m 09 45 452 1509 RJI cable 8 AWG 27/7, Cat.6 P MF Protection latch yellow 1.5 m 09 45 452 1510 2.0 m 09 45 452 1511 3.0 m 09 45 452 1513 09 45 452 1516 5.0 m Mating face RJ45 Jack according to EE 60603 har-port HIFF coupler housing (for all HIFF compatible modules) 09 45 452 0000

2. Voltage and Amperage Ratings

AFD: 500V - 920A Harmonic Filter : 480V - 636A

Confidential Information

3. One Line Diagram

Confidential Information

I	2		1		
					н
					G
					F
					E
					D
					C
JECT : XX	-YYYY Greater Ne	w Haver	1		В
IGNED/ IGNED/ IFIED BY: ICKED BY: ICKED BY: ROVED BY: NAME:XX-YYYY	X-YYYY DRAWING NO: S B. Yu P. Mailloux B. Yu P. Mailloux Greater New Haven APGN500 One-I	DATE DATE DATE DATE DATE	20304 Jan- Jan- Jan-	REV: Bid 20-2022 20-2022 20-2022 20-2022 PAGE: 01	A
I	2	l	1		

4. Minimum Short Circuit Ratings

The short circuit rating for each applicable equipment can be found in the associated datasheet. Please refer to Section 3. Electrical - c. Electrical Equipment Details -

1. Cut Sheets.

All AFDs and associated equipment provided are provided with a minimum short circuit ratings of 65KA rms symmetrical

Confidential Information

5. Calculations for the proposed Harmonic

Confidential Information

		Gre	ater New Haven			
Report submitted	to	Mol	hamed Saleh			
Deport but		Dill				
кероп ру:		Billy	/ Yu			
Project notes:	For Bidding					
Disclai The ini constit can inf within conver shown IEEE51 The fo distorti Within comm Load of to dete which Report Summa TDI	 mer: formation contained here is an estimation w ute a guarantee of filter performance, meas the plant and other neighboring plants. This ters, nonlinear loads and/or other equipme in this Report may contain inaccuracies an 9: lowing calculations in this report are based on limits of table 1 and TDD current distort the IEEE519 document Section 5 recomme on coupling and should <u>not be</u> applied to eit g and harmonic calculation alculations for harmonic currents are based rmine a value for fundamental drive curren hormally could be measured at the input of ry of IEEE519 -2014 compliance D PCC is at the transformer secondary 	vithout warranty of a surement or any sta system, including of s can include, but is nt. The calculated of d is for estimation p on the guidelines s on limits in Table 2 endations state : " ther individual piece d on motor HP or K t. Typical tabular ha a six pulse drive. A Origina FAIL	any kind and does andard of conformi ther equipment in a not limited to, fre- current and voltage purposes only. set forth in IEEE51 The recommende es of equipment of W and use standa armonic THID % a togain these are es	not ity. Numerous outside close proximity quency e harmonics 19- 2014 namely THV d limits in this clause r at locations within a and PF and effiency at the used to model har timates based on typi Added Filter 4.08 PASS	factors D voltage only apply at the poin users facility." the nominal line volta monic current cal lab data at various	t of age
Utility provided free Utility voltage Prir Utility voltage Prir Utility SSC amps Transformer Size Secondary Voltag Impedance % Calculated XMR f Calc Short circuit calc Short circuit calc Short circuit Generator Size K Sub transient rear Calculated Gener Calculated Calculated C	Aguency in Hertz hary KVA e Full load Amps amps ince VA tance typical 0.15 ator Full load Amps amps ince % ince ince % ince ince % ince	60 Hz 40000 volts 3000 amps 3600 KVA 480 voltage 5 % 4330 Amps 86603 Amps 0.0032 Ohms	• •			
Utility provided fre Utility voltage Prir Utility voltage Prir Utility SSC amps Transformer Size Secondary Voltag Impedance % Calculated XMR f Calc Short circuit calc Short circuit calc Short circuit Generator Size K Sub transient rear Calculated Gener Calculated Gener Calculat	Intervention of the second sec		60 Hz 40000 volts 3000 amps 3600 KVA 480 voltage 5 % 4330 Amps 86603 Amps 0.0032 Ohms	Original	Filter proposed	Qty Gen
Utility provided fre Utility voltage Prir Utility voltage Prir Utility SSC amps Transformer Size Secondary Voltag Impedance % Calculated XMR f Calc Short circuit calc ohms impeda Generator Size K Sub transient rea Calculated Gener Calculated Summa Ref A APGNE B	Intervention of the second sec	Quantity	60 Hz 40000 volts 3000 amps 3600 KVA 480 voltage 5 % 4330 Amps 86603 Amps 0.0032 Ohms	• • • • • • • • • • • •	Filter proposed MAPP0636D	Qty Gen 5
Utility provided fre Utility voltage Prir Utility voltage Prir Utility SSC amps Secondary Voltag Impedance % Calculated XMR f Calculated XMR f Calc Short circuit calc ohms impeda Calculated Gener Calculated Gen	Intervention of the second sec	Quantity 5	60 Hz 40000 volts 3000 amps 3600 KVA 480 voltage 5 % 4330 Amps 86603 Amps 0.0032 Ohms	• Original No link or reactor	Filter proposed MAPP0636D	Qty Gen 5
Utility provided fre Utility voltage Prir Utility voltage Prir Utility SSC amps Secondary Voltag Impedance % Calculated XMR f Calc Short circuit calc ohms impeda Generator Size K Sub transient rear Calculated Gener Calculated G	Intervention of the second sec	Quantity	60 Hz 40000 volts 3000 amps 3600 KVA 480 voltage 5 % 4330 Amps 86603 Amps 0.0032 Ohms	Original No link or reactor	Filter proposed MAPP0636D	Qty Gen 5

Total all linear loads that are typically running across the line = 0HP .8 pf

Linear load

0 % of total load with 0Amps

Results:

Calculation PCC data summary at secondary of transformer

		Original	
total transformer load in KW		1948	
total transformer load in KVA apparent power		2622	
total RMS load current in Amps		3157.72	
total RMS fundamental current in AMPS		2345.50	
total harmonic current in amps		2114.20	
% transformer loading		72.9	
Short circuit ratio Isc/II IEEE		36.9	
required IEEE 519 TDD % for Isc/II		8	
% TDD per IEEE needs to be less than 8%	FAIL	90.14	
THVD % at PCC transformer less than 8%	FAIL	15.08	
distortion power factor		0.74	
true power factor		0.743	
Active filter corrective amps to comply		2004	

Calculation PCC data summary primary of transformer high voltage

Utility load current Amps total RMS fundamental current in AMPS total harmonic current in amps Short circuit ratio Isc/II IEEE required IEEE 519 TDD % for Isc/II % TDD per IEEE needs to be less than 20%

Calculation Generator summary of selected loads

Specified Generator None KVA total generator KW load total generator KVA load total RMS load current in Amps total RMS fundamental current in AMPS total harmonic current in amps % Generator loading required IEEE 519 TDD % for Isc/II % TDD per IEEE needs to be less than 5% THVD % at generator output less than 8% distortion power factor true power factor

Spectrum results at Transformer PCC overall facility based on listed loading

Filtered 1947 1949 2347.45 2345.50 95.59 54.2 36.9 8 4.08

1.12

1.00 0.999 0

NO

NO

PASS

PASS

Spectrum results at generator for listed loading

A Drive type characteristics

Data summary each drive input

Load notes APGN500: Drive for each is 470 HP 100% loaded

Original	No link or reactor

Added	MAPP0636D

	Original	Filtered	
THID % present at filter input	90.14%	4.08%	
RMS harmonic Current amps	422.84	19.12	
AMPS RMS total Drive load current	631.54	469.49	
Effective THID added to total load	18.03	0.82	
Power factor contribution	0.74	1.00	

Original

Filtered

-_

_

B Drive type characteristics

Data summary each drive input

Load notes

Original

Added

THID % present at drives input RMS harmonic Current amps AMPS RMS total Drive load current Effective THID added to total load Power factor contribution

			I	3	Dr	iv	e	На	rr	no	ni	c a	ım	۱p	s f	ilt	te	re	d			
1.00																						
0.90																						
0.80																						
0.70																						
0.60																						
0.50	_																					
0.40																						
0.30																						
0.20																						
0.10																						
0.00																						
	3	5	7	9	11	13	15	17	19 2	21 2	3 25	27	29	31	33	35	37	39	41	43	45	47 49

6. Enclosure Proposed

All the electrical equipment are situated inside the blower enclosure.

Confidential Information

7. Documentation for UL Certification

APG-Neuros provides high-quality electrical and mechanical components that are UL listed.

Confidential Information

			Greater New Haven APGN500 BOM				
No.	General	TAG	ITEM DESCRIPTION	Manufacturer Part No.	Manufacturer	QT'Y	APGN PART No.
1	Main	MCCR	480 VAC - MAINS SIDE MOLDED CASE CIRCUIT BREAKER 800A, P-FRAME, 65kA, Micrologic 5.0 Trip Unit (LSI) WITH EXTENDED ROTARY HANDLE	PJF36080U33A-RE10	Schneider	1	ELE05015-0003.0
2	Walli	HE	Set of Lugs Harmonic Filter with 24VDC Contactor Option	YA600P5 N-738-MAPP0636D(C)	Schneider MTF	6	ELE00027-0221.0 TBD
4			Variable Frequency Drive, 920A Output, 380-500VAC, Alpha-numeric keypad, IP00, No Choke, 6-pulse, water-cooled with Al heatsink,	NXP09205A0N0NWGA1A2+BM37	Vacon	1	TBD
5		VFD	Uption board with 6DI, 1 DO, 2AI, 1AO, +10Vret, 2 +24VM, and High-Speed Module Dual-Port Ethernet Communication Card	OPTE9-V	Vacon	1	ELE00011-0038.0
6		SF MTR1	SINE WAVE FILTER, 840A, Liquid-Cooled, 320Hz High-Speed Permanent Magnet Synchronous Motor 350kW with Magnetic Bearings	S3L0840A00-0000 AB350	CTM Magnetics SKF	1	TBD TBD
8		MBC	Magnetic Bearing Controller with Wide Input Range board, Modbus RTU RS-485 serial interface, Integrated UPS function	150/8-16_M	SKF	1	TBD
10		W1	THD Board with LEW modules for measuring phase currents, voltage to motor	289 PCB	SKE	2	TBD
10		W2	LPJ Time-Delay Fuse Class J, 35A, 600VAC	LPJ35SP	Eaton (Bussman)	3	ELE00018-0068.0
12	Accessories Feeder	F01	Fuse Holder for Class J fuses, Fingersafe	СН60ЈЗІ	Eaton (Bussman)	1	ELE00018-0069.0
13		PDB	8 Load Connections #8-#14	FSPDB3C	Mersen	3	ELE00016-0037.0
14 15		SPD1 PMR1	LINE VOLTAGE SURGE PROTECTOR (LVSP) VPU AC II 3 R 480V/50kA PHASE MONITORING RELAY	2591260000 3UG4513-1BR20	Weidmuller Siemens	1	ELE00019-0037.0 ELE00028-0023.0
16 17	A/C Unit	FU4	Time-Delay Fuse Class CC, 15A, 600VAC	LP-CC-15	Eaton (Bussman) Eaton (Bussman)	3	ELE00018-0066.0
18	.,,	ACU	Air Conditioning Unit, 480V, 60Hz, NEMA 4X, 18000 BT/hr	K3NA6C18DP53LV	Kooltronic	1	ELE00000-0153.0
19 20	BOV/DV Actuators	FU2	Time-Delay Fuse Class CC, 5A, 600VAC Fuse Holder for Class CC fuses, Fingersafe, 30A	LP-CC-5 CHCC3DIU	Eaton (Bussman) Eaton (Bussman)	3	ELE00018-0070.0 ELE00018-0048.0
21	BOV/DV Actuators	FU3	Time-Delay Fuse Class CC, 5A, 600VAC	LP-CC-5	Eaton (Bussman)	3	ELE00018-0070.0
22		FU5	Time-Delay Fuse Class CC, 7A, 600VAC	FNQ-R-7	Eaton (Bussman)	2	ELE00018-0048.0 ELE00018-0047.0
24 25	Transformer	5110	Fuse Holder for Class CC fuses, Fingersafe, 30A, with Fuse Blown Indicator time-Delay Fuse Class CC, 20A, 600VAC	CHCC2DIU FNQ-R-20	Eaton (Bussman) Eaton (Bussman)	1	ELE00018-0049.0 ELE00018-0019.0
26		FU6	Fuse Holder for Class CC fuses with Fuse Blown Indicator	CHCC1DIU	Eaton (Bussman)	1	ELE00018-0055.0
27		MS2	Motor Starter TeSys Trip range 2.5-4A, 480Y	GV2P08	Schneider	1	ELE03017-0004.0 ELE00015-0072.0
29 30		M2 MTR2	Motor Contactor TeSys D, 24VDC Cooling Pump Motor (CRIS-4 A-CA-A-E-HQQE 3x230/460 60HZ)	LC1D09BD	Schneider GOULDS	1	ELE00028-0057.0 ELE00038-0007.0
31		TDVV	TB3 for Cooling Pump	1492-J3	Allen-Bradley	3	ELE00016-0003.0
32	Pump	IRXX	GROUND BLOCK	1492-JG3	Allen-Bradley	1	ELE00016-0004.0
33			SCREWLESS END ANCHOR	1492-ERL35	Allen-Bradley	LOT As Reg	ELE00016-0012.0
34			END BARRIER	1492-EBJ3	Allen-Bradley	LOT	ELE00016-0016.0
35		IN-FG	IN-FG BUSBAR	8T*40mm (10mm 6POLES, 6mm 2POLES)	NEUROS	As Req.	ELE03023-0003.0
36 37		EX-FG	EX-FG BUSBAR SG BUSBAR SET TO THE BLOWER ENCLOSURE BY THE INSULATION POLES	8T*40mm (10mm 3POLES, 6mm 2POLES)	NEUROS	1	ELE03023-0001.0
38		SG	SG BUSBAR Insulator	DCBH-10	NEUROS	2	ELE00023-0004.0
39		TB2 FG / RTB FG	TB for LVSP & CTRL. Universal Ground Bar System	UGB2/0-414-6	PANDUIT	2	ELE00023-0003.0
			6-port UGB (L= 4.92) 120 VAC - MAINS SIDE				
40 41		SPD2 MS3	SURGE PROTECTIVE DEVICE (SPD) VPU AC II 1 R 150V/50kA Motor Starter TeSvs Trip range 2.5-4A, 480Y	2591660000 GV2ME08	Weidmuller Schneider	1	ELE00019-0038.0 ELE00028-0063.0
42		M3	Motor Contactor TeSys D, 24VDC	LC1D09BD	Schneider	1	ELE00028-0057.0
43	PMSM Cooling Fans	FAN1	EC Centritugal Fan, Backward curved, single inlet w housing flange 120VAC, 50/60Hz, 3.2A	G1G170-AB05-20 (55600.01011)	EBM Papst	1	ELE00039-0021.0
44 45		MS4 M4	Motor Starter TeSys Trip range 2.5-4A, 480Y Motor Contactor TeSys D. 24VDC	GV2ME08	Schneider Schneider	1	ELE00028-0063.0 ELE00028-0057.0
46		FAN2	EC Centrifugal Fan, Backward curved, single inlet w housing flange	G1G170-AB05-20 (55600.01011)	EBM Papst	1	ELE00039-0021.0
47	Blow-Off Value	BOV	I220VAC, 50/60Hz, 3.2A Electric Actuator, On/Off Duty, 480VAC Power, 24VDC Control, with External Backup	TBD	Rotork	1	TBD
48			Butterfly Valve, Wafer Style, 8", Ductile Iron Body, CF8M Disc, SS 316 STEM and Viton Seat	BF1-125-080-8667	PRATT	1 10T	TBD
49			Feed-through terminal block for 10AWG wire	1492-J4	Allen-Bradley	As Req.	ELE00016-0019.0
50	120 VAC	LN	Terminal Block Center Jumper	1492-CJJ6-10	Allen-Bradley	LOI As Req.	ELE00000-0154.0
51	Terminals	L,IN	End Barrier	1492-ЕВЈЗ	Allen-Bradley	LOT As Reg	ELE00016-0016.0
52			SCREW END ANCHOR	1492-EAJ35	Allen-Bradley	LOT As Reg.	ELE00016-0001.0
	To a Malan	60d	120 VAC - PLC SIDE				51 500045 0005 0
54	i or Lights	CDI	2A, 1-Pole,Curve D, 277 VAC.		chiefebi duley		LLLUUU13-UUU3.U
55	For Receptacle	CB2	CB for Receptacie Bull. 1489-M Miniature CB, 5A, 1-Pole, Curve D,277 VAC.	1489-M1D050	Allen-Bradley	1	ELE00015-0036.0
56	For PWS2	CB3	CB for Receptacle Bull. 1489-M Miniature CB, E4.1 Pale Curre D 373 VAC	1489-M1D050	Allen-Bradley	1	ELE00015-0036.0
57	For PWS1	CB4	CB for Receptacle Bull 1489-M Miniature CB,	1489-M1D050	Allen-Bradley	1	ELE00015-0036.0
58	Panel Lights	111	SA, 1-Pole,Curve D,277 VAC.	8551-NX3	Allen-Bradley	1	ELE00000-0017.0
59	Panel Lights	LT2	Panel LED Light 90-250 VAC	855L-NX3	Allen-Bradley	1	ELE00000-0017.0
60 61	Panel Lights	LT3 EMC	Panel LED Light 90-250 VAC EMC Filter	855L-NX3 2856702	Allen-Bradley PHOENIX CONTACT	1	ELE00000-0017.0 ELE00019-0040.0
62		RECPT1	Receptacle Duplex Outlet, 120VAC	1492-REC15G	Allen-Bradley	1	ELE00000-0016.0
63		PWS1	TRIO-UPS-2G/1AC/24DC/10	2907161	PHOENIX CONTACT	1	TBD
64			UPS Power Storage Device 24VDC; 4Ah	1274117	PHOENIX CONTACT	1	ELE00022-0025.0
65		PWS2	Power Supply, 24VDC, 5A, 120VAC input Peduadage: Medua for Rewar Supplies for 10A load	1606-XLE120E	Allen-Bradley	1	ELE00020-0007.0

			Greater New Haven APGN500 BOM				
No.	General	TAG	ITEM DESCRIPTION	Manufacturer Part No.	Manufacturer	Q Τ'Υ	APGN PART No.
			24 VDC - CONTROLS AND INSTRUMENTS				
67	For DC Branch	CB5	CB for Receptade Bull. 1489-M Miniature CB, 5 a. 1-Pole Cirure D. 277 VAC	1489-M1D050	Allen-Bradley	1	ELE00015-0036.0
68	For PLC Power Supply	FU7	1/4x1-1/4" GLASS FUSE	0312002	LITTELFUSE	1	ELE00018-0008.0
69	For OIT	FUIR	2 AMP FAST ACTING 1/4x1-1/4" GLASS FUSE	0212002		1	ELE00018-0008-0
69	For OII	FU8	2 AMP FAST ACTING 1/av1-1/a" GLASS FILSE	0312002		1	ELE00018-0008.0
70	For Network Switch	FU9	1 AMP FAST ACTING	0312001	LITTELFUSE	1	ELE00018-0007.0
71	For NAT/Firewall	FU10	1/4x1-1/4" GLASS FUSE 1 AMP FAST ACTING	0312001	LITTELFUSE	1	ELE00018-0007.0
72	For DI's	FU11, FU12,	1/4x1-1/4" GLASS FUSE	0312001	LITTELFUSE	4	ELE00018-0007.0
73	For DO's	FU13, FU14	1/4x1-1/4" GLASS FUSE	0312002		2	FI F00018-0008 0
/3	101003	F015, F016	2 AMP FAST ACTING	0512002		2	LLL00018-0008.0
74	For Al's	FU17	1 AMP FAST ACTING	0312001	LITTELFUSE	1	ELE00018-0007.0
75	For HF & BOV	FU18	1/4x1-1/4" GLASS FUSE 1 AMP FAST ACTING	0312001	LITTELFUSE	1	ELE00018-0007.0
76	For HF & BOV	FU19	1/4x1-1/4" GLASS FUSE	0312002	LITTELFUSE	1	ELE00018-0008.0
77	For Fuses		24V DC FUSE BLOCK	1492-Н5	Allen-Bradley	13	ELE00018-0010.0
78	For Fuses	FUXX	FUSE BLOCK END BARRIER	1492-N37	Allen-Bradley	LOT As Reg.	ELE00018-0005.0
79			RELAY 24V DC COIL	700-HF32Z24-4	Allen-Bradley	1	ELE00028-0002.0
80 81	PLC On/Off	CR30	RELAY BASE CLIP	700-HN116 700-HN114	Allen-Bradley Allen-Bradley	1	ELE00028-0003.0 ELE00028-0004.0
82	Output Relays	CR2CR29	PLC RELAYS	700-HLT1Z24	Allen-Bradley	28	ELE00028-0001.0
83 84		Pd idPf	DISCHARGE PRESSURE SENSOR 0-1.5kg/cm2	PSCH01.5KCIG	SENSYS	1	ELE00024-0004.0 ELE00024-0005.0
85		tpPd	TOTAL PACKAGE PRESSURE DROP SENSOR 0-0.05Bar	PSCH0.05BCIG	SENSYS	1	ELE00024-0005.0
86		aP	ATMOSPHERIC PRESSURE SENSOR 120kPa	PSCH0120RCIJ	SENSYS	1	ELE00024-0017.0
87		Td	DISCHARGE TEMPERATURE RTD SENSOR	DS 4680 120L	OMEGA	1	ELE00024-0011.0
89		Anlg Sens	8761 PAIRED CABLE, 1 PR, 22AWG STRAND (7X30), POLYETHYLENE INSULAT, AUDIO/INSTRUMENT	8761 060500	BELDEN	LOT	ELE00021-0076.0
			RTD Extension Wire			As Req. LOT	
90		RTD-CBL	PFA with Shield Insulation	EXTT-3CUI-26S-SB	OMEGA	As Req.	ELE00021-0058.0
91		PLC	COMPACT LOGIX CPU UNIT	1769-L33ER	Allen-Bradley	1	ELE00032-0022.0
92			DIGITAL INPUT MODULE	1769-IQ32	Allen-Bradley	1	ELE00020-0009.0
94			DIGITAL OUTPUT MODULE	1769-OB32	Allen-Bradley	1	ELE00032-0009.0
95 96			ANALOG INPUT MODULE	1/69-IF8 1769-IR6	Allen-Bradley	1	ELE00032-0018.0 FLE00032-0002.0
97			ANALOG OUTPUT MODULE	1769-OF4CI	Allen-Bradley	1	ELE00032-0006.0
98 99		MBS	RIGHT-END CAP Ethernet/IP to Modbus RTI L Converter	1769-ECR MV169-MNFTC	Allen-Bradley Prosoft	1	ELE00032-0004.0 ELE00030-0067.0
100			PanelView Plus 7 Performance Terminals	2711P-T10C22D9P	Allen-Bradley	1	ELE00030-0044 0
101		OIT	- 10 inch Touch Interface	98748	Verbatim	1	ELE00030-0056.0
101			Comm. System Cable	FL CAT6 PATCH 5,0	Verbacini	-	22200030 0050.0
102		SCBL-1	Patch cable, CAT6, pre-assembled, 5.0 m Network Switch to VED-1	Order No. 2891783	PHOENIX CONTACT	1	ELE00021-0062.0
			Comm. System Cable	FL CAT6 PATCH 0.5			
103		SCBL-2	Patch cable CAT 6 pre-assembled 0.5 m long Network Switch to PLC	Order No. 2891288	PHOENIX CONTACT	1	ELE00021-0045.0
104		CCDL 2	Comm. System Cable	FL CAT6 PATCH 0,5		1	51 500031 0045 0
104		SUBL-3	Patch cable CAT 6 pre-assembled 0.5 m long PLC to Ehternet/IP- Modbus RTU Converter	Order No. 2891288	PHOENIX CONTACT	1	ELE00021-0045.0
105		CCDL 4	Comm. System Cable	FL CAT6 PATCH 1,0		1	51 500001 0044 0
105		3CBL-4	MBC toEhternet/IP- Modbus RTU Converter	Order No. 2891385	PHOENIX CONTACT	1	ELE00021-0044.0
100		CCDL F	Comm. System Cable	FL CAT6 PATCH 1,0		1	51 500001 0044 0
106		JCRF-2	Protection cases of pre-assembled 1.0 milling Network Switch to OIT	UTUEL NU. 2031303		1	CLC00021-0044.0
107		SCDL-6	Comm. System Cable	FL CAT6 PATCH 1,0		1	ELE00021-0044-0
107		эСВГ-р	Network Switch to Ehternet Maintance Port	UTUCI NU. 2091303		1	CLC00021-0044.0
109		SCD1-7	Comm. System Cable	FL CAT6 PATCH 0,5		1	ELE00021-004E-0
108		3CBF-1	Network Switch to NAT/FIREWALL	Order No. 2891288		1	LLUUU21-0045.0
109		NAT/Firewall	Router with Network Address Translation Feature		BnB ELECTRONICS	1	ELE00026-0052.0
110		NWS	Momentary, Illuminated, Flush Push Button Green.	800FP-LF3	Allen-Bradley	1	ELE00026-0026.0 ELE00029-0001.0
112		START-PB1	Integrated LED Module; Green, 24V AC/DC Ring Lug	800F-N3G	Allen-Bradley	1	ELE00029-0002.0
113		STOP-PB2	Momentary, Illuminated, Flush Push Button Red.	800F-P-LF4 800F-N3R	Allen-Bradley	1	ELE00029-0005.0
114		RECET_DD3	Momentary, Illuminated, Flush Push Button Yellow.	800FP-LF5	Allen-Bradley	1	ELE00029-0009.0
116			Integrated LED Module; White, 24V AC/DC Ring Lug	800F-N3W	Allen-Bradley	1	ELE00029-0020.0
11/		E-STOP-PB4	Emergency Stop Legend Plate		Allen-Bradley	1	ELEUUU29-0013.0
118			w/Text - EMERGENCY STOP	000F-15T5-E112	Allen-Bradley	1	ELEUUU29-0017.0
119		OFF/ON-SS1	2-Position Selector Switch Operator, Illuminated, Ked. Integrated LED Module; Red,	800FP-LSM24	Allen-Bradley	1	ELEUUU29-0018.0
120		· · · · · ·	24V AC/DC Ring Lug	1800F-N3K	Allen-Bradley	1	ELE00029-0006.0
		START-PB1; STOP-PB2:					
121		RESET-PB3;	Plastic Mounting Latch	800F-ALP	Allen-Bradley	5	ELE00029-0003.0
		E-STOP-PB4; OFF/ON-SS1					
		START-PB;					
122		STOP-PB; RESET_PP	Contact Block N O	8005-X10	Allen-Bradley	5	FI F00029-0004 0
122		E-STOP-PB;			such brauley		2220025-0004.0
122		OFF/ON-SS;		200E-V01	Allen Bradlov	1	ELE00030-001C-0
		E-310P-PB4		00 45 452 1560	Anten-biduley	1	ELE00029-0010.0
123			RJ45, CA16 Ethernet coupler	09 45 452 1500	HARTING	-	LLL00030-0013.0

DUST CAP, har-port PROTECTION

8. MCP Detailed Drawing

Confidential Information

I	2							
								н
								G
								F
IAMEPLA	ATES & STICKE	ERS	Jan-18-202	2	Ар	For proval	A-00	_
BACK P	ANEL DETAILS	82	Jan-18-202	2	Ap	For proval	A-00	
BACK P	ANEL DETAILS	6 1	Jan-18-202	8-2022 For Approval			A-00	E
PLC AN	IALOG OUTPU	т	Jan-18-202	2	Ар	For proval	A-00	
PLC ANALOG INPUT			Jan-18-202	2	Ар	For proval	A-00	_
PLC OUTPUT INPUT			Jan-18-202	2	Ар	For proval	A-00	D
PLC [DIGITAL INPUT		Jan-18-202	2	Ар	For proval	A-00	
PA	NEL POWER		Jan-18-202	2	Ар	For proval	A-00	_
NETW	ORK DIAGRAM	1	Jan-18-202	2	Ар	For proval	A-00	C
BILL	OF MATERIAL		Jan-18-2022			For proval	A-00	C
PANEL LAYOUT			Jan-18-2022 For Approval				A-00	_
FRONT PAGE			Jan-18-2022 For Approval			A-00		
SHEET TITLE			REV. DATE STAGE REV.				REV.	В
eures	PROJECT : XX-YYYY Greater New Haven BLOWER MASTER CONTROL PANEL							
, Blainville, J7C 5S4 -0799 9-2115	TITLE : FRO	E					-	
	PROJECT NO: XX DESIGNED/	RAWING NO: MCF		2203	01 REV: Bid			
E NOTED : IN IN/MM	MUDIFIED BY: CHECKED BY:	P. Maillo	bux		ATE	Jan-18	3-2022	А
	DRAWN BY:	B. Yu			ATE.	Jan-18	3-2022	
Information areon are ay not be	APPROVED BY:	P. Maillo	ux	D/	ATE	Jan-18	3-2022	
written Neuros Inc.	FILE NAME:XX-YYYY	Greater New H	Haven - MCP Rev Bid			PA	GE: 00	l
I	2		I		1			

	10	9	8	7	I	6	5	4	3	2	1	
				MODE								
	No	Тад	Item Description	Part Number	Manufacturer	Quantity	Comment	's				
	1	5	CompactLogix L24ER Controller	1769-L24ER-QB1B	Allen Bradley	1	16-PT 24VDC Sinking Input	t / Sourcing Output				
	2	PLC0419	Analog Input Module	1769-IF4	Allen Bradley	1	4-CH Current/Volta	age Input				
	3	1	Analog Output Module	1769-OF4	Allen Bradley	1	4-CH Current/Volta	age Output				
Number Output:	4		PanelView Plus 7 Standard Interface	2711P-T15C21D8S	Allen Bradley	1	15" Touch Screen Inter	rface, 24VDC				
No.001171 Userance/Level Subsci Provide Caluer 1<	5	- HMI0418	USB Drive 16GB	98748	Verbatim	1						
	6	NWS0417	Unmanaged Network Switch	2891933	Phoenix Contact	1	16 x RJ45 Po	orts				
	7	D0110400	Firewall with NAT	SR30010125	B&B Electronic	1	10-30VDC Power	r, 5 Ports				
	8	- ROU0420	WIFI Antenna	BB-AW-A2458G-FSRPK	B&B Electronic	1	2.4/5.8GHz, SMA-RF	^D Connector				
	9	SS0402	Surge Suppressor	2905348	Phoenix Contact	1	Type 2/Clas	is II	• /, /			
	10	EF0403	EMI Filter Surge Protection Device	2856702	Phoenix Contact	1	SFP 1-20/120A0	C (20A)				
	11	PL0406	LED Panel Light	EL900D	Hoffman	1	120VAC					
	12	FP0407	Grace-Port, 1 Ethernet Port & 1 Plug	P-R2-F3R0	Grace Eng.	1	120VAC/3	A				
	13	UPS0413	UPS with Integrated Power Supply	2907161	Phoenix Contact	1	24VDC Output	t, 10A				
10 CBU(1): C91413 Mandator Stand Branker, Hrom 1489 MLCxxx Alver Branker 2 See Durating for Fallings 10 10 240/C Locat Alver Branker 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241 140, 241	14	BAT0415	Energy Storage Device for UPS	1274117	Phoenix Contact	1	24VDC,4A	\h				
	15	CB0401, CB0413	Miniature Circuit Breaker, 1 Pole	1489-M1Cxxx	Allen Bradley	2	See Drawing for	Ratings				
17 PLOOX 24/20 C flast Terminal Block 14/21/15 Allen Blocky 24 18 PLOOX Files Block Editation 16/21/15	16		120VAC Fused Terminal Block	1492-H4	Allen Bradley	6						
Image: Note that the second matrix is and the se	17		24VC Fused Terminal Block	1492-H5	Allen Bradley	24						
10 14x-14/4 Class Fund 0312000 Lindhillis Lot Beige Differents of Kannons 21 CRUcols Four-Fail Risky 702-HHC8A14 Alker Buddly 1 100-Konset Reging 23 CRUcols Feering Book 702-HHC8A14 Alker Buddly 1 100-Konset Reging 23 CRUcols Feering Book 702-HHC8A14 Alker Buddly 24 CA digmant SPD 784/10. Col 23 CRUcols Food Book Alker Buddly 24 CA digmant SPD 784/10. Col 24 Food Book Alker Buddly 1 State 1 State 27 Food Book Alker Buddly 1 State 1 State 28 DNC Food Book Alker Buddly 1 State 1 State 29 Ground Terminal Book 1402-0.50 Alker Buddly Col Alker	18	FUxxxx	Fuse Block End Barrier	1492-N37	Allen Bradley	Lot	As needed	d				
20 Fuer Field State Dower 791470001 Wedmuler 1 I Bisme Field prig 21 CR0405 Roary Field With Cloal L4 Allen Briddly 1 TeX Catalidate Dower 1 22 CR0405 Roary Field With Cloal L4 Allen Briddly 1 TeX Catalidate Dower 1 <td< td=""><td>19</td><td></td><td>1/4x1-1/4" Glass Fuse</td><td>0312xxx</td><td>Littelfuse</td><td>Lot</td><td>See Drawing for</td><td>Ratings</td><td></td><td></td><td></td><td></td></td<>	19		1/4x1-1/4" Glass Fuse	0312xxx	Littelfuse	Lot	See Drawing for	Ratings				
21 CR0.405 Peoper Fail Relay 700-LHC0AL4 Allele Brading 1 TEXCORALS, SPDT, BOUND Coll 22 CR0.000 PLC. Interproeng Relay 700-LHC0AL4 Allele Brading 24 GA Canadra SPDT, BAVD Coll 28 DNC Black Parie AddP538 Hofman 4 48.3 36 29 DNC Black Parie AddP538 Hofman 1 48.3 36 29 DNC Black Parie AddP534 Hofman 1 19.2 12.1 12 29 DNC Black Parie AddP534 Hofman 1 19.2 12.1 12 29 DNC Black Parie AddP534 Hofman 1 19.2 12.1 12 29 DNC Black Parie AddP534.2 Mark 1 10.4 Advector An enotiod 31 MISC Brownig for Basing Date Basing Date Basing Date Basing Date Basing Non-Mark An enotiod 33 MISC Brownig for Basing Date Basing Date Basing Date Basing Date Basing Date Basing Date Basing Date Basing Date Basing Date Basing </td <td>20</td> <td></td> <td>Fuse Holder Drawer</td> <td>7914760001</td> <td>Weidmuller</td> <td>1</td> <td>1 Spare Fuse pe</td> <td>r Rating</td> <td></td> <td></td> <td></td> <td></td>	20		Fuse Holder Drawer	7914760001	Weidmuller	1	1 Spare Fuse pe	r Rating				
22 CR0sx Resky Base TOD-HV121 Allen Bradley 1 Ch Cgraduet SPD7/24/DC Col 24 MSX CR0sx CR0sx Add4000.2PD7 Hofman 1 48 x 36 x 12 25 ENC Bick-Pamel Add9200.2PJ7 Hofman 1 12 x 12 1 26 ENC Flood Stand Legis ArX1212 Hofman 1 12 x 12 1 28 Flood Stand Legis ArX1212 Hofman 1 12 x 12 1 <td>21</td> <td>CR0405</td> <td>Power Fail Relay</td> <td>700-HK36A1-4</td> <td>Allen Bradley</td> <td>1</td> <td>16A Contact, SPDT,1</td> <td>120VAC Coil</td> <td></td> <td></td> <td></td> <td></td>	21	CR0405	Power Fail Relay	700-HK36A1-4	Allen Bradley	1	16A Contact, SPDT,1	120VAC Coil				
22 CRUSXC, CROIX PLC PLC Allenge Set 1223 Allenge Set 1223 Allenge Set 1223 24 FNC Back Panel Add19205 1 colstand 1 colstand </td <td>22</td> <td>0110400</td> <td>Relay Base</td> <td>700-HN121</td> <td>Allen Bradley</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	22	0110400	Relay Base	700-HN121	Allen Bradley	1						
28 20 20 20 20 20 20 20 20 20 20 20 20 20	23	CR05xx, CR06xx	PLC Interposing Relay	700-HLT1Z24	Allen Bradley	24	6A Contact SPDT, 2	24VDC Coil				
20 ENC Black Parel A48788 Informan A85 x85 21 Flood Bland Logs AA5154LF188 Hoffman 12 x12 23 Flood Bland Terminal Block 1429-233 Atlen Bjandey Log See Drawing for Tags 33 Ground Terminal Block 1439-2633 Atlen Bjandey Log As needed 33 Ground Terminal Block 1439-2633 Atlen Bjandey Log As needed 33 Grounding Bas Br - Pendat 2x ts Needed 33 Grounding Bas Br - Pendat 2x ts Needed 34 Orouw Maler 1439-26435 2x ts Needed 33 Grounding Bas Br - Pendat 2x ts Needed 34 Orouw Maler - Pendat 2x ts Norois Needed 33 Crouw Maler - Pendat 2x ts Norois Needed 34 NEC State State State State State State State State State State <td>24</td> <td></td> <td>Wall Mount Enclosure</td> <td>A48H36DLP3PT</td> <td>Hoffman</td> <td>1</td> <td>48 x 36 x 1</td> <td>12</td> <td></td> <td></td> <td></td> <td></td>	24		Wall Mount Enclosure	A48H36DLP3PT	Hoffman	1	48 x 36 x 1	12				
20 Intervent Production Concorder Provider Starting 12 × 12 28 Feed-Through Terminal Block 1402-13.3 Allen Eginadige Lot See Draving for Tags 30 Terminal Block 1492-24.33 Allen Eginadige Lot See Draving for Tags 30 Terminal Block 1492-24.33 Allen Eginadige Lot See Draving for Tags 31 MiSC Streev End Archor 1492-E4.33 Allen Eginadige Lot See Draving for Tags 32 Terminal Block 1492-E4.33 Allen Eginadige Lot As needed 33 Group Maker 1492-E4.35 Allen Eginadige Lot As needed 34 Oround Bus Ber - Pandut Lot As needed 34 Oround Bus Ber - Pandut Lot As needed 34 Unit Start Starter Max YVYY Grater New Haven Elsewer Maxer 34 Unit Starter Maxer Starter Maxer Starter Maxer 35 Unit Starter Maxer Starter Maxer Starter Maxer 36 Unit Starter Starter Maxer Starter Maxer	25	FNC	Back Panel	A48P36	Hoffman		48 x 36					/
27 Felding Sheft Add/Shife Frain Tothrant 1 1 String 28 Ground Terminal Block 1492-US3 Allen Bradey Lot See Drawing for Tags 31 Misc Ground Terminal Block 1492-US3 Allen Bradey Lot See Drawing for Tags 33 Misc Ground Terminal Block 1492-US3 Allen Bradey Lot As needed 33 Misc Grounding Bas Bar - Pandul Lot As needed 34 Grounding Bas Bar - Pandul Lot As needed 34 Grounding Bas Bar - Pandul Lot As needed 36 Grounding Bas Bar - Pandul Lot As needed 36 Grounding Bas Bar - Pandul Lot As needed 36 Grounding Bas Bar - Pandul Lot As needed 37 Bart Mathematic - Pandul Lot As needed 38 Grounding Bar Bar - Pandul Lot As needed 38 Grounding Bar Bar <td>26</td> <td></td> <td>Flood Stand Legs</td> <td>AFK1212</td> <td>Hoffman</td> <td>1</td> <td>12 x 12</td> <td></td> <td></td> <td></td> <td></td> <td></td>	26		Flood Stand Legs	AFK1212	Hoffman	1	12 x 12					
28 Ground Terminal Block 1432-13. Allen Bjaddey Lot See Drawing for Tags 30 Ground Terminal Block End Barrier 1432-18.3. Allen Bjaddey Lot As needed 31 Ground Terminal Block End Barrier 1432-18.3. Allen Bjaddey Lot As needed 32 Ground Maker 1432-18.3. Allen Bjaddey Lot As needed 33 Ground Terminal Block End Barrier 1432-18.3. Allen Bjaddey Lot As needed 34 Ground Terminal Block End Barrier - Panduk 2 tx Non-Isolaised & tx Isolated 34 Ground Terminal Block End Barrier - Panduk 2 tx Non-Isolaised & tx Isolated 34 Ground Terminal Block End Barrier - Panduk 2 tx Non-Isolaised & tx Isolated 34 Ground Terminal Block End Barrier - Panduk 2 tx Non-Isolaised & tx Isolated 36 Ground Terminal Block End Barrier - Panduk 2 tx Non-Isolaised & tx Isolated 36 Ground Terminal Block End Barrier - Panduk 2 tx Non-Isolaised & tx Isolated 37 Ground Terminal Block End Barrier - Panduk 2 tx Isolatek </td <td>27</td> <td></td> <td>Folding Shelf</td> <td>AA61SHLF1818</td> <td>Hoffman</td> <td></td> <td>18 x18</td> <td>_</td> <td></td> <td></td> <td></td> <td></td>	27		Folding Shelf	AA61SHLF1818	Hoffman		18 x18	_				
20 30 31 32 33 34 Ground Terminal Block 1432-US3 48/en Bradley 1432-US3 48/en Bradley 40 Lot 40 See Drawing Fin Tags 40 31 32 33 34 MISC Screw End Anchon 1432-US3 48/en Bradley Grounding Bus Bar Lot 40 As needed 33 34 Grounding Bus Bar - Panduk 2 1x Non-kelatet 8 1x isolated 34 Grounding Bus Bar - Panduk 2 1x Non-kelatet 8 1x isolated 34 Grounding Bus Bar - Panduk 2 1x Non-kelatet 8 1x isolated 34 Grounding Bus Bar - Panduk 2 1x Non-kelatet 8 1x isolated 34 Grounding Bus Bar - Panduk 2 1x Non-kelatet 8 1x isolated 35 Grounding Bus Bar - Panduk 2 1x Non-kelatet 8 1x isolated 36 Grounding Bus Bar - Panduk Kot As needed 36 Grounding Bus Bar - Panduk Kot As needed 37 Boutet and Cover - Panduk - - 38 Grounding Bus Bar - - Panduk - <	28	-	Feed-Through Terminal Block	1492-J3	Allen Bradley	Lot	See Drawing fo	or Tags				
30 31 32 33 34 Misc Terminal Block End Barrier 1482-EB13 Allen Bradey Lot As needed 31 32 34 Group Maker 1482-ED13 Allen Bradey Lot As needed 33 34 Group Maker 1482-ED13 Allen Bradey Lot As needed 34 Group Maker 1492-ED13 Lot As needed 34 Group Maker 1000 As needed 34 Group Maker 1000 As needed 34 Group Maker 1000 As needed 35 Group Maker 1000 As needed 36 Group Maker 1000 As needed 36 Group Maker 1000 As needed 36 Group Maker 1000 As needed 37 Barney As needed Intereded 38 Group Maker Not Not Not 39 Group Maker Intereded Intereded 39 Intereded Intereded Intereded 39 Intereded Intereded Intereded 30	29	-	Ground Terminal Block	1492-JG3	Allen Bradley	Lot	See Drawing fo	or Tags				/
31 MISC Strew End Anohor 1492-EA/35 Align Bradley Loc As needed 33 Grounding Bus Bar - Panduit 2 1x Non-isolated & tri Isolated 34 Grey Wire Duct and Cover - Panduit 2 1x Non-isolated & tri Isolated 34 Grey Wire Duct and Cover - Panduit Loc As needed 34 Grey Wire Duct and Cover - Panduit Loc As needed 34 Grey Wire Duct and Cover - Panduit Loc As needed 36 Grey Wire Duct and Cover - Panduit Loc As needed 36 Grey Wire Duct and Cover - Panduit Loc As needed 37 Grey Wire Duct and Cover - Panduit Loc As needed 38 Grey Wire Duct and Cover - Panduit Loc As needed 39 Grey Wire Duct and Cover - Panduit Loc Cover Neether March 39 Grey Wire Duct and Cover - Panduit Loc Cover Neether March 30 <td>30</td> <td>4</td> <td>Terminal Block End Barrier</td> <td>1492-EBJ3</td> <td>Allen Bradley</td> <td>Lot</td> <td>As needed</td> <td>d</td> <td></td> <td></td> <td></td> <td></td>	30	4	Terminal Block End Barrier	1492-EBJ3	Allen Bradley	Lot	As needed	d				
S2 Group Maker 1492-04X5 Value Branduit X Non-tooliaided 3 Group Maker - Panduit 1x Non-tooliaided x x 34 Group Maker - Panduit Lot As needed x x 34 Group Maker - Panduit Lot As needed x	31	MISC	Screw End Anchor	1492-EAJ35	Allen Bradley	Lot	As needed	d				
33 Goulding Bus Bar Panduit 2 1x Non-solated & 1x Isolated 34 Grey Wre Duct and Cover - Panduit Lot As needed 34 Grey Wre Duct and Cover - Panduit Lot As needed	32	4	Group Maker	1492-GM35	Allen Bradley	Lot	As needed	d				
S4 City Wite Duck and Cover Panout Lot As needed Image: Second S	33	4	Grounding Bus Bar	-	Panduit		1x Non-Isolated & 1	1x Isolated				
	34		Grey Wire Duct and Cover	-	Panduit	Lot	As needed	d				
REVISIONS REVISIONS					8	V						
APON INC. TITLE : BLL OF MATERIAL 1270, Michaile-Barber, Blanville, JC 554, Tel: (450) 399-1795 TITLE : BLL OF MATERIAL 1270, Michaile-Barber, Blanville, JC 554, Tel: (450) 399-1795 TITLE : BLL OF MATERIAL UNLESS DTHERVISE NOTED - ALL DIMENSIONS ARE IN IN/M DATE Jan-18-2022 REV. DESCRIPTION DATE DRAWN CHECKED APPROVED Moderation of the Revise of									* A eu	PROJECT : XX-YYYY Gre BLOWER MAS	ater New Haven STER CONTROL PAN	NEL
Bid Released for Bidding Jan-18-2022 B.Yu P. Mailloux P. Mailloux P. Mailloux III Released for Bidding FILE NAME:XX-YYYY Greater New Haven - MCP Rev Bid PAGE: 02				REV.	DE	SCRIPTION	REVISIONS	DRAWN CHECKED	APGN INC. 1270, Michèle-Bohec, Blai Québec, CANAIDA, J7C. Tel: (450) 939-0799 Fax : (450) 939-2115 UNLESS DTHERVISE NDT ALL DIMENSIONS ARE IN IN PROJECTION OF This drawing is the proper APPROVED This drawing is the proper APPROVED	ITTLE : BILL OF MATEI PROJECT NO: XX-YYYY DRAW DESIGNED/ MODIFIED BY: B. Yu VMM CHECKED BY: DRAWN BY: B. Yu DRAWN BY: B. Yu Drawn BY: P. Mailloux	RIAL ING NO: MCP-220301 DATE Jan-18 DATE Jan-18 DATE Jan-18 DATE Jan-18 DATE Jan-18	REV: Bid 8-2022 8-2022 8-2022 8-2022
				Bid Relea	ased for Bidding		Jan-18-2022	B.Yu P. Mailloux	P. Mailloux P. Mailloux P. Mailloux	FILE NAME:XX-YYYY Greater New Have	n - MCP Rev Bid P/	PAGE: 02

S	
SUBNET MASK	GATEWAY
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1
255.255.255.0	192.168.24.1

eures	PROJECT : XX	/ Have ONTRO					
VC. ec, Blainville, A, J7C 5S4	TITLE : NETWORK DIAGRAM						
39-0799 939-2115	PROJECT NO: X	K-YYYY DRAWING NO: MO	CP-2203	P-220301 REV: Bid			
ISE NOTED :	DESIGNED/ MODIFIED BY:	B. Yu	DATE	Jan-18	-2022		
RE IN IN/MM	CHECKED BY:	P. Mailloux	DATE	Jan-18	-2022	А	
Droperty of	DRAWN BY:	B. Yu	DATE	Jan-18	-2022		
Information hereon are may not be	APPROVED BY:	P. Mailloux	DATE	Jan-18	-2022		
ole or in part ne written i—Neuros Inc.	FILE NAME:XX-YYY	Y Greater New Haven - MCP Rev Bi	PA	GE: 03			
	2		-	1		-	

2	I	1		
FIELD				
				н
	0	SYSTE	м	
	D F	RUNNIN	IG	_
	·-0 ·-0	SYSTE	M	
	0 0	FAULI		G
	0	SPARE OUTPU	T	-
	- <u>-</u>	SPARE		
	·-0 ·-0	OUTPU	Т	_
	0 0 ,	SYSTE	M	
	0 '	CONNIN	16	_
	0	SYSTE FAULT	M	F
	0	SPARE	-	
	0 0	OUTPU	т	_
	0 0	SPARE	-	
		OUTPU	1	
				E
	0 0	SPARE	- -	_
	0	UUIPU	1	
	·-0	SPARE OUTPU	T	D
	0	SPARE		
	0	OUTPU	т	
		SPARE	- -	_
	0 1	OUIFU	1	
	0	SPARE OUTPU	T	С
	·	SPARE		
		OUTPU	Т	
	0 0	SPARE	E T	
	0			
	·-0	SPARE OUTPU	T	_
	_			в
PROJECT . XX-YYY	Y Greater New	Haver	1	
eures BLOWE	R MASTER CO	NTRC	DL PANEL	–
,, c, Blainville, J7C 5S4				
99-2115 PROJECT NO: XX-YYY	Y DRAWING NO: MC	P-2203	01 REV: Bid	
E NOTED : MODIFIED BY: B. T	lailloux	DATE	Jan-18-2022	А
DRAWN BY: B.Y	u laillaux	DATE	Jan-18-2022	
APPROVED BY: P.N by mitten written Neuros Inc. FILE NAME:XX-YYYY Greater	New Haven - MCP Rev Bid	DATE	Jan-18-2022 PAGE: 06	
2		1		

2 1	
	н
	G
	F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E
	D
	с
PROJECT : XX-YYYY Greater New Haven BLOWER MASTER CONTROL PANEL	В
2. Bidinville, J/C 554 -0799 PROJECT NO: XX-YYYY DRAWING NO: MCP-220301 PROJECT NO: XX-YYYY DRAWING NO: MCP-220301 REV: Bid DESIGNED/ DESIGNED/ E INTED - IN IN/M B. Yu DATE Jan-18-2022 IN IN/M CHECKED BY: P. Mailloux DATE Jan-18-2022 DRAWN BY: B. Yu DATE Jan-18-2022 PROPROVED BY: P. Mailloux DATE Jan-18-2022 Promotion of the part of the part Neurost no. FILE NAME:XX-YYYY Greater New Haven - MCP Rev Bid PAGE: 10	

9. Motor Detailed Data

Confidential Information

Page 91

SKF Magnetic Mechatronics is pleased to present in this document the main technical characteristics of the SKF high speed AB350 motor for direct and variable-speed drive of centrifugal air blower and /or compressor, along with the main characteristics of the magnetic bearings.

	1.1 Motor Design	(ROTOR AND STATOR)									
Туре	HSPMSM (High Speed Permanent Magnet Synchronous Motor) 2 pole motor Surface mount rare earth permanent magnet type Typical rotor construction										
Motor torque	Service factor 1.0 Maximum mechanical torque at shaft end : The motor can deliver its rated torque from	ervice factor 1.0 aximum mechanical torque at shaft end : 180 Nm ne motor can deliver its rated torque from 4,000 rpm to 21,000 rpm									
	Motor power range	200 to 350k	W								
	Preselected operating points	Power and Speed	Mechanical torque at shaft end								
Motor power range	AB350	350 kW @ 18,500 rpm	180 N.m								
For 380V/50Hz	AB350-bis	250 kW @ 20,500 rpm	116 N.m								
market	AB350-ter	200 kW @ 21,000 rpm	91 N.m								
	Other different combinations of power levels inverter current or voltage limitation.	s and speed are possible depending on coo	ling conditions and possible								
Power and Torque versus speed	350kW Shaft Po 200kW Shaft Po 200kW Shaft To 250kW Shaft To 350 300 300 300 300 300 300 300 300 300	ower [kW] 	ver que [N.m] que 180 150 12 W 90 90 60 12								

	50 0		0
	0	1500000 [rpm]	20000
Speed range	Motor operating speed range : 4,000 r Across the 20 to 100% range of the sp In the very low speed range (0 to 20% synchronization scheme due to the se SKF.	pm to 21,000 rpm beed, the motor can deliver up to its ra), the torque capability is limited by the nsorless operation. For application wit	ted torque. e VFD control algorithm and th a high starting torque, please contact

CONFIDENTIAL

SPEC-005203 v1.xx

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

	The rotor med	chanica	l com	ponents	s and the	rotor as	sembly	without i	mpeller	is desig	ined to v	withstand	10% overs	peed
	with respect t	o 21 00)0 rpm											
Over speed capability	The system (v filters) withsta motor and ele	when c ands as ectrical	onside a min compo	ring the imum c onent.	e additior over spee	n of the i ed up to	mpeller +5% of t	on the rc the maxir	otor, the num op	electric erating	al comp speed v	onents so vithout ar	uch as moto ny damage t	or and to the
	Motor losses consis in air a vary w As an example	and mo sts in iro at 1 bar vith spe le, belo	otor eff on core a) eed and w is th	iciency e losses d torque	: s, copper e (or pow ency at c	r losses, ver) oper	magnet rating po power le	i losses, l bints evels for	Magneti the 350	c bearir kW/185	ng losse 500rpm i	s, windaç motor, plo	ge losses (ty otted for 2 s	/pically peeds:
						At 1	2500 rpm		15500 rm					
			1	100.0		ALIO	sourpin	A	1330010					
Motor losses				95.0									0	
				00.0									•	
				50,0										
			%]	85,0										
			80,0											
				75,0										
				70,0	1111	HIL	(*) E	xpected,	IEC marg	in not in	ncluded	Ξ.		
					0 50	100	150	200	250	300	350	400		
								[KVV]						
Motor rated volta	ge and current V	orsus	nower	/sneed	level			9						
		<u></u>			F			>						
			GRII		NAL VOLT	ГAGE (Vr	ms) : 460)						
AB Motor model				0.05				AB350					0.50	
Shaft Power (kW)		200	250	300	350	200	250	300	350	200	250	300	350	
Rated speed (krpm)		208 18.5	18.5	403	18.5	208	20	20	470 20	208	21	21	21	
Motor input voltage ph	n-ph (Vrmsph-ph)	286	299	313	328	306	318	331	346	320	331	344	358	
Motor input current (Arms) 445		445	555	665	775	412	514	615	717	393	490	586	683	
Max. Motor current TH	ID (THDi in %)	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	
Motor power factor		0.92	0.88	0.84	0.8	0.93	0.9	0.86	0.82	0.94	0.9	0.87	0.84	
Defluxing (yes/no)		No	No	No	No	No	No	No	No	No	No	No	No	
		•												
			CDI				$mc) \cdot 100$							

GRID NOMINAL VOLTAGE (Vrms) : 400										
AB Motor model						А	B350			

336 18,5	403	470	268	336	403	470	268	226	402	470
18,5	18 5						200	550	403	470
	10,5	18,5	20	20	20	20	21	21	21	21
299	313	328	306	318	331	346	320	331	344	358
555	665	775	412	514	615	717	393	490	586	683
5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%
0.88	0.84	0.8	0.93	0.9	0.86	0.82	0.94	0.9	0.87	0.84
No	No	No	No	No	No	No	No	No	No	No
	299 555 5% 0.88 No	299 313 555 665 5% 5% 0.88 0.84 No No	299 313 328 555 665 775 5% 5% 5% 0.88 0.84 0.8 No No No	299 313 328 306 555 665 775 412 5% 5% 5% 5% 0.88 0.84 0.8 0.93 No No No No	299 313 328 306 318 555 665 775 412 514 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 No No No No No	299 313 328 306 318 331 555 665 775 412 514 615 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 No No No No No No	299 313 328 306 318 331 346 555 665 775 412 514 615 717 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 0.82 No No No No No No No	299 313 328 306 318 331 346 320 555 665 775 412 514 615 717 393 5% 5% 5% 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 0.82 0.94 No No No No No No No No	299 313 328 306 318 331 346 320 331 555 665 775 412 514 615 717 393 490 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 0.82 0.94 0.9 No No No No No No No No No	299 313 328 306 318 331 346 320 331 344 555 665 775 412 514 615 717 393 490 586 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 0.88 0.84 0.8 0.93 0.9 0.86 0.82 0.94 0.9 0.87 No No No No No No No No No

Page 2 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

GRID NOMINAL VOLTAGE (Vrms) : 380												
AB Motor model		AB350										
Shaft Power (kW)	200	250	300	350	200	250	300	350	200	250	300	350
Shaft Power (HP)	268	336	403	470	268	336	403	470	268	336	403	470
Rated speed (krpm)	18,5	18,5	18,5	18,5	20	20	20	20	21	21	21	21
Motor input voltage ph-ph (Vrmsph-ph)	308	308	308	308	333	333	333	333	350	350	350	350
Motor input current (Arms)	286	299	313	322	306	318	331	325	320	331	338	332
Max. Motor current THD (THDi in %)	445	555	665	776	412	514	615	725	393	490	590	695
Max. Motor current THD (THDi in %)	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%
Motor power factor	0.92	0.88	0.84	0.82	0.93	0.9	0.86	0.87	0.94	0.9	0.88	0.89
Defluxing (yes/no)	No	No	No	Yes	No	No	No	Yes	No	No	Yes	Yes

Motor to be operated with a VFD equipped with a control strategy and algorithm that (in conjunction most of the time with the use of a sine filter), allow meeting the motor input current distortion as specified below :

- Current total harmonic distortion < 5%
- DC component ≤ 3% max
- Sum of harmonics below $11^{th} \leq 3\%$,
- Sum of harmonics 11^{th} and above $\leq 1\%$

All values are in percentage of the RMS fundamental (i.e. first harmonic) component of motor rated current, the motor rated current being defined for operation at rated speed, rated torque and at motor rated power factor

Note : By experience, such low level of motor current distortion is required to reliably stay within the maximum allowable temperature indicated below.

Motor	 IP 00 Non magnetic alloy (aluminum) housing : with lifting eyebolts Built-in water jacket Designed for installation in horizontal position.
Housing	(<i>Can be mounted vertically as well</i>)
Motor stator	Equipped with 3 RTD devices (PT100 temperature probes) embedded in the winding heads to allow winding temperature monitoring.
Motor	The motor is equipped with an integrated junction box, in order to connect the power cables (supplied by the customer).
power	Cross section of power cable to be defined by customer according to rating of motor phase current
connection	(see table in section § 1.5) and cable characteristics (cable amperage capacity).
and	Shielding of the power cables is required to comply with EMC regulations (the conductors of the 3 phases shall be inside the

Motor cable	same shield).
Maximum	 The motor part shall not be operated at higher continuous temperature than indicated hereafter: Rotor less than 140°C Motor stator less than 150°C
temperature	 Motor cooling consists in: Liquid cooling over the outer diameter of the motor stator lamination stack (water jacket) Gas cooling in the motor cavity along rotor airgap and over stator winding heads

CONFIDENTIAL

SPEC-005203 v1.xx

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

	Forced cooling air (in rotor airgap and stator winding heads):
	• Flow: 380 Nm³/h minimum
	Pressure drop : 3.5 kPa
	Liquid cooling in water jacket :
Cooling details	• Water (or Water – Glycol mix (~20%))
	 Flow : 18 – 20 l/min (temperature rise less than 5°C) Max pressure : 4 barg
	Interfaces for air cooling please refer to interface drawing. Interfaces for water cooling inlet/outlet connections: please refer to interface drawing.
	The complete (air & water) cooling system is in the Customer scope of supply, based on the SKF cooling requirement and specification to be provided during the course of the project.
	A solution with EBM Papst air cooling fans has been identified and qualified by SKF (Part number of EBM Papst cooling fan available upon request).
Air quality	 Filtered (98% of filtration of 2 µm particles) Dry
Motor	
Cavity Pressure	Nominal Atmospheric Pressure (1 bar abs)
Motor weight	Approx. 350 kg
	Motor back-EMF constant Vrms ph-ph/Hz 0,9 Na load Back EMF Valtage Vrms ph ph at rated around (21/mm) 215
Motor	Motor synchronous inductance Ls=Lg=Lg (uH) 75
electrical	Motor phase resistance (mOhm)
data	Motor phase connection (Star or delta) Star
	Motor shaft spin inertia (kg.m ²) 0.09

	1.2 IMPELLER AND SEAL (CUSTOMER SUPPLIED)							
	A sufficient separation margin (25% minimum) must be maintained between the shaft 1 st bending frequency							
ROTORDYNAMIC	and the rotating frequency to guarantee sub-critical operation in all its operation range and up to the maximum operation speed							
Characteristics	The design of the impeller, seal and impeller attachment (which have direct impact on the rotor dynamic) must be jointly optimized between customer and SKF to achieve sub-critical operation.							
Impeller size, Mass, S	A rotor dynamic modeling and calculation done by SKF is required with impeller and seal characteristics (weight, spin and transverse inertia, location of center of gravity, materials) to be communicated to SKF prior							

and transverse inertia,	to the project for approval.								
center of mass, material	The design and definition of the impeller and seal is under the customer responsibility.								
	As a guide line, for a single stage configuration with a single impeller, the typical maximum impeller can be up to 9 kg								
	The shaft end diameter on impeller side is maximized to improve stiffness and allow a wide range of impellers.								
	Impeller is axially held in place thanks to a tension bolt. Impeller is centered in shaft spacer thanks to pilot								
Impollor attachmont and shaft	outer diameter (STD Diameter 44 h6; extendable with added spacer (See example in Appendix 1).								
end outer diameter	Transmission of torque to the spacer by a key and from the spacer to the impeller by friction.								
	Please refer to the appendix 1: Mechanical Interfaces.								

Page 4 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Tension bolt (Customer Supplied)	Impeller is pressed and kept into contact with SKF shaft spacer by a tension bolt, installed with a hydraulic tensioner tool.	
	Please refer to the shaft end figure in Appendix 1 : Mechanical Interfaces	
Impeller clearance	Shall be compatible with the clearance of the auxiliary bearings as defined in section 1.3	
Axial and radial load	Axial and radial load Balanced equally in both directions and to be minimized. <u>Characteristics to be communicated to SKF prior</u> Axial and radial load <u>the project for approval</u> . General guideline: steady state loads should not exceed 50% of the bearing description capacity as outlined in section 1.3	
Seals (Customer Supplied)	To be defined by the Customer including axial load balancing and leakage venting. Hot air leakage into the motor must be minimized. Seal clearance shall be compatible with the clearance of the auxiliary bearings as defined in section 1.3	

	Rotor and impeller to be balanced independently to G2.5 level (as per ISO 1940 definition).
MECHANICAL BALANCING OF	Final balancing of the rotor with its impeller and seals is not required.
ROTATING PARTS	

1.3 ACTIVE MAGNETIC BEARINGS (AMB)

Radial bearing	Bearing coil rated for 150V and 4 Amp Temperature class of Isolation material : class F
Radial load capacity	900 N per axis
Displacement and monitoring sensor	SKF-S2M inductive type sensor with built-in harmonics rejection For a G2.5 quality level of balancing, rotor vibration (orbit) during steady state operation is typically less than 20 μm peak-peak in radial direction and less than 10 μm peak-peak in axial direction.

Axial bearing	Bearing coil rated for 150V and 16 Amp Temperature class of Isolation material : class F
Туре	The axial bearing is designed for optimum dynamic response in an effort to cope with operation close to the surge line.
Axial peak load capacity	2,700 N for side 1 = impeller side axial bearing (at 0.5mm nominal airgap) 3,200 for side 2 = axial bearing on impeller opposite side (*) Axial bearings of AB350 are slightly different between side and side 2, which explains the difference in load capacity.
	The axial position sensor is located close to the impeller so to better control its axial position (minimum impact on impeller clearance)

Displacement and monitoring sensor	Rotor side 1 (at impeller side) acts as positioning end during motor rotation and rotor elongation at non- impeller side due to heat and float does not affect rotor end at impeller side.
Ū	SKF inductive type position sensor, rotor elongation sensor, Temperature sensor integrated in each thrust bearing side (KTY 84) used for internal monitoring

CONFIDENTIAL

SPEC-005203 v1.xx

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Auxiliary bearings	Integrated in the magnetic bearing cartridge with the axial bearing acting as the auxiliary bearing carrier.	
	Angular contact ball bearings, soft mounted and axially preloaded with damping devices.	
Туре	Dry lubrication.	
	Minimum maintenance	
Clearances	± 0.15 mm radial + floating ring tolerance 0.07mm → Total diametrical clearance = $2x(0.15+0.07)=0.44$ mm	
	\pm 0.20 mm axial \rightarrow 0.4 mm total axial float	
	The auxiliary bearings are at standstill and not spinning during normal operation. They are only (and rarely) used in case of gross overload of the magnetic bearing and in case of major electronic failure of the bearing controller.	
	Note : During a black-out (loss of AC mains voltage) event, the UPS function built-in the controller maintains the levitation active during the deceleration of the rotating motor and consequently the rotor only safely drops on the auxiliary bearing below a low speed threshold with no induced wear.	
	The auxiliary bearing are designed to withstand :	
	 Several hundredth of high speed contact of short duration (less than 0.5sec) between the rotating shaft and aux. bearing 	
	 Several dozens of high speed contact of longer duration (0.5 to 2 sec) between the rotating shaft and aux. bearing 	
	Five (5) to ten (10) 'full speed complete coast down' landings	
	Assessment of the health of the Auxiliary bearings is facilitated with 2 features built-in the monitoring software of the bearing controller :	
	 Counters of high speed 'Rotor Landing' (with a soft-landing counter and a hard-landing one) 	

1 c	able for the front end bearing / 1 cable for the rear end bearing
Mu	Iti conductors and shielded conductor pairs with overall shield
Bearing cables	ngth : typical 3m (25m maximum)
Th	e cables are in the customer scope of supply.
On	specific request from the Customer, the cables can be supplied by SKF as an option.

Page 6 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

1.4 MAGNETIC BEARING CONTROLLER (MBC)		
MBC	Model 150/8-16_M	
<image/>	 AMB control system includes: Conformal coated boards 10 channel Amplifier Power Board rated 150V and 4 or 16 Amp per channel Digital Control and interface board with microprocessor based supervision Built-in continuous monitoring of: Rotor radial displacement and unbalance Rotor axial displacement and thermal elongation Bearing current & temperature Rotor speed DC supply from VFD DC bus Integrated UPS function Board (*) : WIR 1500W DC/DC converter (connected to VFD DC bus) Built-in heat sink and fans for forced air cooling Integrated in a compact enclosure to be wall mounted inside Motor Drive cabinet by the customer. Conformal coated PC Boards Size : Height : 450mm x Width :353mm x Depth : 316mm Weight : 25 kg	
Customer interface	The interface PC board is equipped with: 3 digital outputs with outputs relay for hardwired safety signal Shut Down Request, Ready to Rotate (usually hardwired to VFD) MBC Alive 3 digital inputs (option) Levitation Alarm rest Rotation Serial link for digital interface with user PLC (Modbus RTU-RS485) Test box connection capability available for tuning/testing phase RJ45 interface for MBScope (**) connection Serial link Modbus communication : Modbus register mapping and definition available upon request	
Integrated UPS function (*)	In the event of system power loss, the voltage generated by the PM Motor during coast down will maintain DC bus voltage to energize the magnetic bearings until motor has reached a low speed (typically below 5000 rpm) condition.	
	Troubleshooting/Monitoring software for PC computer included (MBScope).	

CONFIDENTIAL

SPEC-005203 v1.xx

1.5 VARIABLE FREQUENCY DRIVE (VFD)

level of field weakening (defluxing) operation in some instances, leading to an increase of the VFD output current. In some cases (for example grid voltage dropping as low as -10%), it might occur that VFD current limit is reached and that VFD output power and consequently

motor shaft power is limited to less than its rated power.

Page 8 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

THD board and current transducers	 THD board ➢ Mounted on a Din rail with aWeidmüller RS100 support ➢ Size of TDB board : 155 x 104 mm 	
	 The THD board (supplied by SKF) : With the use of 2 LEM current transducers (placed on motor voltages and 2 motor currents. From these input signals, the board is : generating an isolated TTL level 'one pulse per revolution the bearing controller monitoring the motor current waveform for current disting a predefined threshold. When the current THD level exceeds the threshold (fully because of sine filter failure or VFD malfunction) 	phase U & V), is sensing the 3 motor terminal ution' speed signal for 'tachymeter feedback' to stortion (ITHD) and comparing this THD level to for instance increase in motor current harmonic) and generates a level of overheating in the
	rotor that risks damaging the rotor, a fault is triggered be hardwired to the VFD or PLC to command a syste	and a fault relay contact is opened (which can m shut-down).

	1.6 Environment
	Indoor operation and safe area for both mechanical parts and electrical parts
External ambient temperature	 Operation : 0°C to 40°C Storage : -25°C to 55°C Transport : -25°C to +55°C Atmospheric pressure
Humidity	30% to 70% RH - no condensation allowed
Elevation	Up to 1000 m – Derating applicable above 1000 m

A A	
1.7 DOCUMENTATION	
	Motor mechanical interface drawing
	Interconnection and servitude diagram
DOCUMENTATION INCLUDED	One user manual in English (CD-Rom)
	Spare part list available upon request

Page 9 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

July 18, 2017

SKF

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

1.8 CERTIFICATION	
CERTIFICATION	 The certification of the complete machine : Requirements as per applicable standards to be defined by the Customer to be performed by the Customer (optional SKF support and assistance possible upon request) The motor is designed to comply with CE machinery directive.
	 The MBC is compliant with : CE low voltage and EMC directives UL 508 and CSA C22-2 N°14-13

1.9 TESTING

SKF Factory acceptance test of prototype :

SKF Factory acceptance	test of prototype :
Full Speed, Low Load (with	Test of motor winding isolation resistance to ground
no impeller or dummy	Test of motor winding dielectric strength to ground
impeller)	Test of motor back-emf
Becomence verification with	Measures resonant frequency response of magnetically levitated rotor. Testing performed when rotor is
	static and again when under rotation.
auminy impener	Confirms rotor dynamics, control loop stability.
Bacananaa varification	Measures resonant frequency response of magnetically levitated rotor. Testing performed when rotor is
with real impeller	static condition only no rotation)
	Confirms rotor dynamics, control loop stability.
High Speed drep	Confirms backup bearing function when magnetic bearings are disabled. One drop at full speed, no external
nign Speed drop	thrust load applied. Maximum duration : 5 seconds

Test of prototype at OEM or compressor manufacturer facilities :

	Will be conducted with the real impeller and real compressor load at customer facility.
Full speed, full load	Rated load test and temperature rise measurement

Serial production unit : SKF Factory acceptance tests

Full Speed, Low Load test with no impeller or dummy impeller	Test of motor winding isolation resistance to ground Test of motor winding dielectric strength to ground
	Test of motor back-emf Confirms resonance, rotor resonance and control loop stability.

Page 10 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

July 18, 2017

Ε.

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Appendix 1 : Rotor mechanical Interfaces

Page 11 of 16

CONFIDENTIAL

SPEC-005203 v1.xx

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Appendix 2 : Motor interface drawing

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Appendix 3 : 150/4-16 Bearing controller interface

TING CONNECTOR on USER alde (CONNECTEUR gold CLIENT)
WAGO 231-302/025-000 (2 alms)
WAGO 231-303/026-090 (8 clns)
HARTING HAN 42 DD 10A
+ HARTING HAN 42 DD 10A
WAQO 2091-1106/002-000
WAGO 2091-1106/002-000
WAGO 2091-1104/002-000
CONNECTION BORNIER
g to UL/CSA : AWG 24 - 10 Mostlen UL/CSA : AWG 24 - 10)
1. A. S.
MBC 150/8-16)
3
+40°C
condensing" condensation")
+55°C
)0m
(m000
N
750V DC max.
AC max : 50 - 60 Hz,
or references (user side)
LTERATION
NIZED Directive
Approuve : PLE
4 Date: 07/07/14
SERVITUDES
-16
UTILITIES
13 M3 D PAGE:

SKF

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

Appendix 4 : Sine filter and VFD data

	460		<u></u>									
GRID NOMINAL VOLTAGE (Vrms)	460											
AB Motor model			1	1		AB	350			1		
Shaft Power (kW)	200	250	300	350	200	250	300	350	200	250	300	350
Shaft Power (HP)	268	336	403	470	268	336	403	470	268	336	403	470
Rated speed (krpm)	18,5	18,5	18,5	18,5	20	20	20	20	21	21	21	21
Rated torque (Nm)	103,2	129,0	154,9	180,7	95,5	119,4	143,2	167,1	90,9	113,7	136,4	159,2
Number of pair of pole	1	1	1	1	1	1	1	1	1	1	1	1
Rated frequency (Hz)	308	308	308	308	333	333	333	333	350	350	350	350
Motor input voltage ph-ph (Vrmsph-ph)	286	299	313	328	306	318	331	346	320	331	344	358
Motor input current (Arms)	445	555	665	775	412	514	615	717	393	490	586	683
Recommended Sine filter data					1							
Filter 'L' component (μH)		3	0			3	0			3	0	
Filter 'C' component (μF) - Delta connection	250	250	300	300	200	200	250	250	150	200	250	250
Capacitor current at rated frequency (Arms)	139	144	145	190	128	133	173	173	106	145	190	197
Capacitor current with 10% margin (Arms)	153	158	160	209	141	146	190	190	117	160	209	217
Capacitor max voltage (Vrms)		33	35			35	54			41	10	
Filter resonance 1 (Hz)	670	670	611	611	750	750	670	670	865	750	670	670
Filter resonance 2 (Hz)	1255	1255	1145	1145	1403	1403	1255	1255	1620	1403	1255	1255
VFD requirements (when used with above mentioned sine filte	er)											
Output voltage ph-ph (Vrms ph-ph)	283	303	322	347	302	321	337	362	317	330	344	368
Output current at rated frequency (Arms)	415	490	562	636	390	461	531	600	370	446	513	573
Output current with 10% margin for harmonics (Arms)	457	539	618	700	429	507	584	660	407	491	564	630
Min switching frequency (kHz)	3,4	3,4	3,4	3,4	3,7	3,7	3,7	3,7	3,9	3,9	3,9	3,9
Recommended practical min switching frequency (kHz)	4	4	4	4	5	5	5	5	5	5	5	5
	0											
DC bus voltage (Vdc) min value under load						62	20					
VFD max output voltage assumption			·	·	· · · · · · · · · · · · · · · · · · ·	41	10	·			·	

AB350 HIGH SPEED MOTOR FOR AIR BLOWER

GRID NOMINAL VOLTAGE (Vrms)	4	-00											
AB Motor model							AB	350					
Shaft Power (kW)		200	250	300	350	200	250	300	350	200	250	300	350
Shaft Power (HP)		268	336	403	470	268	336	403	470	268	336	403	470
Rated speed (krpm)		18,5	18,5	18,5	18,5	20	20	20	20	21	21	21	21
Rated torque (Nm)		103,2	129,0	154,9	180,7	95,5	119,4	143,2	167,1	90,9	113,7	136,4	159,2
Number of pair of pole		1	1	1	1	1	1	1	1	1	1	1	1
Rated frequency (Hz)		308	308	308	308	333	333	333	333	350	350	350	350
Motor input voltage ph-ph (Vrmsph-ph)		286	299	313	328	306	318	331	346	320	331	344	358
Motor input current (Arms)		445	555	665	775	412	514	615	717	393	490	586	683
Recommended Sine filter data													
Filter 'L' component (µH)		30					3	0			3	0	<u></u>
Filter 'C' component (µF) - Delta connection		250	250	300	300	200	200	250	250	150	200	250	250
Capacitor current at rated frequency (Arms)		139	144	145	190	128	133	173	173	106	145	190	197
Capacitor current with 10% margin (Arms)		153	158	160	209	141	146	190	190	117	160	209	217
Capacitor max voltage (Vrms)			3	35			35	54		410			
Filter resonance 1 (Hz)		670	670	611	611	750	750	670	670	865	750	670	670
Filter resonance 2 (Hz)		1255	1255	1145	1145	1403	1403	1255	1255	1620	1403	1255	1255
VFD requirements (when used with above mentioned sine filt	ter)			·							•		
Output voltage ph-ph (Vrms ph-ph)		283	303	322	347	302	321	337	360	317	330	344	368
Output current at rated frequency (Arms)		415	490	562	636	390	461	531	600	370	446	513	573
Output current with 10% margin for harmonics (Arms)		457	539	618	700	429	507	584	660	407	491	564	630
Min switching frequency (kHz)		3,4	3,4	3,4	3,4	3,7	3,7	3,7	3,7	3,9	3,9	3,9	3,9
Recommended practical min switching frequency (kHz)		4	4	4	4	5	5	5	5	5	5	5	5
		0				•			· ·		•		·
DC bus voltage (Vdc) min value under load							52	23					
VFD max output voltage assumption							35	50					

DETAILED MOTOR AND BEARINGS SPECIFICATIONS AB350 HIGH SPEED MOTOR FOR AIR BLOWER

GRID NOMINAL VOLTAGE (Vrms)	380												
AB Motor model						AB	350						
Shaft Power (kW)	200	250	300	350	200	250	300	350	200	250	300	350	
Shaft Power (HP)	268	336	403	470	268	336	403	470	268	336	403	470	
Rated speed (krpm)	18,5	18,5	18,5	18,5	20	20	20	20	21	21	21	21	
Rated torque (Nm)	103,2	129,0	154,9	180,7	95 <i>,</i> 5	119,4	143,2	167,1	90,9	113,7	136,4	159,2	
Number of pair of pole	1	1	1	1	1	1	1	1	1	1	1	1	
Rated frequency (Hz)	308	308	308	308	333	333	333	333	350	350	350	350	
Motor input voltage ph-ph (Vrmsph-ph)	286	299	313	322	306	318	331	325	320	331	338	332	
Motor input current (Arms)	445	555	665	776	412	514	615	725	393	490	590	695	
Recommended Sine filter data													
Filter 'L' component (µH)			30			3	0			3	0		
Filter 'C' component (µF) - Delta connection	250	250	300	300	200	200	250	250	150	200	250	250	
Capacitor current at rated frequency (Arms)	139	144	145	186	128	133	173	170	106	145	185	185	
Capacitor current with 10% margin (Arms)	153	158	160	205	141	146	190	187	117	160	204	204	
Capacitor max voltage (Vrms)		3	55		35	54	38	380			410		
Filter resonance 1 (Hz)	670	670	611	611	750	750	670	670	865	750	670	670	
Filter resonance 2 (Hz)	1255	1255	1145	1145	1403	1403	1255	1255	1620	1403	1255	1255	
VFD requirements (when used with above mentione	d sine filter)												
Output voltage ph-ph (Vrms ph-ph)	283	303	322	340	302	321	337	340	317	330	340	340	
Output current at rated frequency (Arms)	415	490	562	650	390	461	531	632	370	446	521	618	
Output current with 10% margin for harmonics (Arms)	457	539	618	715	429	507	584	695	407	491	573	680	
Min switching frequency (kHz)	3,4	3,4	3,4	3,4	3,7	3,7	3,7	3,7	3,9	3,9	3,9	3,9	
Recommended practical min switching frequency (kHz)	4	4	4	4	5	5	5	5	5	5	5	5	
				SO'									
DC bus voltage (Vdc) min value under load						5	00						
VFD max output voltage assumption						34	40						

CONFIDENTIAL

SPEC-005203 v1.xx

AFD Detailed Catalog Cut Sheets 10.

Confidential Information

Page 92

ENGINEERING TOMORROW

Selection Guide | VACON® NXP Liquid Cooled | 7.5 kW - 5.3 MW

Robust, silent and space-saving control for all drive needs in demanding applications

5

Up to **25%** savings in total life cycle costs compared to air cooled solutions

drives.danfoss.com | VACON°

VACON

Quiet. Compact. Cool.

VACON® NXP Liquid Cooled AC drives are the ultimate in space-saving, high power density AC drives. They are well suited for locations where air-cooling is difficult, expensive or impractical such as onboard ships or in locations affected by altitude, or simply where installation space is at a premium. Their robust, modular design makes the VACON® NXP a suitable platform for all drive needs in demanding applications and are available in the power range from 7.5 to 5300 kW at 380-690 VAC supply voltages.

Power packed

As no air ducts are required, liquid cooled drives are extremely compact and suitable for a wide variety of heavy industries with harsh operating conditions such as marine & offshore, pulp & paper, renewable energy and mining & metal.

Thanks to the high degree of protection (IP54) achieved with these drives, they can be installed almost anywhere in the plant or vessel. This eliminates the load on the air-conditioning system in the electrical rooms – an important cost and space consideration in many retrofit applications. And since liquid cooled drives do not require large cooling fans, they are also among the most silent AC drives on the market.

We are committed to providing you with the ultimate in high power density. VACON® NXP liquid cooled products have one of the best power/ size ratios on the market. For example, our compact 12 pulse, 1.5MW drive includes a built-in rectifier, inverter and optional brake all in the same package, and all this can be mounted in an 800 mm wide enclosure.

Our liquid cooled range offers the ultimate in motor control, for both

induction and permanent magnet motors, gearless drive applications and paralleling solutions for high power motors.

Certification and grid expertize

Our VACON® NXP liquid cooled portfolio fulfills all relevant international standards and global requirements, including marine, safety and EMC & Harmonics approvals. VACON® NXP liquid cooled AC drives can be used in regenerative energy and smart grid applications, which ensures customers can effectively monitor and control energy use and costs.

Typical segments

- Marine and offshore
- Renewable energy

- Mining and metals
- Water and wastewater
- Energy management
- Pulp and paper
- Oil and gas
- Machine building

Saving fuel at sea

In the highly competitive marine segment, increased demand for efficiency is the main reason for using AC drives in fan, winch, propulsion, and various special applications across all vessel types, from large luxury liners and cargo ships to tugboats.

What's in it for you

Minimizes investment and operation costs

Saves time and money

Compact and easy to install

Virtually silent operation

Benefits

- Compact size and high power density
- No large air conditioning systems needed as state-of-the-art liquid cooled AC drive design allows heat loss to be transferred to the most convenient place with no need for vast amounts of filtered air
- Easy to adapt to various uses due to ready-to-use applications
- Flexible and scalable system for additional I/O, fieldbus and f unctional safety boards with five built-in expansion slots
- Silent operation due to eliminated need for large cooling fans

Typical applications

- Propeller and thrusters systems
- Compressors
- Wind turbines
- Extruders

- Pumps and fans
- Test bench systems
- Cranes and winch systems
- Power conversion systems
- Production lines
- Oil rigs
- Crushers
- Conveyors

The liquid way to stay cool

VACON® NXP Liquid Cooled AC drives have been pioneering for more than a decade in demanding industries with a proven track record of highly reliable products. We have succesfully mitigated the common risks of leakage and reliability in our product design.

Climate considerations

When comparing cooling technology solutions, it is important to understand the effects on the infrastructure of the electrical room, and the room's requirements. Additional comparison parameters are the geographical location, relevant industry and process.

In warm climates it is extremely important to observe the amount of heat load transferred to the electrical room because of its indirect effect on electrical energy consumption.

The type-tested switchgears standard EN 60439-1 specifies that the electrical room's 24-hour average temperature should be below +35 °C and the maximum temporary temperature cannot exceed +40 °C. As a result, the cooling system in electrical rooms is typically comprised of air conditioning chillers, which are dimensioned according to the maximum heat load, the temperature inside the electrical room and the maximum temperature outdoors. The typical electrical energy consumption of air conditioning is approx. 25-33% of the cooling power.

The higher the power, the greater the savings

In many cases liquid cooled drives are the most cost-effective option, simply due to the fact that there is no need for additional air conditioning capacity or extra ventilation for the areas in which they are used. The related savings enable shorter payback times and the higher the power, the greater the savings potential.

The continuously growing cost of energy certainly supports a wider use of liquid cooled drives technology, and the number of installations is growing rapidly.

VACON® AC drives are designed to provide proven performance in demanding environments. Our drives are serving the wind energy industry globally with a combined installed capacity of almost one gigawatt.

Exclusively designed for liquid cooling

Many other liquid cooled drives on the market are based on modifications of an air cooled drive, rather than exclusively designed for the purpose. The VACON® NXP Liquid Cooled dissipates only 0.1 -0.15% of its heat losses to air.* A state-of-the-art cooling heatsink enables the cooling efficiency of the components to be higher than ever.

Cooling technology advantages

Up to **25%** savings in total life cycle costs compared to air cooled solutions

20dBA less noise than air

cooled drive

25% smaller unit can deliver the same or better performance

*400 kW, 690 VAC liquid cooled drive

Extensive portfolio of liquid cooled drive modules

Significant energy savings and optimal performance can be achieved with the right configuration. Liquid cooled AC drives can be used in a multitude of combinations – from a single dedicated frequency converter to large-scale Common DC bus systems.

Dedicated frequency converter

The VACON® NXP Liquid Cooled drives are available as 6- or 12-pulse frequency converters. In addition, our largest unit, the CH74, can also be used as an 18-pulse converter. The AC drive consists of a power unit, control unit and possibly one or more input chokes.

An internal brake chopper is available as standard for our smallest unit CH3. For CH72 (only 6-pulse) and CH74, it is available as internal option while in all other sizes the brake chopper is available as an option and installed externally.

Front-end units

The front-end units convert a mains AC voltage and current into a DC voltage and current. The power is transferred from the mains to a common DC bus and, in certain cases, vice versa.

Active front-end (AFE)

The AFE unit is a bi-directional (regenerative) power converter (supply unit) for the front-end of a common liquid cooled DC bus drive line-up. An external LCL filter is used at the input. This unit is suitable for applications where a low level of mains harmonics and high power factor are required. AFE units can operate in parallel to provide increased power and/or redundancy without any drive to drive communication between the units. AFE units can also be connected to the same fieldbus with inverters, and controlled and monitored via fieldbus. Fuses, LCL filters, pre-charging rectifiers and resistors can be specified and ordered separately.

The LCL filter guarantees that harmonics are not an issue in any network. With a power factor > 0.99 and low harmonics, the supply chain transformers, generators, etc. can be sized very accurately without reserving margins for the reactive power. This can mean a saving of 10% in supply chain investments. Likewise the payback time is faster as regenerative energy is fed back to the grid.

Non-regenerative front-end (NFE)

The NFE unit is an unidirectional (motoring) power converter for the front-end of a common DC bus drive line-up. The NFE is a device that operates as a diode bridge. A dedicated external choke is used at the input. This unit is suitable as a 6 or 12 pulse rectifying device when a normal level of harmonics is accepted and no regeneration to the mains is required. NFE units can be paralleled to increase power without any drive to drive communincation between the units.

Inverter unit (INU)

The INU is a bidirectional DC-fed power inverter for the supply and control of AC motors. The INU is supplied from a common DC bus drive line-up. A charging circuit is needed in case a connection to a live DC bus is required. The DC-side charging circuit is external for inverter types.

Pre-charging resistors and switches or fuses are not included in an INU delivery and must be specified and ordered separately.

Brake chopper unit (BCU)

The BCU is a unidirectional power converter for the supply of excessive energy from a common DC bus drive line-up or big AC drive to resistors where the energy is dissipated as heat. External resistors are required. However, resistors or fuses are not included in a BCU delivery and can be specified and ordered separately.

BCU's improve a drive's dynamic performance in a regenerative operating point and protect common

DC bus voltage level from overvoltage. In some cases they also reduce the need for AFE investments.

VACON® NXP Liquid Cooled Enclosed drive

The low harmonic and regenerative VACON® NXP Liquid Cooled Enclosed Drives range has been developed especially with ease of use in mind. Packed full of features, these fully standardized, compact and robust AC drives with a full power range help maximize the utilization of space while minimizing overall costs.

These enclosed drives are the ideal solution for applications and locations where space is at a premium. The sturdy cabinet makes it ideal for harsh environments. See technical ratings and dimensions on page 19 for further information.

High power density

VACON® NXP Liquid Cooled Enclosed Drive can be used with AC motors in power sizes from 800–1550 kW. However, using the patented VACON® DriveSynch control concept, four enclosed drives can be run in parallel taking the power range up to an outstanding 5 MW.

Fast installation

VACON® NXP Liquid Cooled Enclosed Drives are pre-designed and engineered. That means they're good to go as soon as you receive them. Simply connect to the cooling system and the power and motor supplies. Being liquid cooled, the product is virtually silent and you'll have greater flexibility with where to put it. You don't have to worry about leaving space for air flow, and you'll save on air-conditioning energy costs.

Packed with cool performance

The enclosed unit comes equipped with the same advantages of efficient and quiet cooling performance as the rest of the VACON® NXP product family. When we say that this product is liquid cooled, we are talking about the entire product. The modules and also all its main components, such as LCL and dU/ dt filters, are liquid cooled as standard. The reliable heat exchanger is offered as an option to provide a worry-free life cycle for the product.

You can also enjoy the same fast commissioning with the aid of the easy to use Startup Wizard. The slide-out racks provide easy access for maintenance. Leakage indicators alert the operator to any potential issues in the cooling system.

A solution for all your needs

12

We provide enclosed solutions to any segment and application. And while we focus on the drives, you can concentrate on your performance.

Eliminate production disturbances

Continuous energy supply is important to ensure your processes are optimized. Distortions in the energy supply, caused by the presence of harmonic currents and voltages, can trigger equipment disturbances and create energy losses. VACON® front-end drives with low harmonic technology maintain a constant energy supply and eliminate the disruption harmonics can cause to production.

Benefits

- Saves floor space and infrastructure needs
- Saves time and money in installation

Advanced monitoring

The VACON[®] NXP Liquid Cooled Enclosed Drive's built-in Fieldbus interface communicates effectively with your process automation system. This reduces the need for cabling and gives you increased monitoring and control of process equipment.

Safety is a given

One of the most visible features of the enclosed product is the integrated main breaker switch. This simple on/off switch quickly and easily disconnects and activates the power supply as and when necessary.

- Faster and easier servicing
- Improves safety
- Enhances reliability

- Low harmonic input
- Virtually silent operation

Key features

- Optimized design with power range up to 5 MW
- All standard protection components included
- Silent design with no large cooling fans needed
- Slide-out feature
- Leakage detector

- AFE technology
- Pre-engineered solution with all-liquid-cooled design (including filters)
- Cooling system monitoring

Multiple options

VACON[®] NXP control

High-performance control platform for all demanding drive applications

- Excellent processing and calculation power
- Supports induction and permanent magnet motors
- Maximum utilization of control features over wide power and voltage range
- Built-in PLC functionality
- Integration of customer-specific functionalities
- Bumpless transfer between open loop and closed loop control

Option boards

VACON[®] NXP control provides exceptional modularity

- 5 plug-in extension slots
- Fieldbus boards
- Encoder boards
- IO boards
- Easy plug-in without need to remove other components

Fieldbus options

Easy integration with plant automation systems

- PROFIBUS DP
- DeviceNet[™]
- Modbus RTU
- CANopen

Ethernet connectivity

Ethernet connectivity allows remote drive access for monitoring, configuring and troubleshooting

- Modbus/TCP
- PROFINET IO
- EtherNet/IP™
- EtherCAT

Functional safety and reliability

Safe Torque Off (STO)

Available for all VACON® NXP drives

- Prevents drive from generating torque on motor shaft
- Prevents unintentional start-ups
- Corresponds to an uncontrolled stop
- In accordance with stop category 0, EN60204-1

Safe Stop 1 (SS1)

Available for all VACON® NXP drives

- Initiates motor deceleration
- Initiates STO function after application specific time delay
- Corresponds to an uncontrolled stop
- In accordance with stop category 1, EN60204-1

Advanced Safety Options

Support more safety functions Safe Stop functions::

- STO Safe Torque Off
- SS1 Safe Stop 1
- SS2 Safe Stop 2
- SBC Safe Brake Control
- SQS Safe Quick Stop

Safe Speed functions:

- SLS Safely-limited Speed
- SSM Safe Speed Monitor
- SSR Safe Speed Range
- SMS Safe Maximum Speed

Conformal coating

- Conformal coated circuit boards as standard
- Improved performance
- Increased durability
- Reliable protection against dust and moisture
- Extended lifetime of drive and components

ATEX- certified thermistor input

Especially designed for motor temperature supervision

- Stops feeding energy to motor in case of over-heating
- Certified and compliant with the European ATEX directive 94/9/EC

Commissioning made easy

User-friendly keypad

- Removable panel with plug-in connection
- Graphical and text keypad with multiple language support
- Text display multi-monitoring function
- Parameter backup and copy function with the panel's internal memory
- The startup wizard ensures a hassle-free set up

Software modularity

- All-in-One application package
- Seven built-in software applications

Several segment-specific and advanced applications such as:

System Interface

- Marine
- and much more

For setting, copying, storing, printing, monitoring and controlling parameters

Includes handy Datalogger function

Track failure modes & perform root cause analysis

Communicates with drive via:

- RS232
- Ethernet TCP/IP
- CAN (fast multiple drive monitoring)
- CAN@Net (remote monitoring)

Independent paralleling

Our patented independent paralleling configuration of front-end (AFE) units:

- Offer high redundancy
- Eliminate need for drive-to-drive communication
- Enables automatic load sharing

VACON® NCDrive

Dedicated applications

Intelligent system interfaces for heavy industries

VACON® System Interface Application (SIA) provides a flexible and extensive interface for use in coordinated drives, which have an overriding control system. VACON® SIA utilizes the most advanced functions of our VACON® NXP motor control software and is suitable for demanding drive systems such as those in the pulp & paper and metal industries, processing lines as well as many other standard applications.

Benefits

- Power extension with VACON® DriveSynch
- Master Follower functions for torque sharing
- Freely configurable PLC logic

Dedicated marine application

Our Marine Application provides flexibility and performance across all marine segment applications. VACON[®] Liquid Cooled drives bring many benefits to this segment in particular such as energy efficiency, improved process availability due to high redundancy, better process quality and control, as well as silent operation and substantially reduced emissions.

Benefits

- Black Out prevention logic
- Cost savings in electric propulsion system
- State-of-the-art load sharing and load trooping

VACON® NXP Grid Converter

The VACON® NXP Grid Converter is a solution that improves energy efficiency and environmental performance in marine industry use. It enables ships to source energy from local grids on shore, allowing for the ship's main generators to be completely switched off.

Benefits

- Reduces fuel consumption and emissions
- Reduces noise and vibrations

High power and improved redundancy

VACON[®] DriveSynch is a patented control concept for running standard drives in parallel to control high-power AC motors or increase the redundancy of a system. This concept suits high power single or multiple winding motors, typically above 1 MW. High power AC drives above 5 MW can be built using standard drive components.

Benefits

- System redundancy is higher than in a conventional drive because each unit can run independently
- Identical units and standard modules reduce overall costs by reducing need for spares and specialist skills in engineering, installation, commissioning and maintenance

* Fiber optic link

Liquid to liquid heat exchangers

We have a range of cooling units based on liquid-to-liquid heat exchangers (HX), which improve the availability and usability of AC drive systems. The cooling units belong to the liquid cooled VACON® NXP range and offer reliable and cost-effective cooling without ventilation concerns. The heat exchanger is a pre-designed, pre-tested and fully functional package that ensures safety and reliability.

0

Intelligent system interfaces for heavy industries

- Self-supporting module rack construction
- Cooling circuit equipped with threaded joints or flanges
- Heavy industry, stainless steel
- Industrial water heat exchanger, three-way-valve, pump, AC drive
- Flow and pressure sensors

- Stainless steel AISI piping
- Two-way-valve
- Heat exchanger installed inside a Rittal TS8 or VSG VEDA 5000 cabinet
- Double pumps for marine class requirements, types 120 kW and 300 kW
Ratings and dimensions

		Dri	ve out	put	Motor	shaft	-			
AC drive type 6-pulse	AC drive type 12-pulse	Ther- mal I _{th} [A]	Rated cont. IL [A]	Rated cont. I _H [A]	Opti- mum motor at I _{th} (400 V) [kW]	Opti- mum motor at I _{th} (500 V) [kW]	Power loss c/a/T*) [kW]	Chassis	Choke type 6-pulse*	Choke type 12-pulse
NXP00165A0N1SWS		16	15	11	7.5	11	0.4/0.2/0.6	CH3	CHK0023N6A0	
NXP00225A0N1SWS		22	20	15	11	15	0.5/0.2/0.7	CH3	CHK0023N6A0	
NXP00315A0N1SWS		31	28	21	15	18.5	0.7/0.2/0.9	CH3	CHK0038N6A0	
NXP00385A0N1SWS		38	35	25	18.5	22	0.8/0.2/1.0	CH3	CHK0038N6A0	
NXP00455A0N1SWS		45	41	30	22	30	1.0/0.3/1.3	CH3	CHK0062N6A0	\mathbf{C}
NXP00615A0N1SWS		61	55	41	30	37	1.3/0.3/1.5	CH3	CHK0062N6A0	
NXP00725A0N0SWS		72	65	48	37	45	1.2/0.3/1.5	CH4	CHK0087N6A0	
NXP00875A0N0SWS		87	79	58	45	55	1.5/0.3/1.8	CH4	CHK0087N6A0	
NXP01055A0N0SWS		105	95	70	55	75	1.8/0.3/2.1	CH4	CHK0145N6A0	
NXP01405A0N0SWS		140	127	93	75	90	2.3/0.3/2.6	CH4	CHK0145N6A0	
NXP01685A0N0SWS		168	153	112	90	110	4.0/0.4/4.4	CH5	CHK-0261-6-DL	
NXP02055A0N0SWS		205	186	137	110	132	5.0/0.5/5.5	CH5	CHK-0261-6-DL	
NXP02615A0N0SWS		261	237	174	132	160	6.0/0.5/6.5	CH5	CHK-0261-6-DL	
NXP03005A0N0SWF		300	273	200	160	200	4.5/0.5/5.0	CH61	CHK-0400-6-DL	
NXP03855A0N0SWF		385	350	257	200	250	6.0/0.5/6.5	CH61	CHK-0400-6-DL	
NXP04605A0N0SWF	NXP04605A0N0TWF	460	418	307	250	315	6.5/0.5/7.0	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP05205A0N0SWF	NXP05205A0N0TWF	520	473	347	250	355	7.5/0.6/8.1	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP05905A0N0SWF	NXP05905A0N0TWF	590	536	393	315	400	9.0/0.7/9.7	CH72	CHK-0650-6-DL	2 x CHK-0400-6-DL
NXP06505A0N0SWF	NXP06505A0N0TWF	650	591	433	355	450	10.0/0.7/10.7	CH72	CHK-0650-6-DL	2 x CHK-0400-6-DL
NXP07305A0N0SWF	NXP07305A0N0TWF	730	664	487	400	500	12.0/0.8/12.8	CH72	CHK-0750-6-DL	2 x CHK-0400-6-DL
NXP08205A0N0SWF		820	745	547	450	560	12.5/0.8/13.3	CH63	CHK-0820-6-DL	
NXP09205A0N0SW		920	836	613	500	600	14.4/0.9/15.3	CH63	CHK-1030-6-DL	
NXP10305A0N0SWF		1030	936	687	560	700	16.5/1.0/17.5	CH63	CHK-1030-6-DL	
NXP11505A0N0SWF		1150	1045	766	600	750	18.5/1.2/19.7	CH63	CHK-1150-6-DL	
NXP13705A0N0SWF	NXP13705A0N0TWF	1370	1245	913	700	900	19.0/1.2/20.2	CH74	3 x CHK-0520-6-DL	2 x CHK-0750-6-DL
NXP16405A0N0SWF	NXP16405A0N0TWF	1640	1491	1093	900	1100	24.0/1.4/25.4	CH74	3 x CHK-0650-6-DL	2 x CHK-0820-6-DL
NXP20605A0N0SWF	NXP20605A0N0TWF	2060	1873	1373	1100	1400	32.5/1.8/34.3	CH74	3 x CHK-0750-6-DL	2 x CHK-1030-6-DL
NXP23005A0N0SWF		2300	2091	1533	1250	1500	36.3/2.0/38.3	CH74	3 x CHK-0820-6-DL	
NXP24705A0N0SWF	NXP24705A0N0TWF	2470	2245	1647	1300	1600	38.8/2.2/41.0	2 x CH74	6 x CHK-0520-6-DL	4 x CHK-0650-6-DL
NXP29505A0N0SWF	NXP29505A0N0TWF	2950	2681	1967	1550	1950	46.3/2.6/48.9	2 x CH74	6 x CHK-0520-6-DL	4 x CHK-0750-6-DL
NXP37105A0N0SWF	NXP37105A0N0TWF	3710	3372	2473	1950	2450	58.2/3.0/61.2	2 x CH74	6 x CHK-0650-6-DL	4 x CHK-1030-6-DL
NXP41405A0N0SWF	NXP41405A0N0TWF	4140	3763	2760	2150	2700	65.0/3.6/68.6	2 x CH74	6 x CHK-0750-6-DL	4 x CHK-1150-6-DL
2 x NXP24705A0N0SWF	2 x NXP24705A0N0TWF	4700	4300	3100	2450	3050	73.7/4.2/77.9	4 x CH74	12 x CHK-0520-6-DL	8 x CHK-0650-6-DL
2 x NXP29505A0N0SWF	2 x NXP29505A0N0TWF	5600	5100	3700	2900	3600	88/5/93	4 x CH74	12 x CHK-0520-6-DL	8 x CHK-0750-6-DL
2 x NXP37105A0N0SWF	2 x NXP37105A0N0TWF	7000	6400	4700	3600	4500	110.6/5.7/116.3	4 x CH74	12 x CHK-0650-6-DL	8 x CHK-1030-6-DL
2 x NXP41405A0N0SWF	2 x NXP41405A0N0TWF	7900	7200	5300	4100	5150	123.5/6.9/130.4	4 x CH74	12 x CHK-0750-6-DL	8 x CHK-1150-6-DL

l_{th} = Thermal maximum continuous RMS current. Dimensioning can be done according to this current if the process does not require any overloadability or the process does not include any load variation or margin for overloadability.

 I_L = Low overloadability current. Allows +10% load variation. 10% exceeding can be continuous.

 $I_{\rm H}$ = High overloadability current. Allows +50% load variation. 50% exceeding can be continuous.

All values with $\cos \phi = 0.83$ and efficiency = 97%

If some other mains voltage is used, apply the formula P = $\sqrt{3}$ x Un x In x cos ϕ x eff% to calculate the NX Liquid-Cooled drive output power.

The enclosure class for all NX Liquid-Cooled AC drives is IP00.

If the motor is continuously run at frequencies below 5 Hz (besides start and stop ramps), please pay attention to the drive dimensioning for low frequencies, i.e. maximum $I = 0.66* I_{th}$ or choose drive according to I_{H} . It is recommended to check the rating with your distributor or Vacon.

Drive overrating may also be necessary if the process requires high starting torque.

CH3 and CH4 have air cooled choke as standard. CH5 and above have Liquid cooled choke as standard and air cooled choke as option.

^{*)} c = power loss into coolant; a = power loss into air; T = total power loss; power losses of input chokes not included. All power losses obtained using max. supply voltage, Ith and switching frequency of 3.6 kHz and Closed Loop control mode. All power losses are worst case losses.

VACON® NXP Liquid Cooled AC drives, 6-pulse and 12-pulse, mains voltage 525-690 VAC

		Dri	ve out curren	put t	Motor pov	shaft ver				
AC drive type 6-pulse	AC drive type 12-pulse	Ther- mal I _{th} [A]	Rated cont. I _L [A]	Rated cont. I _H [A]	Opti- mum motor at I _{th} (525 V) [kW]	Opti- mum motor at I _{th} (690 V) [kW]	Power loss c/a/T*) [kW]	Chassis	Choke type 6-pulse	Choke type 12-pulse
NXP01706A0T0SWF		170	155	113	110	160	4.0/0.2/4.2	CH61	CHK-0261-6-DL	
NXP02086A0T0SWF		208	189	139	132	200	4.8/0.3/5.1	CH61	CHK-0261-6-DL	
NXP02616A0T0SWF		261	237	174	160	250	6.3/0.3/6.6	CH61	CHK-0261-6-DL	
NXP03256A0T0SWF	NXP03256A0T0TWF	325	295	217	200	300	7.2/0.4/7.6	CH72	CHK-0400-6-DL	2 x CHK-0261-6-DL
NXP03856A0T0SWF	NXP03856A0T0TWF	385	350	257	250	355	8.5/0.5/9.0	CH72	CHK-0400-6-DL	2 x CHK-0261-6-DL
NXP04166A0T0SWF	NXP04166A0T0TWF	416	378	277	250	355	9.1/0.5/9.6	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP04606A0T0SWF	NXP04606A0T0TWF	460	418	307	300	400	10.0/0.5/10.5	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP05026A0T0SWF	NXP05026A0T0TWF	502	456	335	355	450	11.2/0.6/11.8	CH72	CHK-0520-6-DL	2 x CHK-0261-6-DL
NXP05906A0T0SWF		590	536	393	400	560	12.4/0.7/13.1	CH63	CHK-0650-6-DL	
NXP06506A0T0SWF		650	591	433	450	600	14.2/0.8/15.0	CH63	CHK-0650-6-DL	
NXP07506A0T0SWF		750	682	500	500	700	16.4/0.9/17.3	CH63	CHK-0750-6-DL	
NXP08206A0T0SWF	NXP08206A0T0TWF	820	745	547	560	800	17.3/1.0/18.3	CH74	3 x CHK-0400-6-DL	2 x CHK-0520-6-DL
NXP09206A0T0SWF	NXP09206A0T0TWF	920	836	613	650	850	19.4/1.1/20.5	CH74	3 x CHK-0400-6-DL	2 x CHK-0520-6-DL
NXP10306A0T0SWF	NXP10306A0T0TWF	1030	936	687	700	1000	21.6/1.2/22.8	CH74	3 x CHK-0400-6-DL	2 x CHK-0520-6-DL
NXP11806A0T0SWF	NXP11806A0T0TWF	1180	1073	787	800	1100	25.0/1.3/26.3	CH74	3 x CHK-0400-6-DL	2 x CHK-0650-6-DL
NXP13006A0T0SWF	NXP13006A0T0TWF	1300	1182	867	900	1200	27.3/1.5/28.8	CH74	3 x CHK-0520-6-DL	2 x CHK-0650-6-DL
NXP15006A0T0SWF	NXP15006A0T0TWF	1500	1364	1000	1050	1400	32.1/1.7/33.8	CH74	3 x CHK-0520-6-DL	2 x CHK-0820-6-DL
NXP17006A0T0SWF	NXP17006A0T0TWF	1700	1545	1133	1150	1550	36.5/1.9/38.4	CH74	3 x CHK-0650-6-DL	2 x CHK-1030-6-DL
NXP18506A0T0SWF	NXP18506A0T0TWF	1850	1682	1233	1250	1650	39.0/2.0/41.0	2 x CH74	6 x CHK-0400-6-DL	4 x CHK-0520-6-DL
NXP21206A0T0SWF	NXP21206A0T0TWF	2120	1927	1413	1450	1900	44.9/2.4/47.3	2 x CH74	6 x CHK-0400-6-DL	4 x CHK-0650-6-DL
NXP23406A0T0SWF	NXP23406A0T0TWF	2340	2127	1560	1600	2100	49.2/2.6/51.8	2 x CH74	6 x CHK-0400-6-DL	4 x CHK-0650-6-DL
NXP27006A0T0SWF	NXP27006A0T0TWF	2700	2455	1800	1850	2450	57.7/3.1/60.8	2 x CH74	6 x CHK-0520-6-DL	4 x CHK-0750-6-DL
NXP31006A0T0SWF	NXP31006A0T0TWF	3100	2818	2066	2150	2800	65.7/3.4/69.1	2 x CH74	6 x CHK-0520-6-DL	4 x CHK-0820-6-DL
2 x NXP18506A0T0SWF	2 x NXP18506A0T0TWF	3500	3200	2300	2400	3150	74,2/3,8/77,9	4 x CH74	12 x CHK-0400-6-DL	8 x CHK-0520-6-DL
2 x NXP21206A0T0SWF	2 x NXP21206A0T0TWF	4000	3600	2700	2750	3600	85,4/4,5/89,9	4 x CH74	12 x CHK-0400-6-DL	8 x CHK-0650-6-DL
2 x NXP23406A0T0SWF	2 x NXP23406A0T0TWF	4400	4000	2900	3050	3950	93,4/5,0/98,4	4 x CH74	12 x CHK-0400-6-DL	8 x CHK-0650-6-DL
2 x NXP27006A0T0SWF	2 x NXP27006A0T0TWF	5100	4600	3400	3500	4600	109,7/5,8/115,5	4 x CH74	12 x CHK-0520-6-DL	8 x CHK-0750-6-DL
2 x NXP31006A0T0SWF	2 x NXP31006A0T0TWF	5900	5400	3900	4050	5300	124,8/6,5/131,3	4 x CH74	12 x CHK-0520-6-DL	8 x CHK-0820-6-DL

Standard chokes for VACON® NX Liquid Cooled product range

Choke type	Heat losses [W]	Dimensions W x H x D [mm]	Weight [kg]
CHK0023N6A0	145	230 x 179 x 121	10
CHK0038N6A0	170	270 x 209 x 145	15
CHK0062N6A0	210	300 x 214 x 160	20
CHK0087N6A0	250	300 x 233 x 170	26
CHK0145N6A0	380	200 x 292 x 185	37
CHK-0261-6-DL	323	308 x 500 x 270	70
CHK-0400-6-DL	484	308 x 497 x 276	75
CHK-0520-6-DL	574	450 x 502 x 276	104
CHK-0650-6-DL	468	450 x 505 x 284	121
CHK-0750-6-DL	816	450 x 557 x 284	135
CHK-0820-6-DL	731	450 x 506 x 282	118
CHK-1030-6-DL	777	450 x 642 x 274	124
CHK-1150-6-DL	882	450 x 647 x 308	162

VACON® NXP Liquid Cooled inverter units, DC bus voltage 465-800 VDC

	Dr	ive output curre	ent	Motor sh	aft power	Power loss	
AC drive type	Thermal I _{th} [A]	Rated cont. I _L [A]	Rated cont. I _H [A]	Optimum motor at I _{th} (540 VDC) [kW]	Optimum motor at I _{th} (675 VDC) [kW]	c/a/T*) [kW]	Chassis
NXP00165A0T1IWS	16	15	11	7.5	11	0.4/0.2/0.6	CH3
NXP00225A0T1IWS	22	20	15	11	15	0.5/0.2/0.7	CH3
NXP00315A0T1IWS	31	28	21	15	18.5	0.7/0.2/0.9	CH3
NXP00385A0T1IWS	38	35	25	18.5	22	0.8/0.2/1.0	CH3
NXP00455A0T1IWS	45	41	30	22	30	1.0/0.3/1.3	CH3
NXP00615A0T1IWS	61	55	41	30	37	1.3/0.3/1.5	CH3
NXP00725A0T0IWS	72	65	48	37	45	1.2/0.3/1.5	CH4
NXP00875A0T0IWS	87	79	58	45	55	1.5/0.3/1.8	CH4
NXP01055A0T0IWS	105	95	70	55	75	1.8/0.3/2.1	CH4
NXP01405A0T0IWS	140	127	93	75	90	2.3/0.3/2.6	CH4
NXP01685A0T0IWS	168	153	112	90	110	2.5/0.3/2.8	CH5
NXP02055A0T0IWS	205	186	137	110	132	3.0/0.4/3.4	CH5
NXP02615A0T0IWS	261	237	174	132	160	4.0/0.4/4.4	CH5
NXP03005A0T0IWF	300	273	200	160	200	4.5/0.4/4.9	CH61
NXP03855A0T0IWF	385	350	257	200	250	5.5/0.5/6.0	CH61
NXP04605A0T0IWF	460	418	307	250	315	5.5/0.5/6.0	CH62
NXP05205A0T0IWF	520	473	347	250	355	6.5/0.5/7.0	CH62
NXP05905A0T0IWF	590	536	393	315	400	7.5/0.6/8.1	CH62
NXP06505A0T0IWF	650	591	433	355	450	8.5/0.6/9.1	CH62
NXP07305A0T0IWF	730	664	487	400	500	10.0/0.7/10.7	CH62
NXP08205A0T0IWF	820	745	547	450	560	12.5/0.8/13.3	CH63
NXP09205A0T0IWF	920	836	613	500	600	14.4/0.9/15.3	CH63
NXP10305A0T0IWF	1030	936	687	560	700	16.5/1.0/17.5	CH63
NXP11505A0T0IWF	1150	1045	766	600	750	18.4/1.1/19.5	CH63
NXP13705A0T0IWF	1370	1245	913	700	900	15.5/1.0/16.5	CH64
NXP16405A0T0IWF	1640	1491	1093	900	1100	19.5/1.2/20.7	CH64
NXP20605A0T0IWF	2060	1873	1373	1100	1400	26.5/1.5/28.0	CH64
NXP23005A0T0IWF	2300	2091	1533	1250	1500	29.6/1.7/31.3	CH64
NXP24705A0T0IWF	2470	2245	1647	1300	1600	36.0/2.0/38.0	2 x CH64
NXP29505A0T0IWF	2950	2681	1967	1550	1950	39.0/2.4/41.4	2 x CH64
NXP37105A0T0IWF	3710	3372	2473	1950	2450	48.0/2.7/50.7	2 x CH64
NXP41405A0T0IWF	4140	3763	2760	2150	2700	53.0/3.0/56.0	2 x CH64
2 x NXP24705A0T0IWF	4700	4300	3100	2450	3050	69.1/3.9/73	4 x CH64
2 x NXP29505A0T0IWF	5600	5100	3700	2900	3600	74.4/4.6/79	4 x CH64
2 x NXP37105A0T0IWF	7000	6400	4700	3600	4500	90.8/5.2/96	4 x CH64
2 x NXP41405A0T0IWF	7900	7200	5300	4100	5150	101.2/5.8/107	4 x CH64

The voltage classes for the inverter units used in the tables above have been defined as follows: Input 540 VDC = Rectified 400 VAC supply Input 675 VDC = Rectified 500 VAC supply

16 Danfoss Drives · DKDD.PB.909.A5.02

VACON® NXP Liquid Cooled inverter units, DC bus voltage 640-1100 VDC ¹⁾

	Dr	ive output curre	ent	Motor sh	aft power	Power loss	
AC drive type	Thermal I _{th} [A]	Rated cont. I _L [A]	Rated cont. I _H [A]	Optimum motor at I _{th} (710 VDC) [kW]	Optimum motor at I _{th} (930 VDC) [kW]	c/a/T*) [kW]	Chassis
NXP01706A0T0IWF	170	155	113	110	160	3.6/0.2/3.8	CH61
NXP02086A0T0IWF	208	189	139	132	200	4.3/0.3/4.6	CH61
NXP02616A0T0IWF	261	237	174	160	250	5.4/0.3/5.7	CH61
NXP03256A0T0IWF	325	295	217	200	300	6.5/0.3/6.8	CH62
NXP03856A0T0IWF	385	350	257	250	355	7.5/0.4/7.9	CH62
NXP04166A0T0IWF	416	378	277	250	355	8.0/0.4/8.4	CH62
NXP04606A0T0IWF	460	418	307	300 400		8.7/0.4/9.1	CH62
NXP05026A0T0IWF	502	456	335	355 450		9.8/0.5/10.3	CH62
NXP05906A0T0IWF	590	536	393	400 560		10.9/0.6/11.5	CH63
NXP06506A0T0IWF	650	591	433	450 600		12.4/0.7/13.1	CH63
NXP07506A0T0IWF	750	682	500	500 700		14.4/0.8/15.2	CH63
NXP08206A0T0IWF	820	745	547	560	560 800		CH64
NXP09206A0T0IWF	920	836	613	650	850	17.2/0.9/18.1	CH64
NXP10306A0T0IWF	1030	936	687	700	1000	19.0/1.0/20.0	CH64
NXP11806A0T0IWF	1180	1073	787	800	1100	21.0/1.1/22.1	CH64
NXP13006A0T0IWF	1300	1182	867	900	1200	24.0/1.3/25.3	CH64
NXP15006A0T0IWF	1500	1364	1000	1050	1400	28.0/1.5/29.5	CH64
NXP17006A0T0IWF	1700	1545	1133	1150	1550	32.1/1.7/33.8	CH64
NXP18506A0T0IWF	1850	1682	1233	1250	1650	34.2/1.8/36.0	2 x CH64
NXP21206A0T0IWF	2120	1927	1413	1450	1900	37.8/2.0/39.8	2 x CH64
NXP23406A0T0IWF	2340	2127	1560	1600	2100	43.2/2.3/45.5	2 x CH64
NXP27006A0T0IWF	2700	2455	1800	1850	2450	50.4/2.7/53.1	2 x CH64
NXP31006A0T0IWF	3100	2818	2066	2150	2800	57.7/3.1/60.8	2 x CH64
2 x NXP18506A0T0IWF	3500	3200	2300	2400	3150	64,9/3,5/68,4	4 x CH64
2 x NXP21206A0T0IWF	4000	3600	2700	2750	3600	71,8/3,8/75,6	4 x CH64
2 x NXP23406A0T0IWF	4400	4000	2900	3050	3950	82,1/4,4/86,5	4 x CH64
2 x NXP27006A0T0IWF	5100	4600	3400	3500	4600	95,8/5,1/100,9	4 x CH64
2 x NXP31006A0T0IWF	5900	5400	3900	4050	5300	109,7/5,8/115,5	4 x CH64

¹⁰ High power 525-690V AFE, INU and BCU units available as wide voltage range version (NX_8 models) with DC bus voltage 640-1200 VDC. The units are ordered with the nominal mains voltage code 8 instead of 6 as for the standard version.

The following additional requirements applies to the wide voltage version:

• output filter with an inductance of at least 0.7% needed

• external 24VDC supply for the control unit

The voltage classes for the inverter units used in the tables above have been defined as follows:

Input 710 VDC = Rectified 525 VAC supply

Input 930 VDC = Rectified 690 VAC supply

VACON [®] NXP Liquid Co	oled dimensions: drives	consisting of one modu	le	
Chassis	Width [mm]	Height [mm]	Depth [mm]	Weight [kg]
CH3	160	431	246	15
CH4	193	493	257	22
CH5	246	553	264	40
CH60	246	673	374	55
CH61/62	246	658	372	55
CH63	505	923	375	120
Ch64	746	923	375	180
CH72	246	1076	372	90
Ch74	746	1175	385	280

One-module drive dimensions (mounting base included). Please note that AC chokes are not included.

VACON® NXN Liquid Cooled non regenerative front-end, DC bus voltage 465-800 V DC, 6/12-pulse

		AC current			DC p	ower			
AC drive type	Thermal I _{th} [A]	Rated I _L [A]	Rated I _H [A]	400 VAC mains l _{th} [kW]	500 VAC mains I _{th} [kW]	400 VAC mains I _L [kW]	500 VAC mains I _L [kW]	Power loss c/a/T*) [kW]	Chassis
NXN20006A0T0	2000	1818	1333	1282	1605	1165	1458	5.7/0.5/6.2	CH60

VACON® NXN Liquid Cooled non regenerative front-end, DC bus voltage 640-1100 V DC, 6/12-pulse

		AC current			DC p	ower				
AC drive type	Thermal I _{th} [A]	Rated I _L [A]	Rated I _H [A]	525 VAC mains l _{th} [kW]	690 VAC mains l _{th} [kW]	525 VAC mains I _L [kW]	690 VAC mains I _L [kW]	Power loss c/a/T*) [kW]	Chassis	
NXN20006A0T0	2000	1818	1333	1685	2336	1531	2014	5.7/0.5/6.2	CH60	

VACON® NXN Liquid Cooled non regenerative front-end line filters

Choke type	Suitability	Power loss c/a/T *) [kW]	Dimensions 1 pc W x H x D	Total weight [kg]	Pcs for NXN	Cooling
CHK-1030-6-DL	NXN20006A0T0WWVA1A2BHB100	1.18/0.5/1.68	506 x 676 x 302	237	2	Liquid

VACON® NXA Liquid Cooled active front-end, DC bus voltage 465-800 VDC

		AC current			DC p	ower		Doworloss	
AC drive type	Thermal I _{th} [A]	Rated I∟[A]	Rated I _H [A]	400 VAC mains I _{th} [kW]	500 VAC mains I _{th} [kW]	400 VAC mains I _L [kW]	500 VAC mains I _L [kW]	c/a/T*) [kW]	Chassis
NXA01685A0T02WS	168	153	112	113	142	103	129	2.5/0.3/2.8	CH5
NXA02055A0T02WS	205	186	137	138	173	125	157	3.0/0.4/3.4	CH5
NXA02615A0T02WS	261	237	174	176	220	160	200	4.0/0.4/4.4	CH5
NXA03005A0T02WF	300	273	200	202	253	184	230	4.5/0.4/4.9	CH61
NXA03855A0T02WF	385	350	257	259	324	236	295	5.5/0.5/6.0	CH61
NXA04605A0T02WF	460	418	307	310	388	282	352	5.5/0.5/6.0	CH62
NXA05205A0T02WF	520	473	347	350	438	319	398	6.5/0.5/7.0	CH62
NXA05905A0T02WF	590	536	393	398	497	361	452	7.5/0.6/8.1	CH62
NXA06505A0T02WF	650	591	433	438	548	398	498	8.5/0.6/9.1	CH62
NXA07305A0T02WF	730	664	487	492	615	448	559	10.0/0.7/10.7	CH62
NXA08205A0T02WF	820	745	547	553	691	502	628	10.0/0.7/10.7	CH63
NXA09205A0T02WF	920	836	613	620	775	563	704	12.4/0.8/12.4	CH63
NXA10305A0T02WF	1030	936	687	694	868	631	789	13.5/0.9/14.4	CH63
NXA11505A0T02WF	1150	1045	767	775	969	704	880	16.0/1.0/17.0	CH63
NXA13705A0T02WF	1370	1245	913	923	1154	839	1049	15.5/1.0/16.5	CH64
NXA16405A0T02WF	1640	1491	1093	1105	1382	1005	1256	19.5/1.2/20.7	CH64
NXA20605A0T02WF	2060	1873	1373	1388	1736	1262	1578	26.5/1.5/28.0	CH64
NXA23005A0T02WF	2300	2091	1533	1550	1938	1409	1762	29.6/1.7/31.3	CH64

VACON $^{\circ}$ NXA Liquid Cooled active front-end, DC bus voltage 640-1100 VDC $^{\scriptscriptstyle 1)}$

		AC current			DC p	Powerless			
AC drive type	Thermal I _{th} [A]	Rated I _L [A]	Rated I _H [A]	525 VAC mains I _{th} [kW]	690 VAC mains I _{th} [kW]	525 VAC mains I _L [kW]	690 VAC mains I _L [kW]	c/a/T*) [kW]	Chassis
NXA01706A0T02WF	170	155	113	150	198	137	180	3.6/0.2/3.8	CH61
NXA02086A0T02WF	208	189	139	184	242	167	220	4.3/0.3/4.6	CH61
NXA02616A0T02WF	261	237	174	231	303	210	276	5.4/0.3/5.7	CH61
NXA03256A0T02WF	325	295	217	287	378	261	343	6.5/0.3/6.8	CH62
NXA03856A0T02WF	385	350	257	341	448	310	407	7.5/0.4/7.9	CH62
NXA04166A0T02WF	416	378	277	368	484	334	439	8.0/0.4/8.4	CH62
NXA04606A0T02WF	460	418	307	407	535	370	486	8.7/0.4/9.1	CH62
NXA05026A0T02WF	502	456	335	444	584	403	530	9.8/0.5/10.3	CH62
NXA05906A0T02WF	590	536	393	522	686	474	623 🚄	10.9/0.6/11.5	CH63
NXA06506A0T02WF	650	591	433	575	756	523	687	12.4/0.7/13.1	CH63
NXA07506A0T02WF	750	682	500	663	872	603	793	14.4/0.8/15.2	CH63
NXA08206A0T02WF	820	745	547	725	953	659	866	15.4/0.8/16.2	CH64
NXA09206A0T02WF	920	836	613	814	1070	740	972	17.2/0.9/18.1	CH64
NXA10306A0T02WF	1030	936	687	911	1197	828	1088	19.0/1.0/20.0	CH64
NXA11806A0T02WF	1180	1073	787	1044	1372	949	1247	21.0/1.1/22.1	CH64
NXA13006A0T02WF	1300	1182	867	1150	1511	1046	1374	24.0/1.3/25.3	CH64
NXA15006A0T02WF	1500	1364	1000	1327	1744	1207	1586	28.0/1.5/29.5	CH64
NXA17006A0T02WF	1700	1545	1133	1504	1976	1367	1796	32.1/1.7/33.8	CH64

 $^{\rm D}$ DC bus voltage 640-1200 VDC for wide range voltage version (NX_8). * C = power loss into coolant, A = power loss into air, T = total power loss

VACON® Liquid Cooled regenerative line filters

LCL filter type	Suitability	Power loss c/a/T*) [kW]	Dimensions L _{net} 1pcs WxHxD [mm]	Dimensions L _{drive} 1pcs (total 3pcs) WxHxD [mm]	Dimensions C _{bank} 1pcs WxHxD [mm]	Total weight [kg]
RLC-0385-6-0	CH62/690VAC: 325A & 385A	2,6/0,8/3,4	580 x 450 x 385	410 x 415 x 385	360 x 265 x 150	458
RLC-0520-6-0	CH62/500-690VAC	2,65/0,65/3,3	580 x 450 x 385	410 x 415 x 385	360 x 265 x 150	481
RLC-0750-6-0	CH62/500VAC, CH63/690VAC	3,7/1/4,7	580 x 450 x 385	410 x 450 x 385	360 x 275 x 335	508
RLC-0920-6-0	CH63/500VAC, CH64/690VAC	4,5/1,4/5,9	580 x 500 x 390	410 x 500 x 400	360 x 275 x 335	577
RLC-1180-6-0	CH63/500VAC, CH64/690VAC	6,35/1,95/8,3	585 x 545 x 385	410 x 545 x 385	350 x 290 x 460	625
RLC-1640-6-0	CH64/500-690VAC	8,2/2,8/11	585 x 645 x 385	420 x 645 x 385	350 x 290 x 460	736
RLC-2300-5-0	CH64/500VAC: 2060A & 2300A	9,5/2,9/12,4	585 x 820 x 370	410 x 820 x 380	580 x 290 x 405	896

The RLC filter contains a 3-phase choke on the mains side, capacitors and 3pcs 1-phase chokes on the AFE side.

VACON® NXB Liquid Cooled external brake chopper, DC bus voltage 460-800 VDC

		Cur	rent		Braking) power		
AC drive type	BCU rated cont. Rated min resistance Rated min resistance Rated min resistance Rated min resistance R braking current I _{br} [A] (Ω) (Ω)		Rated max input current (Adc)	Rated cont. braking power 2*R 800 VDC [kW]	Rated cont. braking power 2*R 600 VDC [kW]	Power loss c/a/T*) [kW]	Chassis	
NXB00315A0T08WS	2*31	25.7	19.5	62	49	37	0.7/0.2/0.9	CH3
NXB00615A0T08WS	2*61	13.1	9.9	122	97	73	1.3/0.3/1.5	CH3
NXB00875A0T08WS	2*87	9.2	7.0	174	138	105	1.5/0.3/1.8	CH4
NXB01055A0T08WS	2*105	7.6	5.8	210	167	127	1.8/0.3/2.1	CH4
NXB01405A0T08WS	2*140	5.7	4.3	280	223	169	2.3/0.3/2.6	CH4
NXB01685A0T08WS	2*168	4.7	3.6	336	267	203	2.5/0.3/2.8	CH5
NXB02055A0T08WS	2*205	3.9	3.0	410	326	248	3.0/0.4/3.4	CH5
NXB02615A0T08WS	2*261	3.1	2.3	522	415	316	4.0/0.4/4.4	CH5
NXB03005A0T08WF	2*300	2.7	2.0	600	477	363	4.5/0.4/4.9	CH61
NXB03855A0T08WF	2*385	2.1	1.6	770	613	466	5.5/0.5/6.0	CH61
NXB04605A0T08WF	2*460	1.7	1.3	920	732	556	5.5/0.5/6.0	CH62
NXB05205A0T08WF	2*520	1.5	1.2	1040	828	629	6.5/0.5/7.0	CH62
NXB05905A0T08WF	2*590	1.4	1.1	1180	939	714	7.5/0.6/8.1	CH62
NXB06505A0T08WF	2*650	1.2	1.0	1300	1035	786	8.5/0.6/9.1	CH62
NXB07305A0T08WF	2*730	1.1	0.9	1460	1162	833	10.0/0.7/10.7	CH62

VACON® NXB Liquid Cooled external brake chopper, DC bus voltage 640-1100 VDC ¹⁾

		Curi	rent		Braking			
AC drive type	BCU rated cont. braking current I _{br} [A]	Rated min resistance 1100 VDC (Ω)	Rated min resistance 840 VDC (Ω)	Rated max input current (Adc)	Rated cont. braking power 2*R 1100 VDC [kW]	Rated cont. braking power 2*R 840 VDC [kW]	Power loss c/a/T*) [kW]	Chassis
NXB01706A0T08WF	2*170	6.5	4.9	340	372	282	4.5/0.2/4.7	CH61
NXB02086A0T08WF	2*208	5.3	4	416	456	346	5.5/0.3/5.8	CH61
NXB02616A0T08WF	2*261	4.2	3.2	522	572	435	5.5/0.3/5.8	CH61
NXB03256A0T08WF	2*325	3.4	2.6	650	713	542	6.5/0.3/6.8	CH62
NXB03856A0T08WF	2*385	2.9	2.2	770	845	643	7.5/0.4/7.9	CH62
NXB04166A0T08WF	2*416	2.6	2	832	913	693	8.1/0.4/8.4	CH62
NXB04606A0T08WF	2*460	2.4	1.8	920	1010	767	8.5/0.4/8.9	CH62
NXB05026A0T08WF	2*502	2.2	1.7	1004	1100	838	10.0/0.5/10.5	CH62

1) DC bus voltage 640-1136 VDC for wide range voltage version (NX_8). **NOTE:** The rated currents in given ambient (+50 °C) and coolant (+30 °C) tempera **NOTE:** Braking power: $P_{brake} = 2^*U_{brake}^{-2} / R_{brake}^{-1}$, when 2 resistors are used **NOTE:** Max input DC current: $I_{a_{c},max} = P_{brake,max}^{-1} / U_{brake}^{-1}$ tures are achieved only when the switching frequency is equal to or less than the factory default.

VACON® NXP Liquid Cooled AC drive, internal brake chopper unit, braking voltage 460-800 VDC

	Loadability	Braking capa	acity 600 VDC	Braking capa		
Converter Type	Rated min resistance [Ω]	Rated cont. braking power [kW]	BCU rated cont. braking current, I _{br} [A]	Rated cont. braking power [kW]	BCU rated cont. braking current, I _{br} [A]	Chassis
NX_460-730 5 ¹⁾	1.3	276	461	492	615	CH72
NX_1370-2300 5	1.3	276	461	492	615	CH74

1) Only 6 pulse drives

VACON® NXP Liquid Cooled AC drive, internal brake chopper unit, braking voltage 840-1100 VDC

	Loadability	Braking capa	city 840 VDC	Braking capa		
Converter Type	erter Type Rated min Rated cont. BC resistance [Ω] [Ω] [kW]	BCU rated cont. braking current, I _{br} [A]	Rated cont. braking power [kW]	BCU rated cont. braking current, I _{br} [A]	Chassis	
NX_325-502 6 ¹⁾	2.8	252	300	432	392	CH72
NX_820-1700 6	2.8	252	300	432	392	CH74

1) Only 6 pulse drives

The internal brake chopper can also be used in motor application where 2...4 x Ch7x drives are used for a single motor, but in this case the DC connections of the power modules must be connected together.

VACON® external brake resistors for liquid cooled CH72 (CH74) drives - IP20

Product code	Voltage range [VDC]	Maximum brake power [kw]	Maximum average power [kW] (1 puls/2min)	Resistance [Ω]	Maximum energy [kJ] (predefined power pulse)	Dimensions W x H x D [mm]	Weight [kg]
BRW-0730-LD-5 1)	465800 VDC	637 ³⁾	13.3	1.3	1594	480 x 600 x 740	55
BRW-0730-HD-5 ²⁾	465800 VDC	637 ³⁾	34.5	1.3	4145	480 x 1020 x 740	95
BRW-0502-LD-6 1)	6401100 VDC	516 ⁴⁾	10.8	2.8	1290	480 x 760 x 530	40
BRW-0502-HD-6 ²⁾	6401100 VDC	516 ⁴⁾	28	2.8	3354	480 x 1020 x 740	85

NOTE: Thermal protection switch included

1) LD = Light Duty: 5s nominal torque braking from nominal speed reduced linearly to zero once per 120s 2) HD = Heavy duty: 3s nominal torque braking at nominal speed + 7s nominal torque braking from nominal speed reduced linearly to zero once per 120s. 3) at 911 VDC

4) at 1200 VDC

Liquid to liquid heat exchangers

	HXL-M/V/R-040-N-P	HXL/M-M/V/R-120-N-P	HXL/M-M/R-300-N-P
Cooling power	040 kW	0120 kW	0300 kW
Mains supply	380420 VAC	380420 VAC	380500 VAC
Flow	40120 l/min	120360 l/min	360900 l/min
Distribution pressure	0.3 bar / l=10 m, DN32*	HXL: 1 bar / I = 40 m, DN50 HXM: 0.7 bar / I = 30 m, DN50	HXL: 1 bar / I = 40 m, DN80 HXM: 0.7 bar / I = 25 m, DN80
Double pump		НХМ	НХМ
Cabinets	VEDA, Rittal	VEDA, Rittal	Rittal
Dimensions W x H x D [mm] (without cabinet)	305 (506) x 1910 x 566	705 (982) x 1885 x 603	1100 x 1900 x 750

VACON® NXP Liquid Cooled Enclosed drive

* I = maximum distribution distance with specific DN diameter VACON® NXP Liquid Cooled Enclosed drive											
AC drive type		Rated curren	t	Electrical ou	tput power	Chassis	Dimensions W x H x D				
Ac unve type	I hermal ITH [A]	[A]	Cont. I _H [A]	Motor at I _{th} (400 VAC) [kW]	Motor at I _{th} (500 VAC) [kW]	Chassis	[in]				
NXP13705A5T0RWN-LIQC	1370	1245	913	700	900	CH64	2000 x 2100 x 900				
NXP16405A5T0RWN-LIQC	1640	1491	1093	900	1100	CH64	2000 x 2100 x 900				

	Í	Rated curren	t	Electrical ou	tput power		Dimensions W x H x D
AC drive type	Thermal ITH [A]	Cont. I _L [A]	Cont. I _H [A]	Motor at I _{th} (525 VAC) [kW]	Motor at I _{th} (690 VAC) [kW]	Chassis	W/O Cooling unit [in]
NXP08206A5T0RWN-LIQC	820	745	547	560	800	CH64	2000 x 2100 x 900
NXP09206A5T0RWN-LIQC	920	836	613	650	850	CH64	2000 x 2100 x 900
NXP10306A5T0RWN-LIQC	1030	936	687	700	1000	CH64	2000 x 2100 x 900
NXP11806A5T0RWN-LIQC	1180	1073	787	800	1100	CH64	2000 x 2100 x 900
NXP13006A5T0RWN-LIQC	1300	1182	867	900	1200	CH64	2000 x 2100 x 900
NXP15006A5T0RWN-LIQC	1500	1364	1000	1000	1400	CH64	2000 x 2100 x 900
NXP17006A5T0RWN-LIQC	1700	1545	1133	1150	1550	CH64	2000 x 2100 x 900

Technical data

Mains connection	Input voltage U _{in}	NX_5: 400500 VAC (-10%+10%); 465800 VDC (-0%+0%) NX_6: 525690 VAC (-10%+10%); 6401100 VDC (-0%+0%) NX_8: 525690 VAC (-10%+10%); 6401136 VDC (-0%+0%) ¹⁷ NX_8: 525690 VAC (-10%+10%); 6401200 VDC (-0%+0%) ²⁹
	Input frequency	4566 Hz
Motor	Output voltage	0-U _{in}
connections	Output frequency	0320 Hz
	Output filter	VACON® liquid cooled NX_8 unit must be equipped with a output filter with an inductance of at least 0.7%.
Control characteristics	Control method	Frequency control U/f Open loop vector control (5-150% of base speed): speed control 0.5%, dynamic 0.3%sec, torque lin. <2%, torque rise time ~5 ms Closed loop vector control (entire speed range): speed control 0.01%, dynamic 0.2% sec, torque lin. <2%, torque rise time ~2 ms
	Switching frequency	NX_5: Up to and including NX_0061: 116 kHz; Factory default 10 kHz From NX_0072: 16 kHz; Factory default 3.6 kHz (110 kHz with special application) NX_6/NX_8: 16 kHz; Factory default 1.5 kHz
	Field weakening point	8320 Hz
	Acceleration time	03000 sec
	Deceleration time	03000 sec
	Braking	DC brake: 30% of TN (without brake resistor), flux braking
Ambient conditions	Ambient operating temperature	–10 °C (no frost)+50 °C (at I_{th}); The NX liquid cooled drives must be used in an heated indoor controlled environment.
	Installation temperature	0+70 ℃
	Storage temperature	−40 °C…+70 °C; no liquid in heatsink under 0 °C
	Relative humidity	5 to 96% RH, non-condensing, no dripping water
	Air quality - chemical vapours - mechanical particles"	No corrosive gases IEC 60721-3-3, unit in operation, class 3C2 IEC 60721-3-3, unit in operation, class 3S2 (no conductive dust allowed)
	Altitude	NX_5: (380500 V): 3000 m ASL; in case network is not corner grounded NX_6/NX_8: (525690 V) max. 2000 m ASL. For further requirements, contact factory 100% load capacity (no derating) up to 1,000 m; above 1,000 m derating of maximum ambient operating temperature by 0,5 °C per each 100 m is required.
	Vibration	5150 Hz
	EN50178/EN60068-2-6	Displacement amplitude 0.25 mm (peak) at 3…31 Hz Max acceleration amplitude 1 G at 31…150 Hz
	Shock EN50178, EN60068-2-27	UPS Drop Test (for applicable UPS weights) Storage and shipping: max 15 G, 11 ms (in package)
	Enclosure class	IP00 / standard in entire kW/HP range
EMC	Immunity	Fulfils all EMC immunity requirements
	Emissions	EMC level N, T (IT networks)
Safety		EN 50178, EN 60204-1, JEC 61800-5-1, CE, UL, CUL: (see unit nameplate for more details)
Functional safety *)	STO	EN/IEC 61800-5-2 Safe Torque Off (STO) SIL2, EN ISO 13849-1 PL'd" Category 3, EN 62061: SILCL2, IEC 61508: SIL2.
	SS1	EN /IEC 61800-5-2 Safe Stop 1 (SS1) SIL2, EN ISO 13849-1 PL'd" Category 3, EN /IEC62061: SILCL2, IEC 61508: SIL2.
	ATEX Thermistor input	94/9/EC, CE 0537 Ex 11 (2) GD
	Advance safety option	STO (+SBC),SS1,SS2, SOS,SLS,SMS,SSM,SSR
Approvals	Type tested	SGS Fimko CE, UL
	Type approval	DNV, BV, Lloyd's Register (other marine societies delivery based approvals)
	Approvals our partners have	Ex, SIRA
Liquid cooling	Allowed cooling agents	Drinking water Water-glycol mixture
	Temperature of cooling agent	035 °C (I _{tt})(input); 3555 °C, please see manual for further details Temperature rise during circulation max. 5 °C No condensation allowed
	System max. working pressure	6 bar/ 30 bar peak
	Pressure loss (at nominal flow)	Varies according to size, please see manual for further details
Protections		Overvoltage, undervoltage, earth fault, mains supervision, motor phase supervision, overcurrent, unitover- temperature, motor overload, motor stall, motor underload, short-circuit of +24 V and +10 V reference voltages.

*) with OPT-AF board (SS1 requires external safety relay) 1) NX_8 drives only available as Ch6x NXB units. 2) NX_8 drives only available as Ch6x NXA/NXP units.

Typecode key

VACON[®] NXP Liquid Cooled drives

NXP	0000	5	А	0	N	1	S	w	V	A1 A2 00 00 C3	-LIQC +HXC	
												_
NXP		Product R	lange		_							
		NXP = AC NXA = Act	drive or inv tive front-ei	verter unit nd unit								
		NXB = Bra	ake-choppe	er unit ativo Front Fr	ad (NEE)							
0000	_	Nominal A		ative riont Li	IU (INFL)							
0000		0007 = 7		000 0								
		0022 = 22 0205 = 20	2 A U	920 = 920	920 A							
5		Nominal	mains volt	ade								
5	- T	5 = 380-5	00 VAC	uge								
		6 = 525-6	90 VAC									
A		Control k A = stand	eypad lard alpha-r	numeric								
		$\mathbf{B} = \text{no loop}$	cal control I	keypad								
		G = graph	nical keypac	ł								
0		Enclosure	<u>c</u> lass					4				
		0 = IP00 5 = IP54										
N		FMC emis	sion levels									
N	-	N = NO EN	MC emission	n protection;	; to be insta	alled on end	losures		•			
		I = Fulfills	s standard 6	51800-3 for I	I-networks							
1		$\mathbf{Brake cho}$ 0 = no brack	ake choppe	er			$\boldsymbol{\wedge}$					
		1 = integr	rated brake	chopper (Cl	H3, CH72 (6	-pulse) & C	H74 only)		\sim			
S		Hardware	e modificat	ions: supply	у							
		2 = Active	e front-end	unit								
		$\mathbf{S} = 6$ -puls $\mathbf{Y} = 6$ -puls	se with A/C se with L/C	C chokes C chokes			· •					
		$\mathbf{N} = 6$ -puls	se, no chok	kes VC chokos								
		U = 12-pu U = 12-pu	ulse, no cho	okes			\sim					
		W = 12-pu R = Low h	ulse with L/ narmonic	C chokes								
W	_	Hardware	modificat	ions: coolin	a							
		$\mathbf{W} = \text{Liquid}$	d-cooled m	odule with a	luminium l	heatsink	m hoatsink					
					licker coate	u alurrinnu	III IICatsiiik					
V		Hardware F = Fiber	e modificat	ions: board 1. standard (f	l s from CH61)							
		G = Fiber	connection	n, varnished ((from CH61							
		V = Direct	t connectio	n, varnished								
		If OPT-AF	option bo	ard is used								
		$\mathbf{N} = IP54 c$	control box	fiber conne	ction, stand	dard boards	, (from CH61)				
۸1		Ontion by	ontior box,	, liber conne	eccontod b			1)				
A1		$\mathbf{A} = \text{basic}$	1/O boards,	i siot is repr	esenteu b	y two chai	acters.					
A2		$\mathbf{B} = \exp \mathbf{a}$ $\mathbf{C} = \operatorname{fieldb}$	nder I/O bo ous boards	ards								
00		D = specia	al boards									
00												
- C3												
-LIQC		Liquid Co	oled Enclo	sed Drive								
+HXC1		Heat Exch +HXC1 = °	hanger opt Stainless ste	ion for encl eel pipina. 1-	osed drive	•						
		+HXC2 = 5	Stainless ste	eel piping, 2-	-pumps							
*) Note, the con	trol unit of NX	_8 drives need t	to be supplied	with a external 2	4 Vdc power so	ource.						

and a state

Delivery based approvals

Option boards

Туре	Description		Ca	d s	ot											1/	/ O s	igna	I									
Particulo		А	в	с	D	E	ā	8	DI DO	AI (mA/V/±V)	AI (mA) isolated	AO (mA/V)	AO (mA) isolated	RO (NO/NC)	RO (NO)	+10Vref	Therm	+24V/ EXT +24 V	pt100	КТҮ84	42-240 VAC input	DI/DO (1024 V)	DI/DO (RS422)	Dl ~ 1Vp-p	Resolver	Out +5 V/+15 V/+24 V Out +15 V/+24 V	Out +5 V/+12 V/+15 V	
DDTA 1							6	1		2		1				1		2										
	DI/DU/AI/AU/ TUV/ 24V Relay output (NO/NC)						0	1		2		1		2		1		2										
OPTA3	Relay output + Thermistor input													2	1		1											
OPTA4	Encoder TTL type						2								,				-				3/0			1	1	
OPTA5	Encoder HTL type						2															3/0				1		
OPTA7	Double encoder HTL type																					6/2		-1		1		
OPTA8	"OPTA1 + Analogue signals galvanically isolated as a						6	1		2		1				1		2										
							6	1		2		1				1		2										
	OPTAT + 2,5mm2 connectors Encoder HTL type (Divider + direction)						0	1		2						-		2				2/0				1		
	STO_ATEX therm						2	2						1	1		1					5/0						
OPTAK	Sin/Cos encoder interface						2								1									3		1		
OPTAN							6			2		2																
I/O expai	nder cards (OPTB)									_		_																
OPTB1	Programmable I/O								6									1										
OPTB2	Relay output + Thermistor input													1	1		1											
OPTB4	"Analog input/output Analogue signals galvanically isolated separately"										1		2					1										
OPTB5	Relay output														3													
OPTB8	"Temperature Measurement option PT100"												_					1	3									
OPTB9	DI + Relay output						2								1						5							
OPTBH	" lemperature Measurement option pt100, pt1000, Ni1000, KTY84"																		3	3								
OPTBB	EnDat + Sin/Cos 1 Vp-p						2																0/2	2			1	
OPTBC	Resolver, 3xDO (Wide range)																				_	3/3			1			
OPTBE	EnDat/SSI/BiSS C																											
OPTBL	Advanced safety option						4	2					_					1			_							
OPTBM	OPTBL+ HIL/IIL encoder						4	2										1										
Fieldbus	OPTBL+ SIN/Cos encoder						4	2																				
OPTE2	RS485 with screw terminal						RS48	85 w	vith s	crev	v ter	mina	al															
OPTE3	PROFIBUS DP with screw terminal		1				PRO	FIBL	JS DI	P wit	th sc	rew	tern	ninal														
OPTE5	PROFIBUS DP with D9-connector						PRO	FIBL	JS DI	P wit	th D	9-со	nne	ctor														
OPTE6	CANopen						CAN	lope	n																			
OPTE7	DeviceNet						Dev	iceN	let																			
OPTE8	RS485 with D9-connector						RS48	85 w	vith [)9-с	onn	ecto	r															
OPTE9	Dual-port Ethernet			_			Dua	l-po	rt Et	hern	et																	
OPTEA	Advanced Dual-port Ethernet						Adv	ance	ed D	ual-p	oort	Ethe	ernet	t														
OPIC2	RS485 with screw terminal						RS48	85 W	ith s	crev	v ter	mina	al															
OPTC3							PRU	Worl	15 DI	PWI	ln sc	rew	tern	ninai	I													
OPTC5									ns Di	Dwit	h D	2-00	nno	ctor														
OPTC6	CANopen						CAN	lone	n n	i vvi	ΠD	9-00	me	CLUI														
OPTC7	DeviceNet						Dev	iceN	let																			
OPTC8	RS485 with D9-connector						RS48	85 w	ith [)9-c	onn	ecto	r															
OPTCI	Modbus/TCP						Мос	bus	TCP																			
OPTCJ	BACnet MS/TP						BAC	net l	MS/	TP																		
OPTCP	PROFINET IO						PRO	FINE	ET IO)																		
OPTCQ	EtherNet/IP						Ethe	erNet	t/IP																			
Commun	ication cards (OPTD)						c					2 6	1															
OPT-D1	systembus adapt, 2xfibre-optic SystemBus (1xfiber), isol. CAN						≥yst Sve+	em E em F	bus a Rus a	adap	oter (oter (2 X fi 1 y fi	iber iber	opti	ic pa	urs) ur) <i>R</i> .	CAN	l-hu	ad	ante	r (aa	alvan	nicall	v de	COUR	led)		
	PS222 adapter (no galvisol.)						RS23	32 ad	dapt	er ca	ard (galva	anica	ally c	decc	uple	ed), u	ised	mai	nly f	or a	pplic	atio	n en	gine	ering :	to	
	CAN Rus (ashy decoursed)						con	nect	and	ther	key	pad	icall		CO	ر سے مام										-		
OPT-D6 OPT-D7	Line voltage measurement						Line	volt	tage	mea	asure	emer	nt	y dê	cou	pied,												

*) OPTE series fieldbus cards provide most recent features on market and they are recommended for new installation 1) Analogue signals galvanically isolated as a group 2) Analogue signals galvanically isolated separately

DrivePro® Life Cycle services Delivering a customized service experience!

DrivePro

OrivePro

We understand that every application is different. Having the ability to build a customized service package to suit your specific needs is essential.

DrivePro[®] Life Cycle Services is a collection of tailormade products designed around you. Each one engineered to support your business through the different stages of your AC drive's life cycle.

From optimized spare-part packages to condition-monitoring solutions, our products can be customized to help you achieve your business goals.

With the help of these products, we add value to your application by ensuring you get the most out of your AC drive.

When you deal with us, we also offer you access to training, as well as the application knowledge to help you in planning and preparation. Our experts are at your service.

You're covered with DrivePro[®] Life Cycle service products

DrivePro® Retrofit Minimize the impact and maximize the benefit

Manage the end of product lifecycle efficiently, with professional help to replace your legacy drives. The DrivePro® Retrofit service ensures optimal uptime and productivity during the smooth replacement process.

DrivePro[®] Spare Parts Plan ahead with your spare part package

In critical situations, you want no delays. With DrivePro® Spare Parts you always have the right parts on hand, on time. Keep your drives running at top efficiency, and optimize system performance.

DrivePro[®] Extended Warranty Long-term peace of mind

Get the longest coverage available in the industry, for peace of mind, a strong business case and a stable, reliable budget. You know the annual cost of maintaining your drives, up to six years in advance.

DrivePro[®] Exchange The fast, most cost-efficient alternative to repair

You obtain the fastest, most cost-efficient alternative to repair, when time is critical. You increase uptime, thanks to quick and correct replacement of the drive.

DrivePro[®] Upgrade

Maximize your AC drive investment

Use an expert to replace parts or software in a running unit, so your drive is always upto-date. You receive an on-site evaluation, an upgrade plan and recommendations for future improvements.

DrivePro[®] Start-up Fine-tune your drive for optimal performance today

Save on installation and commissioning time and cost. Get help from professional drives experts during start-up, to optimize drives safety, availability and performance.

DrivePro[®] Preventive Maintenance Take preventive action

You receive a maintenance plan and budget, based on an audit of the installation. Then our experts perform the maintenance tasks for you, according to the defined plan.

DrivePro® Remote Expert Support You can rely on us every step of the way

DrivePro® Remote Expert Support offers speedy resolution of on-site issues thanks to timely access to accurate information. With the secure connection, our drives experts analyze issues remotely reducing the time and cost involved in unnecessary service visits.

DrivePro[®] Remote Monitoring Fast resolution of issues

DrivePro® Remote Monitoring offers you a system that provides online information available for monitoring in real time. It collects all the relevant data and analyzes it so that you can resolve issues before they affect your processes.

To learn which products are available in your region, please reach out to your local Danfoss Drives sales office or visit our website <u>http://drives.danfoss.com/danfoss-drives/local-contacts/</u>

ENGINEERING TOMORROW

A better tomorrow is **driven by drives**

Danfoss Drives is a world leader in variable speed control of electric motors.

We offer you unparalleled competitive edge through quality, application-optimized products and a comprehensive range of product lifecycle services.

You can rely on us to share your goals. Striving for the best possible performance in your applications is our focus. We achieve this by providing the innovative products and application know-how required to optimize efficiency, enhance usability, and reduce complexity.

From supplying individual drive components to planning and delivering complete drive systems; our experts are ready to support you all the way.

You will find it easy to do business with us. Online, and locally in more than 50 countries, our experts are never far away, reacting fast when you need them. You gain the benefit of decades of experience, since 1968. Our low voltage and medium voltage AC drives are used with all major motor brands and technologies in power sizes from small to large.

VACON® drives combine innovation and high durability for the sustainable industries of tomorrow.

For long lifetime, top performance, and full-throttle process throughput, equip your demanding process industries and marine applications with VACON[®] single or system drives.

- Marine and Offshore
- Oil and Gas
- Metals
- Mining and Minerals
- Pulp and Paper

- Energy
- Elevators and Escalators
- Chemical
- Other heavy-duty industries

VLT[®] drives play a key role in rapid urbanization through an uninterrupted cold chain, fresh food supply, building comfort, clean water and environmental protection.

Outmaneuvering other precision drives, they excel, with remarkable fit, functionality and diverse connectivity.

- Food and Beverage
- Water and Wastewater
- HVAC
- Refrigeration
- Material Handling
- Textile

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

11. Special Requirements

No Special Requirements are necessary.

Confidential Information

f. Energy Requirements

Confidential Information

1. Estimated Annual Energy Requirement

Confidential Information

Greater New Haven - Life Cycle Cost Analysis APG-Neuros								
Wednesday, February 2, 2022								
Investment & Life Cycle APG-Neuros Tur	e Cost Analysis of bo Blower							
Prices valid in 2022 Economy Year	APG-Neuros APGN500	Comments						
Required Performance- Blower Performance								
Operating Blowers, Duty	5							
Standby Blowers,	1							
Rated Power, HP	470							
Discharge Pressure, psig	10.25							
Total Factored Wire Power Draw - per Blower,kW	274.1							
Total Factored Wire Power Draw - per System,kW	1370.5							
Operating Energy Cost savings								
Operational Time, hours/year	8760	24hrs x 365days/year						
Total Power Consumption, kWh/year 2,401,116								
Energy Cost, \$/kWh \$0.125 Average \$/KWh 12.5Cents								
Power Cost per year - Per Blower, \$/year \$300,140								
Power Cost per year - Per System, \$/year \$1,500,698								

No heat rejection to the blower room. Heat is piped outside the blower room.

reat is pipe

Greater New Haven - Life Cycle Cost Analysis APG-Neuros						
Wednesday, F	ebruary 2, 2022					
Investment & Life (APG-Neuros	Cycle Cost Analysis of s Turbo Blower					
Prices valid in 2022 Economy Year	APG-Neuros APGN500	Comments				
Required Performance- Blower Performance						
Operating Blowers, Duty	5					
Standby Blowers,	1					
Rated Power, HP	470					
Discharge Pressure, psig	7.70					
Total Factored Wire Power Draw - per Blower,kW	217.6					
Total Factored Wire Power Draw - per System,kW	1088.0					
Operating Energy Cost savings						
Operational Time, hours/year	8760	24hrs x 365days/year				
Total Power Consumption, kWh/year	1,906,176	S				
Energy Cost, \$/kWh	\$0.125	Average \$/KWh 12.5Cents				
Power Cost per year - Per Blower, \$/year	\$238,272					
Power Cost per year - Per System, \$/year \$1,191,360						

No heat rejection to the blower room. Heat is piped outside the blower room.

de la compara de

Greater New Haven - Life Cycle Cost Analysis APG-Neuros								
Wednesday, February 2, 2022								
Investment & Life Cycl APG-Neuros Tu	e Cost Analysis of rbo Blower							
Prices valid in 2022 Economy Year	APG-Neuros APGN500	Comments						
Required Performance- Blower Performance								
Operating Blowers, Duty	5							
Standby Blowers,	1							
Rated Power, HP	470							
Discharge Pressure, psig	10.25							
Total Factored Wire Power Draw - per Blower,kW	287.0							
Total Factored Wire Power Draw - per System,kW	1435.0							
Operating Energy Cost savings								
Operational Time, hours/year	8760	24hrs x 365days/year						
Total Power Consumption, kWh/year	2,514,120	S						
Energy Cost, \$/kWh	\$0.125	Average \$/KWh 12.5Cents						
Power Cost per year - Per Blower, \$/year	\$314,265							
Power Cost per year - Per System, \$/year \$1,571,325								

No heat rejection to the blower room. Heat is discharged to the processed air.

FORFOR BIDDE

Greater New Haven - Life Cycl	e Cost Analysis A	PG-Neuros						
Wednesday, Fe	bruary 2, 2022							
Investment & Life Cyc APG-Neuros T	cle Cost Analysis of urbo Blower							
Prices valid in 2022 Economy Year APG-Neuros APGN500 Comments								
Required Performance- Blower Performance								
Operating Blowers, Duty	5							
Standby Blowers,	1							
Rated Power, HP	470							
Discharge Pressure, psig	7.70							
Total Factored Wire Power Draw - per Blower,kW	228.9							
Total Factored Wire Power Draw - per System,kW	1144.5							
Operating Energy Cost savings								
Operational Time, hours/year	8760	24hrs x 365days/year						
Total Power Consumption, kWh/year	2,005,164	5						
Energy Cost, \$/kWh	\$0.125	Average \$/KWh 12.5Cents						
Power Cost per year - Per Blower, \$/year	\$250,646							
Power Cost per year - Per System, \$/year	\$1,253,228							
Alte No heat rejection to the blower room. I	rnate Bid leat is discharged to the process	sed air.						

2. Guaranteed wire power: Table 3 Under Article 1.10

Confidential Information

1.10 POWER GUARANTEE

- A. Guaranteed Performance: The manufacturer shall submit guaranteed compressor package total wire power (kW) values with the proposal and submittal at the listed design points for both 7.7 psig and 10.25 psig discharge pressures as outlined in Table 3 below. The wire power shall include all losses associated with the compressor package at all specified operating points. The completed table shall be submitted by Manufacturer with the proposal and will be considered the basis of the power guarantee and all related requirements as specified herein.
- B. Actual Performance: The actual performance of the compressor package total wire power (kW) will be obtained during the factory performance test as specified herein. Include the results for each compressor package with the factory performance test submittal.

Discharge P	ressure: 7.7	psig	Gu	Table aranteed Perform	3 ance Evaluatio	n ¹		
Operating Condition	Total Flow (scfm)	Inlet Tem p. (deg. F)	Relative Humidity (%)	Recommended No. of Compressors Online ³	Flow per Compresso r (scfm) ³	Total Wire Power per Compressor Package (kW) ²	Power Evaluation Factor	Factored Total Wire Power per Compressor Package (kW)
Condition 1	9,500	-5	54	1	9500	232	0.15	34.8
Condition 2	31,900	-5	54	4	7975	193	0.20	38.6
Condition 3	16,000	60	70	2	8000	225	0.30	67.4
Condition 4	13,000	40	86	2	6500	172	0.20	34.3
Condition 5	43,600	104	50	5	8720	283	0.15	42.5

¹ Allowable Deviation: Flow 0%, Pressure 0%, Power + 1 %.

 2 Guaranteed data shall be provided for each compressor package at each discharge operating condition at both discharge pressures of 7.7 and 10.25 psig.

³ Manufacturer to provide recommended number of online compressors at the given operating condition. This shall be used to determine flow per compressor for each test condition.

Base Bid

No heat rejection to the blower room. Heat is piped outside the blower room.

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 18 PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

1.10 POWER GUARANTEE

- A. Guaranteed Performance: The manufacturer shall submit guaranteed compressor package total wire power (kW) values with the proposal and submittal at the listed design points for both 7.7 psig and 10.25 psig discharge pressures as outlined in Table 3 below. The wire power shall include all losses associated with the compressor package at all specified operating points. The completed table shall be submitted by Manufacturer with the proposal and will be considered the basis of the power guarantee and all related requirements as specified herein.
- B. Actual Performance: The actual performance of the compressor package total wire power (kW) will be obtained during the factory performance test as specified herein. Include the results for each compressor package with the factory performance test submittal.

Discharge P	ressure: 10.2	25psig	Table 3 Guaranteed Performance Evaluation ¹					
Operating Condition	Total Flow (scfm)	Inlet Tem p. (deg. F)	Relative Humidity (%)	Recommended No. of Compressors Online ³	Flow per Compresso r (scfm) ³	Total Wire Power per Compressor Package (kW) ²	Power Evaluation Factor	Factored Total Wire Power per Compressor Package (kW)
Condition 1	9,500	-5	54		9500	290	0.15	43.5
Condition 2	31,900	-5	54	4	7975	243	0.20	48.7
Condition 3	16,000	60	70	2	8000	282	0.30	84.7
Condition 4	13,000	40	86	2	6500	221	0.20	44.1
Condition 5	43,600	104	50	5	8720	353	0.15	53.0

¹ Allowable Deviation: Flow 0%, Pressure 0%, Power + 1 %.

 2 Guaranteed data shall be provided for each compressor package at each discharge operating condition at both discharge pressures of 7.7 and 10.25 psig.

³ Manufacturer to provide recommended number of online compressors at the given operating condition. This shall be used to determine flow per compressor for each test condition.

Base Bid

No heat rejection to the blower room. Heat is piped outside the blower room.

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 18 PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

1.10 POWER GUARANTEE

- A. Guaranteed Performance: The manufacturer shall submit guaranteed compressor package total wire power (kW) values with the proposal and submittal at the listed design points for both 7.7 psig and 10.25 psig discharge pressures as outlined in Table 3 below. The wire power shall include all losses associated with the compressor package at all specified operating points. The completed table shall be submitted by Manufacturer with the proposal and will be considered the basis of the power guarantee and all related requirements as specified herein.
- B. Actual Performance: The actual performance of the compressor package total wire power (kW) will be obtained during the factory performance test as specified herein. Include the results for each compressor package with the factory performance test submittal.

Discharge Pressure: 7.7psig Guaranteed Performance Evaluation ¹								
Operating Condition	Total Flow (scfm)	Inlet Tem p. (deg. F)	Relative Humidity (%)	Recommended No. of Compressors Online ³	Flow per Compresso r (scfm) ³	Total Wire Power per Compressor Package (kW) ²	Power Evaluation Factor	Factored Total Wire Power per Compressor Package (kW)
Condition 1	9,500	-5	54	1	9500	242	0.15	36.3
Condition 2	31,900	-5	54	4	7975	202	0.20	40.3
Condition 3	16,000	60	70	2	8000	236	0.30	70.7
Condition 4	13,000	40	86	2	6500	180	0.20	35.9
Condition 5	43,600	104	50	5	8720	305	0.15	45.7

¹ Allowable Deviation: Flow 0%, Pressure 0%, Power + 1 %.

 2 Guaranteed data shall be provided for each compressor package at each discharge operating condition at both discharge pressures of 7.7 and 10.25 psig.

³ Manufacturer to provide recommended number of online compressors at the given operating condition. This shall be used to determine flow per compressor for each test condition.

Alternate Bid

No heat rejection to the blower room. Heat is discharged to the processed air.

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 18 PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

1.10 POWER GUARANTEE

- A. Guaranteed Performance: The manufacturer shall submit guaranteed compressor package total wire power (kW) values with the proposal and submittal at the listed design points for both 7.7 psig and 10.25 psig discharge pressures as outlined in Table 3 below. The wire power shall include all losses associated with the compressor package at all specified operating points. The completed table shall be submitted by Manufacturer with the proposal and will be considered the basis of the power guarantee and all related requirements as specified herein.
- B. Actual Performance: The actual performance of the compressor package total wire power (kW) will be obtained during the factory performance test as specified herein. Include the results for each compressor package with the factory performance test submittal.

Discharge P	ressure: 10.2	25psig	Table 3 Guaranteed Performance Evaluation ¹					
Operating Condition	Total Flow (scfm)	Inlet Tem p. (deg. F)	Relative Humidity (%)	Recommended No. of Compressors Online ³	Flow per Compresso r (scfm) ³	Total Wire Power per Compressor Package (kW) ²	Power Evaluation Factor	Factored Total Wire Power per Compressor Package (kW)
Condition 1	9,500	-5	54	1	9500	302	0.15	45.3
Condition 2	31,900	-5	54	4	7975	253	0.20	50.7
Condition 3	16,000	60	70	2	8000	295	0.30	88.5
Condition 4	13,000	40	86	2	6500	229	0.20	45.8
Condition 5	43,600	104	50	5	8720	378	0.15	56.7

¹ Allowable Deviation: Flow 0%, Pressure 0%, Power + 1 %.

 2 Guaranteed data shall be provided for each compressor package at each discharge operating condition at both discharge pressures of 7.7 and 10.25 psig.

³ Manufacturer to provide recommended number of online compressors at the given operating condition. This shall be used to determine flow per compressor for each test condition.

Alternate Bid

No heat rejection to the blower room. Heat is discharged to the processed air.

HIGH SPEED TURBO AIR COMPRESSORS 44 42 19.05 - 18 PW\DEN003\E2X90000\.SPECS\.RFP PAC DECEMBER 13, 2021

g. Warranties

Confidential Information

Customer: Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Description of Goods: Six (6) x APGN500

CERTIFICATE OF WARRANTY HIGH EFFICIENCY TURBO BLOWERS

In accordance with the Specification Section 44 42 19 – Section 1.09, APG-Neuros accepts unit responsibility for all equipment furnished and equipment manufactured under the Specification Section.

- A. <u>Scope of Warranty:</u> APG-Neuros warrants that its products and parts, when shipped, will be free from defects in materials and workmanship and its startup and maintenance services will be performed in a professional manner. The warranty specified herein shall apply to this contract, but it is specifically understood that products sold hereunder are not warranted for outdoor installation with no pre-approved shelter which may damage electrical components, painted surfaces and may tend to build-up within the product. No product or part shall be deemed to be defective by reason of operating environment and the Customer shall have no claim whatsoever against APG-Neuros, therefore, for problems resulting from improper protection, improper installation, startup without the presence of an APG-Neuros certified technician, exposure to direct rain, debris or vibration during construction, build-up of foreign material and, excessive H₂S, debris, dust, or fluids/gasses within the unit. APG-Neuros will have a minimum 10-year guarantee or a minimum 50,000 start/stop count guarantee on bearing failure
- B. <u>Warranty Period</u>: APG-Neuros products are warranted for Ten (10) years from date of completion of the Blower start-up, as indicated on the start-up performance certificate, or One Twenty Six (126) months from the date of shipment to the Customer from the APG-Neuros facility, whichever occurs first.
- C. <u>Procedure for Warranty Claims:</u> If a problem arises with the APG-Neuros equipment within the applicable warranty period (as stated in *Section B* of this Certificate), it is the responsibility of the Customer to promptly notify APG-Neuros in writing underlining a brief explanation of the problem or defect, a description of the way the product is used, their name, address and phone number. The customer agrees to provide, at their cost, remote access via VPN or cellular communication to monitor operation of the equipment.
- D. <u>Repair by Other than APG-Neuros</u>: A repair done by anyone other than APG-Neuros must be approved in writing in advance by APG-Neuros. Repairs done by Others without APG-Neuros approval may render the warranty void for the remainder of the warranty period.
- E. <u>Repairs or Parts Replacement Within the Scope of Warranty:</u> Within a reasonable time after receiving written notification, APG-Neuros will correct any defects in its product(s). If a product is defective due to workmanship or materials and the defect occurs during the warranty period, APG-Neuros will either repair the product or replace it with a new one, whichever APG-Neuros believes to be appropriate under the circumstances. APG-Neuros will bear the expense of parts and labor for repair only. Defective items must be professionally packed at the Customers' expense and must be held for APG-Neuros' inspection before being returned to the original agreed point of delivery per latest INCO terms upon request.
- F. <u>Repairs Outside the Scope of Warranty</u>: Equipment problems due to improper installation, operation by untrained staff, exposure to construction debris or vibration, improper maintenance through failure to operate and maintain the product as outlined in the Operation and Maintenance manual and Service Instructions, improper application, non-APG-Neuros pre-approved additions or modifications, or other problems not due to defects in APG-Neuros' workmanship or materials will not be covered by this warranty. If APG-Neuros determines that the problem with the product is not due to defects in workmanship or materials, then the Customer will be responsible for the cost of any necessary repairs. In addition, consumable components mainly defined as, but not limited to, air filters elements, BOV diaphragm and replaceable internal components, butterfly and check valve internal seals and internal replaceable components, fasteners, nuts, bolts, gaskets, sealing rings and strips, coolant fluid (if applicable), power supply, RTD sensors, connectors, Thermocouples, Transformers and sound attenuation material are not covered by this warranty.
- G. <u>Warranty and Liability Limitation</u>: This Warranty and Service Policy represent APG-Neuros' sole and exclusive warranty obligation with respect to APG-Neuros' products. APG-Neuros' liability to a Customer or any other person shall not exceed the APG-Neuros sales price of the applicable product.

THE FOREGOING IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES WHATSOEVER, EXPRESS, IMPLIED AND STATUTORY, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABLITY AND FITNESS.

February 2, 2022 Date Signature Duly Authorized Official

Omar Hammoud – President APG-Neuros

Name and Legal Title of Official

h. Warranty and Service Agreement

Confidential Information

2. Extended Warranty

Confidential Information

AFTERMARKET SUPPORT PROGRAMS

EFFICIENT & AFFORDABLE TECHNOLOGY

CONTACT US FOR FURTHER DETAILS

1-855-423-2746 24/7 technical support, immediate answer

customerservice@apg-neuros.com

www.apg-neuros.com

1270 Michèle-Bohec, Blainville, QC J7C5S4 Toll-free: 1-855-423-2746 www.apg-neuros.com

A WORD OF APPRECIATION FROM OUR PRESIDENT

Dear Valued Customer,

Thank You for having chosen APG-Neuros as your supplier of Turbo Blowers. Thanks to you, we have proudly been serving the North American and European markets for over 10 years, with more than 1,100 units in the field. APG-Neuros is continuously listening to its customers to develop the highest quality products and offer innovative services to meet your needs.

We recognize the importance of availability of efficient support options for continued operations of our product in your facilities. We worked hard to understand your needs and bench marked with industry leaders to develop flexible and competitive support plans that we are proud to offer you.

We invite you to take advantage of our Support Plans and look forward to your successful operation of our product. Please let us know if you have suggestions for improving our support or ideas for other services we can offer.

Sincerely,

Omar Hammoud President & CEO APG-Neuros

" APG-Neuros may well be among the nicest or the nicest company we have ever had the privilege to work with and your team member was a pleasure to speak with. We appreciate all of our vendors, partners and friends, but your company ranks at the very top of the list. Thank you for the great news you had for us today regarding the expedited delivery of the turbo blowers "

Jim Jacobsen Sr. , DePue Mechanical, Inc. City of Joliet East Side, IL NX350-C070 (2) Installation

APG-NEUROS AFTERMARKET SUPPORT PLANS

Service Plans

- Extended Preventive Routine Maintenance (EPRM)
- Maintenance Service Plan (MSP)

Component Repair and Replacement Upgrade Plans

- Repair and Return to Service
- Exchange No return
- Rental Component during repair
- Inspection, cleaning and refurbishment

SERVICE PROGRAMS

Extended Preventive Routine Maintenance and Maintenance Service Plan

Program	Benefits
Extended Preventive Routine Maintenance (EPRM)	 Preventive maintenance Routine inspections and routine maintenance, once or twice a year On site refresher training Bump start alignment of the core bearings Inspection of control parameters and adjustment to adapt to the operating environment Availability of parts and modules within 24 hours Remote technical support – 24/7 availability, immediate answer Replacement cores available for rent APG-Neuros free publication Product improvements/upgrades for an additional charge
Maintenance Service Plan (MSP)	 Extended warranty, full package Parts and labour for repairs of failures Parts and labour for repair of unscheduled maintenance Preventive maintenance Routine inspections and routine maintenance, once or twice a year Hardware upgrades No rental charges for replacement cores On site refresher training Bump start alignment of the core bearings Inspection of control parameters and adjustment to adapt to the operating environment Software upgrades Priority technical support Remote technical support – 24/7 availability, immediate answer Priority on availability of parts and modules within 24 hours Parts exchange program, free of charge replacement Product mandatory or recommended modifications or upgrades Participation in manufacturer's maintenance and support developments Fine tuning of turbo blower and aeration system Remote Monitoring System and support as permitted by the customer Trend monitoring APG-Neuros free publication Rotating seat on APG-Neuros user's group

The Maintenance Service Plan (MSP) is customized for each customer. Prices will be provided upon selection of customer options.

1270 Michèle-Bohec, Blainville, QC J7C5S4 Toll-free: 1-855-423-2746 www.apg-neuros.com

3. Service Agreements

Confidential Information

AM&MSP Service Plan (Optional)

Subject: Proposal for a 5-Year Asset Management and Maintenance Services Plan (AM&MSP)

Equipment covered: all blowers appurtenances and accessories Original Period: 5 years

The comprehensive **Asset Management and Maintenance Service Plan (AM&MSP)** is designed to provide high availability, always upgraded unlimited useful life (No retirement period) of the Turbo Blowers.

The Asset Management and Maintenance Services Plan (AM&MSP) covers all the previously mentioned tasks in the 5-Year Service contract in addition to components and software upgrades, five (5) years extended warranty.

Our Asset Management Service Plan includes:

- I. Service contract
- Four (4) on-site maintenance and inspections by our Field Service technician per year.
- o Refresher training.
- o Inspect and clean/replace the air intake filters.
- o Inspect and clean dirt and debris in enclosure, seal as required.
- Check health of core and fine tune operating parameters to adapt to changing site operating requirement.
- Ensure PLC and HMI software is operational and suitable for the blower control.
- o Inspect for loose connections and tighten them as required.
- Verify sensors functionality and replace them as required.
- o Inspect control parameters and adjust to adapt to the operating environment.
- o Inspect of paint and fasteners and apply touch-up or replacement as required.
- o Issue maintenance reports with recommended maintenance action
- II. Extended Warranty (5 years)

It covers the cost of repairing or replacing major component when out of service. Includes:

1. Blower Core

• High efficiency impeller,

• Permanent magnet synchronous motor,

Confidential Information

- o Diffuser fan,
- o Motor casing
- 2. Variable Speed Drive/Inverter
- 3. Input Line Reactor
- 4. Sine-wave (sinus) filter
- 5. Blower Local Control Panel and PLC components
- 6. HMI Touch Screen components
- 7. Internal vibration and absorption mounts
- 8. Vibration sensors and monitoring
- 9. Discharge Expander (discharge cone)
- 10. Blow off by-pass valve and solenoid parts
- 11. Blow off silencer
- 12. Sound attenuating inside enclosure
- 13. Check valve seals and discs
- 14. Stop valve body seals and discs
- 15. External expansion joint
- **III.** Asset Management (AM) allows for keeping the turbo blower with updated technology
 - 1. PLC software upgrades
 - 2. HMI graphics and operating system upgrades
 - 3. Product mandatory or recommended modifications
 - 4. Upgrades and new component developments
 - 5. Fine tuning of turbo blower and aeration system
 - 6. Participation in manufacturer's maintenance and support developments
- **IV.** Remote Monitoring System and support as permitted by the customer.
 - 1. View all analog values of the blower in real-time.
 - 2. Compare operational data for trending your process values and changes.
 - 3. Export historical data to Excel for manipulation or viewing purposes
 - 4. Elevated security with 3G/ LTE mobile network connection (No onsite Internet connection required)
 - 5. Remote Technical Support by a Field Service Team Member to help analyze the data
- V. Guaranteed priority availability of parts
- VI. 24/7 Technical Support

Confidential Information

3. Quality of Construction and Qualification

APG-Neuros provides high-quality electrical and mechanical components that are UL listed.

Confidential Information

Project CWF 2019-04 Process Air Compressor

February 2, 2022

Gabriel Varca Director of Finance and Administration 260 East Street New Haven, CT 06511

Process Air Compressor System for Low Level Nitrogen Removal at the East Shore Water Pollution Abatement Facility CWF 2019-04 Process Air Compressor Equipment Preselection

Subject: Statement of Conformance

This is to confirm that APGN Inc. submittal package is in full compliance with the technical specification and confirms that the proposed blowers' configuration and the equipment provided shall meet the performance requirements as defined in this Request for Proposal (RFP), Addendum No.1 & 2 and the Manufacturer's completed Guaranteed Wire Power Table.

Omar Hammoud

President & CEO

Confidential Information

4. Americon Iron and Steel Bidders Certification

As per the Environmental Protection Agency under Q/A #22 that blower/aeration equipment is not considered construction material and under the AIS requirements, including their appurtenances necessary for their intended use and operation – which means valves, CV, flexjoints, etc

Our proposed equipment is built and assembeled in the United States of America.

It is our understanding that the Infrastructure Investment and Jobs Act (IIJA) H.R. 3684 which includes the "Title IX - Build America, Buy America" (BABA) became law in November 2021. It is also our understanding that this law supersedes all other AIS/Buy America requirements.

Confidential Information

5. Authorization to Bid

APG-Neuros is a US based subsidiary of APGN Inc. that owns 100% of the US subsidiary. APG Neuros Corp, located in Plattsburgh, NY, also APGN Inc owns the UK based company APG Neuros Limited.

APG Neuros's head office is presenting this bid and the forms are duly signed by the President and CEO of APG Neuros - Omar Hammoud.

Confidential Information

E

2

CAUTION

APG-Neuros Company Profile

E

CAUTION

Manufacturer of High Efficiency Turbo Blowers & Aeration Systems

Advanced aerospace technology, energy efficiency and quality are the driving forces behind our products. Reliable and low maintenance, APG-Neuros Turbo Blowers and Aeration Systems provide our customers with environmentally sustainable solutions in a variety of different wastewater treatment applications. APG-Neuros has been leading the way through innovation and education in the turbo blower market, modernizing an aging industry.

ABOUT US

APG-Neuros is recognized as the force behind the successful introduction of the high speed turbo blower technology in the wastewater treatment markets in North America, Western Europe and the Middle East.

APG-Neuros is a privately-owned company with headquarters located in Quebec, Canada and production facility in Plattsburgh, NY. Engineers and owners recognize our company as the force behind the successful market introduction of the high-speed turbo blower technology in the wastewater treatment market. We are an awardwinning company that strives for continuous technological developments and innovations. We own our technological foundation, conducting in-house R&D programs to keep innovating and improving our products and services. Since 2005, we have followed a focused approach, based on aerospace models, for product introduction. Our approach highlights our technical competency, proven design, high quality components, and UL & CSA certification.

This focused approach has led to the success of our products and the wide acceptance of the High Speed blower technology in the wastewater treatment and industrial sectors in North America. We have achieved over 1.000% growth in our sales revenue, exceeding \$200 million in cumulative sales between 2006 and 2019. Our blowers currently achieve the highest installed base of any High Speed Turbo Blower manufacturer, with over 1,350 units installed and more than 100 units on order in North America and Europe. Combined with deliveries from our partner Neuros, worldwide installations exceed 5,000 units.

Industry leading experts and think-tanks have awarded APG-Neuros on numerous occasions. In 2011 and 2012. APG-Neuros received the Artemis Project and APEX

awards for most promising companies in the water industry for applying innovative and sustainable product to address water industry challenges. In 2012, the company also received the Product Innovation Award from Frost & Sullivan in the aeration technology market in North America. Frost & Sullivan evaluated APG-Neuros blowers against key competitors based on criteria such as the innovative element of the product that leverages leading edge technologies, the value added features, customer benefits of the product, the increased customer Return on Investment leading to decision on acquisition. In 2013, 2015, and 2016 PROFIT 500 Magazine listed APG-Neuros on the top 500 of Canada's Fastest-Growing Companies. In July 2016, the company was honored by the Canadian Business Executive with 2016 "Best of Canada" award. Finally, in July 2017 APG-Neuros CEO was awarded as "Best Turbo Blower Manufacturer CEO - North America" by CEO Monthly.

Our Facilities

PRODUCTION & TESTING HEADQUARTERS

APG-Neuros Production & Testing Facility Plattsburgh, NY, United States

APG-Neuros Production & Testing plant is located in a 60,000 square foot facility in Plattsburgh, NY, approximately 75 miles south of Montreal, QC where all the high speed turbo blowers are assembled, tested and inspected. It houses engineering, testing, assembly, field service, administrative, quality control and support personnel. The facility's warehouse has a large spare parts inventory for quick response time to support its operational fleet.

The production plant has two state of the art test cells for conducting acceptance testing. The test cells and associated equipment are fully ISO 5389 and ASME PTC-10 compliant and can test cores as well as complete packages. Each test cell has a Data Acquisition System to monitor pressure, flow, vibration, power and temperature. Top of the line equipment is used for data verification and all equipment is calibrated to national and international standards. Every test cell has its own control room where customers can witness test. APG-Neuros has 12 test technicians in this production facility dedicated to high speed turbo blowers.

APG-Neuros Headquarters Blainville, QC, Canada

The Headquarters of APG-Neuros is located in a 32,000 square foot facility in Blainville, QC Canada where the supply of blowers is managed and engineered. It houses the executive, finance, administrative, engineering, support, research and development, customer service, quality control, repair/overhaul, and assembly/ testing personnel.

> There are currently over 70 employees in the two facilities.

COMPANY OVERVIEW

OUR VISION

To be recognized as the reference technology company for producing innovative products, including the Turbo Blowers, Turbo Compressors, and other efficient and affordable technology products.

OUR MISSION

APG-Neuros is committed to achieving customer satisfaction by providing quality products and services delivered on time. To establish close presence to our customers and build local relationships to help them use our product more effectively and optimize their preformance.

OUR VALUES

Innovation

We strive for continuous technological development and innovation. We conduct inhouse R&D programs to keep innovating and improving our products and services.

Team

Ensure employee empowerment and fulfillment through continued skills development

and career advancement.

Integrity

Promote a culture of transparency, continuous improvements and strive for a sustainable business model.

Environment

We strive to limit the impact of our activities and our product on the environment.

Today, APG-Neuros provides its customers with turn-key solutions including blowers, aeration control systems, diffusers, pipework, instrumentation and

Our Services

APG-Neuros provides turn-key solutions for its customers - from study phase to after-sale support, monitoring and maintenance.

APG-Neuros is a privately owned high growth company. Its corporate structure is based on business models of successful industrial and aeronautic companies. APG-Neuros Senior Management, Sales, Operations Management and Finance teams are located in Montreal, Quebec, Canada. APG-Neuros also employs Sales, Technical Service and Support staff located in the US, Canada and Europe, in close proximity to its customers. Additionally, APG-Neuros has developed a highly efficient Field Service Network comprised of internal commercial and technical service teams and Field Service Engineers as well as Third-Party service providers located within proximity to its customers. In addition

to its local resources in North America, APG-Neuros has direct access to Neuros technical resources with high level technical competencies in the areas of compressor, air bearing, permanent magnet synchronous motor and controls technologies. The technical resources from Neuros have been relocated to APG-Neuros in a systematic manner consistent with its operations growth in the western world. Through obtaining/developing the internal resources required to design, produce and test the equipment in-house, APG-Neuros is able to successfully meet accelerated submittal and delivery schedules without compromising quality or customer satisfaction.

STUDY & AUDIT ASSESSMENT

We assist our customers with comprehensive assessment and audits to determine the best possible solutions for each of their needs including multidisciplinary engineering support.

Complete in-house engineering & design of aeration systems. Process simulation, mechanical/electrical design, layout & drawings. PLC/SCADA controls and communications.

COMMISSIONING

Testing, Start-Up and Complete integration of the supplied equipment & material. In-depth on-site training.

WHAT WE CAN DO

We help our customers every step of the way

AERATION SYSTEM DESIGN

EQUIPMENT SUPPLY & INSTALLATION

Manufacture of Turbo Blowers, Control Systems, Supply of Diffusers, Pipework, Instrumentation, etc. We also take care of construction and installation for you.

CONTROL SYSTEMS

Comprehensive Control Strategy for Maximum Optimization & Efficiency designed by APG-Neuros in-house.

MONITORING & MAINTENANCE

Local engineering support. Remote Monitoring & Troubleshooting System - reduced maintenance costs, historical data trends and preventive maintenance.

OUR INSTALLATIONS

OVER 5,000 TURBO BLOWERS WORLDWIDE

- 1. New York City, NY
- 2. Washington D.C.
- 3. Abu Dhabi, UAE
- 4. London, UK
- 5. King County, WA
- 6. Cincinnati, OH

OUR INSTALLATIONS

OVER 5,000 TURBO BLOWERS WORLDWIDE

- 1. Bend, OR
- 2. Brembate, Italy
- 3. Pumpkinvine, GA
- 4. Las Vegas Valley, NV
- 5. Hollister, CA

🔀 Contact

info@apg-neuros.com sales@apg-neuros.com www.apg-neuros.com

Phone

Ľ.

T: + 1-450-939-0799 TF: +1-866-592-9482 UK: + 0800-3689-274

• Address

1270 Michele-Bohec Blainville, QC J7C 5S4 Canada

6. Proof of financial strength

Confidential Information

Subject: The Manufacturer is an established, financially stable, and ongoing business.

We are pleased to submit our proposal in response to the referenced RFP. We confirm our full Compliance with the Bidder's qualification requirements and corresponding evidences

The Manufacturer is an established, financially stable, and ongoing business.APGN Inc. dba APG-Neuros is a Canadian Company that owns 100% of the US subsidiary. APG Neuros Corp, located in Plattsburgh, NY, also APGN Inc owns the UK based company APG Neuros Limited.

APG-Neuros has been leading the High-Speed Turbo Blower market from 2006 with blowers ranging from 30 to 1500 HP using Air Bearing and Magnetic Bearing systems. We pride our selves with our continuous improvements and innovations to adapt our product to our customers' requirements. We offer most proven product with over 1500 installed blowers in more than 600 WWTPs. Over 30% of our orders are repeat customers, a strong testimony to our customer loyalty. The experience gained between 2006 and 2012 led to technological improvements applied successful leading to our very reliable operation and enhancement to our product efficiency. APG-Neuros has more than 190 blowers installed in California at 70 different facilities, some of which have been operating for over 12 years and achieving a high reliability and availability rate of above 99%.

The Headquarters of APG-Neuros is located in a 32,000 square foot facility in Blainville, QC, Canada where the supply of blowers is managed and engineered. It houses the executive, finance, administrative, engineering, support, research and development, customer service, quality control, repair/overhaul, and assembly/testing personnel.

Confidential Information

In 2009, we established our US subsidiary APG-Neuros Corp. We have 32 employees at USA and operating 60,000 square foot Production & Testing plant in Plattsburgh, NY, where all the high-speed turbo blowers are assembled and tested. It houses engineering, testing, assembly, field service, administrative, quality control and support personnel.

The production plant has two state of the art test cells for conducting acceptance testing. The test cells and associated equipment are fully ISO 5389, ASME PTC-10 and ASME PTC-13 compliant.

At APG-Neuros we pride ourselves with our culture of high customer responsiveness. We innovate and adapt our support system to help our customers to solve their challenges and meet their operational objectives. We have won several awards from the wastewater treatment community in the US and Canada including Best Product, Most Innovative Company, Best Turbo Blower Manufacturer and Best Turbo Blower Manufacturer CEO.

Confidential Information

APGN INC.

Consolidated Balance Sheet

December 31, 2020, with comparative information for 2019

	2020		2019
Assets			
Current assets:			
Cash and cash equivalents	\$ 641,471	\$	1,163,029
Accounts receivable (note 2)	7,751,157		9,039,038
Income tax receivable	16,756		16,756
Unbilled revenues (note 3)	24,215,634		23,574,878
Inventories (notes 4)	13,238,482		16,280,596
Prepaid expenses and deposit	 278,969	-	143,082
	46,142,469		50,217,379
Fixed assets (note 5)	5,166,822		5,378,609
Intangible assets (note 6)	9,129,511		7,385,295
Surrender value of life insurance policy	91,816		83,962
	\$ 60,530,618	\$	63,065,245

See accompanying notes to consolidated financial statements.

APGN INC.

Consolidated Balance Sheet (continued)

December 31, 2020, with comparative information for 2019

	 2020	_	2019
Liabilities and Shareholder's Equity			
Current liabilities:			
Bank loans (note 7)	\$ 9,596,705	\$	7.645.777
Accounts payable (note 8)	 10,162,329	. d.	14,385,877
Deferred revenue (note 3)	994,238		1,975,386
Current portion of obligations under capital leases (note 9)	32,675		37,306
Current portion of loans from a shareholder (note 11)	1,208,194		72,981
Current portion of long-term debt (note 10)	4,344,120		806,030
	26,338,261		24,923,357
Obligations under capital leases (note 9)	2,837		30,502
Loans from a shareholder (note 11)	13,840,669		13,157,184
Long-term debt (note 10)	8,683,378		12,040,289
Future income taxes (note 15)	243,673		461,955
	49,108,818		50,613,287
Shareholder's equity:			
Share capital (note 12)	4,461,859		4,461,859
Retained earnings	6,959,941		7,990,099
	11,421,800		12,451,958
Subsequent events (note 19)			
	\$ 60,530,618	\$	63.065.245

See accompanying notes to consolidated financial statements.

On behalf of the Board:

Director

Director

APG-Neuros Receives Water & Energy Innovation Award

We are proud to announce that APG-Neuros has been awarded the Water & Energy Innovation Award in Valencia, Spain at the WEX Global event for the innovation and work that the company has done in the development of the 1 MW Turbo Blower.

Thank you to the Metro Wastewater Reclamation District and the dedicated APG-Neuros team that worked together to bring the 1 MW Turbo Blower from idea to its first ever installation in Denver, Colorado. The two teams have been working closely to develop, install and test first of its kind, 1 megawatt magnetic bearing high speed blower (APGN 1350).

After successful witness testing, the blower was delivered and installed at the Robert W. Hite Treatment Facility (Denver Metro Wastewater Reclamation District). It is replacing the old centrifugal blower that is much less efficient, difficult to control, requires oil changes, high vibration and temperature. APG-Neuros owes its success to Metro Denver, the co-recipient of this award for accepting to install and test the first production 1 MW (1350 HP, 30,000 SCFM) Turbo Blower; one of its kind in the world.

APG-Neuros is recognized as the force behind the successful introduction of the high-speed turbo blower technology in the wastewater treatment market in North America, Europe and the Middle East. Since 2006, APG-Neuros has been leading the way through innovation and education in the turbo blower market, modernizing an aging industry.

Advanced aerospace technology, energy efficiency and quality are the driving forces behind its products. Reliable and low maintenance, APG-Neuros Turbo Blowers and Aeration Systems provide its customers with environmentally sustainable solutions in a variety of different wastewater treatment applications. APG-Neuros is the market leader in the High-Speed Turbo Blower category in North America, with over 1350 units installed.

Dan Freedman, MWRD and Omar Hammoud, President/CEO of APG-Neuros

For more information about APG-Neuros' products and services, please consult our website www.apg-neuros.com or send your inquiries to sales@apg-neuros.com.

For media or any other inquiries, please contact: Elana Podvalniuk: communications@apg-neuros.com Tel: 866-592-9482

I MW TURBO BLOWER:

APGN 1350 - 1 MW Turbo Blower

Proprietary information of APGN, Inc.

APG-Neuros Redefining the Wastewater Treatment Arena

Omar Hammoud. Owner and CEO of APG-Neuros

mar Hammoud founded APG-Neuros nearly two decades ago with strong technical and leadership qualities that he culminated over his previous 25 years in leadership positions with the three leaders in the aerospace industry. APG-Neuros was born when an opportunity was identified to bring collaborative ideas and innovative technologies and new way of doing business in aerospace and defense into a stagnant industry. The aeration market in wastewater treatment and industrial applications suffered for generations the pain of quality liquidated and talents departed and all that remained were low cost and inefficient products combined with antiquated ways of doing business. APG-Neuros identified that these pains represent a great opportunity that can be addressed by a newcomer with leadership qualities, that if persisted, can lead to transformation and grow a good business.

APG-Neuros is recognized for its high-efficiency Turbo Blower technology that modenized the water and wastewater treatment market. APG-Neuros introduced highly innovative aeration solutions built around affordable high efficiency Turbo Blowers. The Turbo Blowers are designed for best efficiency using advanced technology aerospace and power generation design tools. The Turbo Blowers are manufactured with high quality components and certified to the most stringent standards to ensure high reliability and over 99% availability. APG-Neuros produced Turbo Blowers that are integrated within its offer of a smart aeration systems; built with artificial intelligence and customized to work reliably and efficiently with each customer's operating platform, with virtually no scheduled maintenance requirements.

APG-Neuros is recognized for its high-efficiency turbo blower technology to the water and wastewater treatment market

Today, APG-Neuros has grown its customer base to over 600 Cities and delivered close to 1,400 units over the past 14 years. These customers form a solid platform for launching new products and services and act as good references for new customers."We see APG-Neuros capitalizing on its existing customer base and its strong brand to succeed in introducing the multiple products recently launched, which include the following," says Omar:

• Higher capacity Turbo Blowers in the 1 to 3-Megawatt size that brings the company into the very large product size suitable for the very large wastewater treatment plants. This market segment was monopolized by a few companies offering very old technologies with not much happening over the past 50 years.

basics.

INDUSTRY TECH OUTLOOK

• Brand New Gas Turbine Blower that will help the customers to save over 60% on their energy cost, take them off the electric grid and allow them to use productively their Biogas, that is otherwise emitted as pollutant to the atmosphere.

• Brand New Light Turbo Blower product line that addresses the customers looking for low cost option that provides the

These innovative products combined with the higherpressure capacity model also introduced in 2020 are expected to bring the company new industrial applications in addition to increasing its market size in places all over the world in municipal wastewater treatment. In the addition to the new products launch, APG-Neuros also launched advance new services that proved to strengthen its customers satisfaction while bringing in new stream of aftermarket sales revenues.

With the new products and services, APG-Neuros is well positioned to accelerate its expansions into international markets not currently served by the company. This expansion is currently underway in Continental Europe, the Middle East and South America. Further expansion into east Asia is being assessed with APG-Neuros sub-contract manufacturing partner located in South Korea. APG-Neuros believes that success to bring in innovations can be further enhanced with reforming the government procurement laws to move away from low-bid practices. Improving the municipal agencies' decision making and empowering them to more easily procure what they believe to be best product from the best company will further assist APG-Neuros to develop even more interesting products and technical solutions.

The steadfast leader is also passionate for the environment and his duty to the global community, drove him to embark on a long cycle of bold innovations. Omar cares about the global community and empowers his employees and inspires his customers to work together to accomplish efficiencies in everything we do as part of our fight of the global warming. The CEO has applied creativity and showed courage, persistence and resilience to overcome the hurdles coming from entrenched competition, a conservative customer base and dealing with low bidding prices that ruled the market for decades. Omar is inspiring with his focus on transforming the customers and advices them to focus on efficiency and reducing the footprint of all human activities. Omar's drives towards making the world a more sustainable place and hand it over to the future generations better than what the past had received. ITO

APG-Neuros

Recognized by INDUSTRY TECH OUTLOOK Magazine as

INDUSTRY TECH OUTLOOK

Inspiring Evolution with Turnkey Technologies Transforming Business Demographics

APG-NEUROS AWARDS

Industry Recognition

ARTEMIS PROJECT TOP 50 & APEX SUSTAINABILITY

APG-Neuros was selected in 2011 & 2012 by the Artemis Project as the Top 50 Water Companies that are applying innovation in the market to address today's dire water challanges. Likewise, APG-Neuros was awarded the APEX Sustainability Prize recognizing sustainable business models and technologies transforming water management.

FROST & SULLIVAN BEST PRACTICES AWARD

In 2012, APG-Neuros was awarded the Best Practices: North American Aeration New Product Innovation Award. APG-Neuros was evaluated against key competitors based on criteria such as the innovation, value-added features, customer benefits of the product and ROI leading to decision on acquisition.

PROFIT 500 2013, 2015, 2016

APG-Neuros was listed in 2013, 2015 and 2016 as part of the top 500 Canada's Fastest-Growing Comapanies based on five-year revenue growth.

ceo monthly

BEST TURBO BLOWER MANUFACTURER - CEO

Omar Hammoud, Presient & CEO of APG-Neuros, received the CEO Monthly Award for Best Turbo Blower Manufacturer CEO - North America. The award recognizes the CEO's work on ensuring that their company remains at the forefront of its industry and provies clients with the highest standards of products.

CANADIAN BUSINESS AWARDS - 2016 & 2017

In 2017, APG-Neuros was awarded the Most Innovative Aeration Technology Company & Award for Excellence in Turbomachinery Manufacturing & in 2016 the Mid-Market Achievement Award as the Best Turbo Blower Technology Manu-

facturer by Corporate Vision.

The European: Global Business Awards

APG-Neuros was awarded by The European the Most Innovative Wastewater Solution Provider - Aeration Systems – North America Award in 2018 as part of the Global Business & Finance Awards.

Blowing the Competition Away

APG-Neuros, is a Canadian company holy owned by Aviation and Power Group (APG), headquartered in greater Montreal, Québec . The company has its foundation in aeronautic technologies with the mandate for sales, distribution, manufacturing, aftermarket support and continued development of high efficiency Turbo-machinery, turbo blowers and complete aeration systems for the municipal and industrial markets in North and South America, Europe, & Middle East. We spoke to Omar Hammoud to discuss winning the Best Turbo Blower Manufacturer CEO - North America award.

Omar started APG in 2006 with a vision to be the world leader in the development and commercialization

of high efficiency turbomachinery. The company's product development started with its high efficiency high speed turbo blower system. APG's headquarters is located in Blainville, Quebec, Canada (28 km north of Montreal) and its production, warehouse and testing facility is located in Plattsburgh, New York, USA. Omar talks us through the origins of the firm, detailing how it has grown and what services it provides to a variety of clients today.

"APG began in 2006 with our first customer in St Pie, Quebec, Canada and are now today the leaders in the North American high speed turbo blower market with more than 400 customers and over 1100 units delivered. The great majority of our customers are municipalities; from small towns to large cities. Our customers vary from the wastewater facility owner, operator and maintenance manager to large industrial

companies, consortiums of consulting engineering firms and general contractors. We strive to support all of our customers from the simple beginnings, of project feasibility, to providing the owner a turnkey solution. We provide our customers with our technical knowledge and experience in the waste water industry throughout the process of the design of aeration system and assist them in best selecting their blower systems. We are recognized as custom technical solution providers; we build all of our blowers and master control panel to meet the specific needs of each of our customers. We also lead our industry with our knowledge and leadership to develop new standards that raises the quality of the products in general."

Discussing how it feels to win this award, Omar is very humbled, noting how grateful he feels to have his hard work recognized. Providing innovative products to customers, along with his and his staff's dedication and perseverance to providing only the best to clients are the main reasons that Omar attributes to his success.

"Honestly, I feel humbled with this award and grateful for the strength and visionary team at AI Global Media and CEO Monthly that work hard to recognize CEOs from across the corporate landscape. I attribute the success to assisting my customers with new innovative products and my dedication and perseverance along with my staff, family and partners in striving to bring the blower technology to the 21st century. Winning this award tells me that I have done the right thing and made good decisions. It allows me to use my achievements as a stepping

stone to take on more serious challenges and develop more innovative blower technologies further in the future." Drawing on his past experience and outlining his previous roles, Omar tells us how he came to achieve his position as CEO of APG. Having been fortunate enough to be hold several leadership roles in the past, Omar explains how is family supported him when he made the decision to start his new company. Using his previous experience to build a good team around him, Omar has grown APG to be the force it is today.

- Blowing the Competition Away

"In the past, I was fortunate to be a part of several leaders in aerospace and defense industry such as General Electric, United Technologies and French company SAFRAN for over 25 years where for seven years held executive positions. In 2005, with the support of my family, I took my savings, accumulated knowledge and experience and began the journey down the unbeaten path with the creation of the Aviation Power Group (APG). Introduced to the blower technology at the Water Environmental Federation trade show WEFTEC in 2006. I was able to benefit from my aerospace and defense industry knowledge and experience to successfully introduce the high speed turbo blower to the North American Market, I used my experience in executive roles, to grow the team around me. I began APG in the basement on my home and grew it to a team of 80 people located throughout North American, Western Europe and the Middle East."

When undertaking a new project, it is important to get to know the client and build relationships. Omar comments on his approach to new clients, listing how he ensures right from the start that the outcome meets the needs of everyone involved. He emphasises how the company and its staff are always ready to respond to any challenge or opportunities.

"Responsiveness. I strive to instill in my team to the importance of responding to the needs and wants of our existing customers and to our potential new customers. We take much pride in the ability to respond to any and all inquiries big or small, simple or complex. To ensure we do get it right the first time, we have built a multi-skilled team with background close to our customer's applications. We organized our sales force to work together as an integrated team to analyze and respond to the customers' requirements; taking into consideration the application specifics and our experience with similar installations in the past. We grew our technical

competency over the last ten years to provide our customers turn-key aeration solutions that meet the evolving customers' requirement. This high technical competency differentiated us and brought us much success in our goal to maintain our leadership in the market."

Regarding the state of the engineering and aviation industry currently, Omar talks to us about the particular issues and challenges facing the firm. Becoming more energy efficient, companies are determined to make their mark. However, Omar believes that, as a market leader, APG will continue to introduce new technologies, which will help the firm in its mission to become energy self-sufficient. "Fundamentally, we have seen the industry take a large step forward in goal to be more energy efficient with the acceptance of the high speed turbo blower technology. We have seen the number of industry players growing all striving to make their marks in the industry. As market leader, it is our role to continue to strive away from the beaten path and continue to introduce new technologies into the industry, in its ultimate goal to become energy self-sufficient."

Being a successful CEO is all about ensuring that all staff work together to achieve the same missions and reach the same goals. Leading by example, staff are able to look up to Omar and follow his lead. He points out that although his staff learn from him and follow his lead, he also learns from them, making a point of listening and meeting all of his employees.

"Importantly, I strive to lead by example. Throughout the years, I have had to wear many hats to bring our company to where it is today. In such, I am today able to mentor my team in their day to day challenges with use of my knowledge and experience obtained not only in past roles but those at APG. Through "can do" spirit, hard work, there is no obstacle we cannot conquer as a team. As much as my team has to learn from me, I learn as much from my team's knowledge and experience from their past careers. I am fortunate to have good people as part of my team. I make it a point to meet and listen to all of my team leaders and members to ensure that we all row in the same direction to cross the finish line as leaders."

Regarding the future of the firm, Omar is excited about a new project that APG has embarked on, with more announcements to come. Furethermore, Omar is looking forward to CEO's continuing to be recognised for the hard work they put in to their companies, particularly with regard to technology becoming more green and self-sufficient.

"Ultimately, we have already embarked on a significant new product development with even greater benefits to our customers. We hope to make announcements of our new products sometime during the first half of 2018. I enjoy what I am doing now and hope to continue growing my company and teams. I will also be looking at new acquisitions in the near future. I look forward to see other CEO's recognized by your team to strive to be influential in keeping the world moving to adopt green technologies and to support say Innovation and innovators."

Company: AGPN Inc Contact Email: OHammoud@apg-neuros.com Address: 1270 Michèle-Bohec, Blainville, Québec, J7C 5S4. Canada Phone: 001 450-939-0799 Website: www.apg-neuros.com

Most Innovative Aeration Technology Company & Award for Excellence in Turbomachinery Manufacturing

Aviation and Power Group (APG-Neuros) is recognized as the force behind the successful introduction of the high speed turbo blower technology in the wastewater treatment market in the Western World. We profile the firm and explore the secrets behind its success.

Founded in 2005, APG-Neuros has its foundation in the development of high efficiency aeronautic generation technolo-

and power generation technologies. The firm is networked into the Canadian and North American industrial and aeronautic communities with its local strong Engineering, production capability, and repair and customer service capability in Canada and the US. APG-Neuros currently manufactures its production units for the North American and western European market in Blainville, QC and Plattsburg, NY production facility.

Since inception APG-Neuros has grown into the market leader, with the highest number high speed turbo blower installations in North America with over 1000 units. APG-Neuros' largest percent of customers is in the municipal waste-water treatment sector. The company is also fortunate to have customers in other municipal sectors, such as potable water treatment, as well as several industrial sectors, such as food and beverage and medical supplies.

As a firm, APG-Neuros offers its customer an all-inclusive service, providing both consulting engineering firms and on-staff facility decision makers assistance in the design of their respective air system equipment upgrades. With APG-Neuros' two production facilities, Blainville, Quebec, Canada and Plattsburgh, New York, United States, it is able to provide its customers blower systems configured specifically to their needs in market leading delivery timelines. Finally, with an extensive, North American wide, field service network, APG-Neuros is able to service its customers with very little down time, in turn providing a fleet availability of over 98% of total operation time.

Looking ahead, APG-Neuros' goal for the future is to maintain market leader in the north American turbo blower market, and in order to achieve this the firm are continuously working on product improvement through technology innovation, as well as pushing the scope of work of the turbo blower manufacturer by offering a more services, ie installation work, consulting engineering work, and offering additional project required equipment/material, ie pipe work, filtration systems, automation systems.

In addition, APG-Neuros has recently introduced an extension to its popular "Dual-Core" model line to include smaller sized motors, 100 to 200 HP. This will allow the smaller facilities to benefit from this model line, offering performance of two independent units combined into one.

Ultimately, APG-Neuros is proud to be recognized by consulting engineering firms, in the water treatment field, as a benchmark equipment manufacturer.

> Company: Aviation and Power Group Contact: Omar Hammoud Contact Email: sales@apg-neuros.com Address: 1270 Michèle-Bohec, Blainville, Québec, J7C 5S4, Canada Phone: 001-450-939-0799

Most Innovative Digital Marketing Company - Toronto & Digital Marketing VP of the Year - Toronto

Art & Science Digital Experience Design Inc is an innovative digital marketing firm offering a wide range of services. We caught up with award winning Vice President Adam Green to find out more.

Art & Science is a unique digital agency that combines the creative inspiration of the artist with the analytic

artist with the analytic rigour of the scientist to produce campaigns, products and even new companies.

"Here at Art & Science, we work with clients of all sizes from a wide range of industries. Some of the more recognizable brands we have worked with include: The Toronto International Film Festival (TIFF), Starbucks, Hermes, Panasonic, Partners for Mental Health and more. Art & Science is a full-service agency providing discovery and strategy, design and development, analytics and advertising, and our success can be attributed to our incredibly innovative and engaging work that integrates digital interactions into the physical environment."

Within the Canadian digital marketing sector, Adam foresees an increased focus on mobile marketing and ecommerce going forward.

"Canada is one of the most connected nations in the world and yet we are lagging behind in areas such as the adoption of ecommerce. Our brands have been slower to fully invest in their e-commerce experience and Canadians are still "webrooming" and then buying in store rather than online. This trend is changing, however, with major players such as Amazon brining in Prime in 2013.

"In addition, we are also seeing brands asking for more from their advertising dollars and are seeking partners who understand the whole digital landscape and how they can leverage digital to achieve their objectives. More dollars are being shift-

ed to digital and in particular the mobile space and we are keen to work with clients to ensure that they put their message out there in a way that reaches their target market."

Specifically, with regards to Art & Science Adam is optimistic for the future and believes that his firm will continue to grow and succeed.

"Looking ahead, Art & Science positioned well for growth and are focused making 2017 a record-breaking year. We are still learning how to tell our unique story, and are committed to getting better at it this year and beyond. We believe we have a very special story to tell, and that we are great agency that is producing some incredible work for our clients."

Company: Art & Science Contact: Adam Green Contact Email: info@artscience.ca Address: 130 Spadina Ave, Suite 502, Toronto, Ontario Canada, Ontario, M5V 2L4 Phone: 416-366-2266 xt 221 Website: www.artscience.ca twitter/instagram: @artscienceTO